回旋加速器

仪器信息网回旋加速器专题为您提供2024年最新回旋加速器价格报价、厂家品牌的相关信息, 包括回旋加速器参数、型号等,不管是国产,还是进口品牌的回旋加速器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合回旋加速器相关的耗材配件、试剂标物,还有回旋加速器相关的最新资讯、资料,以及回旋加速器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

回旋加速器相关的厂商

  • 400-860-5168转3461
    上海茗准科学仪器有限公司(原上海永毓)是经上海市工商局批准成立的专业性科学仪器有限公司。其团队骨干均是在外资著名仪器公司的优秀市场销售人员。由于永毓科仪团队在科学仪器领域卓越的销售经历,以专业的知识背景,以及过往作为销售所取得的优异业绩,迄今已经取得了荷兰HVE加速器与加速器质谱的全国总代理,德国LAUDA系列粘度仪和界面张力仪的南方区总代理,以及日本Nacsic燃烧炉离子色谱联用系统总代理,丹麦光释光仪中国区总代理等。 目前上海茗准致力于进口仪器的国产化工作,并在此基础上有所创新,比如推出了氨基酸样品前处理系统,液体工作站系统/自动进样器等。
    留言咨询
  • 我司主营AA/ICP/ICP-MS类消耗品及耗材,均由美国原厂提供实验室仪器类包括:便携式水质分析仪,水活度分析仪(进口),回旋震荡提取仪,能量色散X荧光光谱仪生物类产品:血浆制备卡
    留言咨询
  • 宣汇科技(www.xuanhuitech.com),是一家集研发、生产、销售、代理国外高精度设备于一体的国家级高新技术企业,我们专业致力于气象环境、植物生理生态仪器的研发、生产、销售及服务。同时,我们与业内上百家国内外知名仪器厂家有着良好的战略合作伙伴关系,根据产品的精度不同,提供从低端到高端,从业务到科研级不同级别的应用系统。 我们主要服务于气象、可再生能源、农业、林业、土壤、水文、军事等众多科研及应用领域;我们的测量包括表层及高层空气监测、远程自动气象因子测量,如空气温度、露点 / 湿度、大气压力、太阳辐射、风、降水等;凭借着在该领域近八年的实战经验及与全球顶尖知名仪器厂家良好的战略合作,专注为广大业主单位提供可定制化、专业的系统解决方案和集现场安装、调试、培训、维护等完善的一站式服务。 我们为了满足客户需求,更好更快地服务于分布于全国各地的客户,有效的加强项目实施过程中的管控。宣汇科技分别在郑州、北京和昆明分别成立了办公室(销售和技术支持);各办公室备有大量的库存及各种配件;这一举措使我们更加便捷的为客户提供更优质的产品和服务。
    留言咨询

回旋加速器相关的仪器

  • 仪器简介:法国塞塔拉姆公司和法国AlyXan公司研发了一项全新热分析仪联用技术- VistoMS,即用傅立叶变换离子回旋共振质谱(FTICR)来为逸出的挥发性物质进行超高分辨率解析。此项新技术是这些年来第一次真正的热分析联用创新,是建立在无需制备样品就可直接测量离子回旋加速器频率和计算相应质量的质谱技术基础上的。这个方法的一大优势就是不会破坏逸出分子,能轻松进行不同化合物的同步表征。还可以实现逸出分子测量的超高分辨率和灵敏度。FTICR使用不同的前体离子例如H3O+来进行软电离,无需打碎就可实现电离。一旦确定了分子的实际质量,就可以非常方便的来表征并得到相应的分子公式。此外,由于质量精度可达到0.01 u,新款VistoMS可区分相同分子量的分子,这用传统的热分析MS技术几乎是不可能做到的.VistoMS还能量化样品所释放出的不同气体又无需校准。测量极限可达百万分之几,能测到高达300 u的质量范围。在每个范围内,能同时测出所有的混合物,即使未知样品也可准确分析。另外,它还可在湿度控制气氛下测量样品,这些是很多其他分光技术所达不到的。热分析仪和FTICR之间的联用能在大气压力下轻松完成,一部分气流可导入气体分析仪并释放到初级真空中,接着在达到测量区域前进入二级真空。样品的测量时间大约只需几秒钟(一般是2秒).VistoMS 联用是为了研究有机物(塑料,树脂,合成物,食品药品,石油产品,烟草,纤维材料,有机废料等)的降解或者分解而设计的,能够实现逸出气体的全面分析和量化,即使再微量的逸出物也能探测到。
    留言咨询
  • 美国CAPINTEC CRC-PC 智能活度计直接与核医学管理系统接口,无需读出单元。美国CAPINTEC CRC-PC 智能活度计自动化质量控制,用户手册在电脑上可视。美国CAPINTEC CRC-PC 智能活度计产品简介:CAPINTEC新型CRC-PC Smart电离室组合了Capintec知名和高可靠的电离室和创新的基于Web用户接口技术来满足当今的工作要求。远程连接和网络接口让智能电离室分离,成为先进的剂量校准。有两种填充压力,用于单剂量热实验室,HL型提供低活度灵敏度的同时能够覆盖临床宽活度范围。用于放射性药物方面,RPh型填充更低的压力来扩展活度范围以适应发生器和回旋加速器生产的更高活度。PC Smart电离室的创新功能设计提供一个占地面积小,可以直接与核医学管理系统远程查看功能连接。其他功能包含以太网软件升级,即插即用电离室,用户可调节的阈值获得更快的响应。 美国CAPINTEC CRC-PC 智能活度计特点:连接到基础架构网络便可以在任何电脑上显示(远程查看);直接与核医学管理系统接口,无需读出单元;以太网通讯;自动化质量控制;通过以太网接口软件升级;内置的数据库来储存质控数据及用户日志;以太网或USB端口工供电;用户可调节阈值实现更快的响应时间;小尺寸;用户手册在电脑上可视。美国CAPINTEC CRC-PC 智能活度计技术参数:电离室尺寸:高: 45.8cm直径:17.2cm重量:17.8kg内径:?6.1cm井深:25.4cm
    留言咨询
  • 粒子加速器 400-860-5168转2623
    AMS通过进行直接分析测定同位素比值,从毫克和次毫克样品中提供高精度同位素信息。 依据放射性衰变和从样品中射出的&beta 粒子的测量值,传统闪烁计数方法提供了放射性同位素浓度的信息,在它们通过质荷无线电分离以后,AMS直接计数出独立的同位素。 AMS要优于闪烁计数,因为AMS需要更少的样品材料并且由于高的计数率它能提供更高的样品处理量。由于没有足够的样品材料或者仅仅因为对样品数量要求太高,使得通过其他的计数手段的测量变得不太可能,而AMS却将这种测量转化为可能。最初应用于考古学的C14 记年的加速质谱仪,如今被用于测量例如铍,铝,氯,钙等众多元素的同位素比值。它被应用于地质物理学,海洋学,环境和古气候探究,生物医学,生化动力学,材料研究,监控,原子核,原子物理学和微量元素的分析等诸多领域。敏感度用AMS可实现的极度敏感性,用传统分析的同位素比值质谱仪是达不到的。AMS解决了当研究同位素时分子峰和离子峰有几乎相同的质荷比的干扰问题。在典型的最小浓度比10-15范围之内,仍然能通过AMS测量确定。精确度和可重复性HVE质谱仪概念的核心特征是&ldquo 国家的艺术&rdquo ,tandetron加速器特点是可靠性高,噪音极低水平,高的端电压的稳定性和低的端电压纹波。HVE tandetrons配备了一个纯粹的电子的高压电源,其优点在于,它没有可移动的部分.它没有振动,因此可能会导致端子电压波动也是不存在的。此外,纹波和稳定的价值和动态行为在多年的操作中一直很稳定,压力箱内的部件维修少有发生,不过如果需要的,维护也是必要的。由于精度和可重复性是AMS的关键问题,稳定性对于AMS来说是极为重要的。在实验核物理环境可以容忍的终端电压瞬变,在AMS是绝对不能接受的,因为它可以破坏从样品中获得的数据,而那些数据可能是不可替代的。同样,端子电压的轻微的波动也会导致通过加速器光束传输的变化,降低了结果的再现性。单个或多元素系统根据HVE tandetrons粒子加速质谱仪应用,可以划分为两个方面:单个元素的专属系统和多元素的多元素系统。其它离子束技术如离子注入,RBS-C,PIXE和ERD等的系统拓展应用也是有效的。固体以及气态样品HVE tandetron AMS系统都配备了50(可选200)样品的混合溅射源,接受固体样品以及气体样品(CO2),之后凭借可以允许的接地电位,进行气象色谱或碳氮氢元素分析仪的上游整合。HVE混合AMS溅射源的一个独特的功能特征,是在接地电位上的休止。它简化了源代码访问,可以避免一个大的高电压保护罩的必要性,确保安全和几乎无辐射的操作运行。待分析的样品是从传送带传送到离子源的内部,以避免样品在溅射过程中造成的交叉污染,真空泵直接坐落在距离离子发生器非常近的源体附近,确保了存在CO2样品的情况下,最佳真空泵抽速和低记忆效应。在溅射源和传动带之间存在一个气动闸阀使得离子发生器始终保持在一个合适的温度,延长了它的使用寿命,避免了传送带交换过程中真空环境的破坏。溅射源顶端有一个侧向插入点,这个精确和具备可重复性的方法就使得溅射源的维护更加的简单、快捷。同时性和连续性注入存在两种不同概念的注入方式:同时注入和连续注入。随着同时注入,不同的同位素被分离,分析,重组最终被同时注入到加速器中。HVE的同时注入是基于一个曾获得过专利的四磁体的结构,这个结构设计的固有特性,确保了它重组时轨迹的一致性和参数设置的独立性。对于连续注入,不同的同位素一次一个的被分析和注入加速器里。HVE连续注入配备了一个光速屏蔽单元,匹配了同位素经由加速器运转的纳秒精度和持续时间。它消除了对于交流电压需要相对较长的设置时间所引起的不确定性。它允许了一个更高的交流电压频率,这样就可以反过来降低由溅射源的小故障所引起的不利因素,从而优化了其精度。然而 同时注入是一个完全的直流操作连续注射周期,通过强度差异好几个数量级的同位素,通常是介于用于AMS的长寿命的放射性同位素之间。这就导致了加速器不同的束流负载,造成小端电压波动的影响,可能会影响精度。因此同时注入是高精密度加速质谱仪测量的首选方法,然而,同时注入的设备对于相对原子质量更大的元素测量变得不切实际的大和昂贵,但是连续注射可以很容易地覆盖整个周期表。最佳的端电压最佳的端电压依赖于被分析的元素种类和所需的精度要求,背景和检测效率是由应用程序确定的。HVE tandetron AMS 系统适用于不同的终端电压,最高可达6.0MV.磁力和静电抑制HVEtandetrons都配备了大口径高导加速管,沿加速管保持较低的压力。加速管本身配置有一种特有的磁性和静电抑制的装置,用以移除二次电子和在加速段有电荷交换的微电子的背景。高能量的质量分析加速后的剩余的背景在由静电能量分析仪组成的高能质谱仪中进一步减少之后,根据被分析的同位素和不同同位素所需要的背景,决定一个或两个磁铁。稀有同位素测量在两个阳极电离室能够同时测量每个粒子的DE /DX和Efinal,而稳定同位素只能在电子抑制下测量电量。 高能量质谱仪是适用于单一的元素或多个元素。在第一磁极后可以插入一个箔片来引入一个额外的能量差异在同位素和等压背景之间。这就允许移除之后的静电分析仪。10Be元素会需要类似箔片,也可以通过一个光谱仪的真空锁取代。这箔是双金属箔安排专利的一部分,优化了36Cl的一部分检测。
    留言咨询

回旋加速器相关的资讯

  • 我国成功研制高能质子回旋加速器
    世界首台百兆电子伏紧凑型质子回旋加速器首次出束现场。   调束指令发出,低能量的负氢离子在电场和磁场的作用下不断旋转并加速,在达到百兆电子伏后并引出时,荧光靶上出现一道蓝色的光斑。中核集团中国原子能科学研究院自主研发的世界首台100MeV(兆电子伏)质子回旋加速器4日首次调试出束,标志着该院承建的国家重点科技工程&mdash &mdash HI-13串列加速器升级工程的关键实验设施建成,也标志该工程重大里程碑节点的实现。这将使我国跻身少数几个拥有新一代放射性核束加速器的国家。   HI-13串列加速器是我国上世纪80年代初从美国引进的唯一一台大型静电式串列加速器,曾为我国核物理基础研究、核技术应用开发等发挥了重要作用。为适应国内外科学技术发展形势,构筑我国加速器装置先进试验平台,2003年7月,HI-13串列加速器升级工程经原国防科工委批准立项。工程建成后将在已有串列加速器实验室的基础上,逐步形成一器多用、多器合用、多领域、多学科的科学研究平台,填补我国中能强流质子回旋加速器、高分辨同位素分离器和超导重离子直线加速器的空白,达到目前国际同类装置的先进水平,使我国成为少数几个拥有新一代放射性核束加速器的国家之一。 此次建成的100兆电子伏质子回旋加速器直径6.16米,是国际上最大的紧凑型强流质子回旋加速器,也是我国目前自主创新、自行研制的能量最高的质子回旋加速器。它的研制成功,表明我国掌握了特大型超精密磁工艺技术、大功率高稳定度高频技术、大抽速低温真空技术等一批质子回旋加速器核心技术,取得了一系列创新性成果。 据介绍,加速器是核科学研究的重要平台,HI-13串列加速器升级工程建成后,将广泛应用于核科学技术、核物理、材料科学、生命科学等基础研究和能源、医疗健康等核技术应用研究。 中国原子能科学研究院是我国加速器起步和发展的摇篮,1958年,我国第一台回旋加速器在这里建成,开创了我国原子能事业的新时代。60多年来,原子能院引进、开发了各种能量和类型的加速器30多台,为我国低能核物理实验、&ldquo 两弹一星&rdquo 的研究、国民经济发展等做出了重要贡献。
  • 怀柔50MeV质子回旋加速器正式交付使用
    5月25日,记者从中国科学院国家空间科学中心获悉,位于北京怀柔科学城的怀柔50兆电子伏特(MeV)质子回旋加速器设备完成试运行,正式交付使用。该加速器主要用于开展空间辐射测试,将为空间辐射环境效应测试与分析、空间抗辐射防护设计与应用研究提供测试条件,支撑辐射环境探测及空间辐射环境应用,为我国航天器和航天员的安全保驾护航。在复杂的太空环境中,高能质子是空间辐射的重要来源,且能穿透航天器外壳进入航天器内部,对航天器的芯片和材料造成辐射损伤,对航天员的健康和航天设备的正常工作构成严重威胁。若能在地面通过相关装置模拟出太空的辐射环境,开展相关研究,就能更方便地对辐射环境进行控制,对辐射过程相关参数进行监测,更加深入地了解空间辐射环境效应的规律特征。在此基础上,可以对航天器相关器件和航天服进行抗核加固,使其能够抵抗恶劣的空间环境。但是,目前国内空间辐射效应测试条件较欧美等航天强国还存在差距。2017年开始,中国科学院国家空间科学中心以空间科学系列卫星的抗辐射分析测试为牵引,提出设计要求,由中国原子能科学研究院研制出这套50MeV质子回旋加速器。怀柔50MeV质子回旋加速器设施是北京怀柔科学城第一批交叉研究平台之一的“空间科学卫星系列及有效载荷研制测试保障平台”中的重要组成部分,主要由主磁铁、主线圈、高频系统、真空系统、离子源与注入线、束流管线、控制系统和剂量监测与安全联锁系统等部分组成,加速器结构紧凑、体积小、效率高、调节方便,关键技术指标达到国际先进水平,填补了国内30-50MeV能量段质子辐照试验条件的空白。怀柔50MeV质子回旋加速器于2017年获得立项批复启动建设;2022年7月加速器首次成功出束,进入束流精细调节和试运行阶段;2023年4月完成技术验收测试。加速器在试运行阶段先后为航天科技集团五院、中国航天员训练中心、中国科学技术大学、中国科学院微电子研究所等国内30余家单位开展了单机、电路板级、器件、材料等系列样品的质子辐照实验测试。据悉,未来,怀柔50MeV质子回旋加速器将继续发挥北京怀柔科学城核心区的区位和大科学装置集群测试优势,在光电及线性器件位移损伤效应、低轨道航天器单粒子效应、太阳电池辐射损伤效应、航天员空间环境安全保障等领域的中发挥重要作用。
  • 怀柔(50MeV)质子回旋加速器设施成功出束
    7月17日,中国科学院国家空间科学中心在北京市怀柔科学城第一批交叉研究平台项目——“空间科学卫星系列及有效载荷研制测试保障平台”支持下建设的空间辐射效应分析试验平台暨怀柔(50MeV)质子回旋加速器设施(HuaiRou Proton Cyclotron Facility,HRPCF)试运行出束,将能量约30MeV的质子引出传输至实验大厅实验终端处,在直径15cm的荧光靶上获得了2nA/cm2的束流,如图1所示,为后续全面试运行奠定基础。HRPCF设施主要由主磁铁、主线圈、高频系统、真空系统、离子源与注入线、束流管线、控制系统和剂量监测与安全联锁系统等组成,其完整布局如图2所示。该设施的运行服务可为我国的空间科学、技术与应用相关的光电及线性器件位移损伤效应、低轨道航天器单粒子效应、太阳电池辐射损伤效应、航天员安全保障及空间生物学研究生物辐射效应等的研究、发展与应用提供重要模拟实验支撑。图1 加速器实验终端(左)处的荧光靶上束流(右)图2 怀柔(50MeV)质子回旋加速器设施全景照片

回旋加速器相关的方案

回旋加速器相关的资料

回旋加速器相关的论坛

  • 【原创】回旋加速器的工作原理

    【原创】回旋加速器的工作原理

    在回旋加速器中心部位的离子源(Ion Source)经高压电弧放电而使气体电离发射出粒子束流,该粒子束流在称为Dees的半圆形电极盒(简称D型盒)中运动。D型盒与高频振荡电源相联为加速粒子提供交变的电场。在磁场和电场的作用下被加速的粒子在近似于螺旋的轨道中运动飞行。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105351_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105415_01_1623423_3.jpg[/img] 在回旋加速器中心区域,粒子被拉出后经电场的加速而获得较低的初速度v1,同时,磁场也对这些粒子产生作用,两种场作用的结果是粒子在Dee间隙(gap)内按螺旋轨道飞行。经过非常短的时间后,粒子经gap进入另一个Dee电极盒,此后,粒子在该Dee电极盒一边飞行到等电势的另一边。每越过一个gap后,其轨道半径将比前一次的轨道半径大。粒子运动的瞬时轨道半径将随时间t的增加而增大,粒子运动速度的平方与粒子旋转的圈数成比例。被加速粒子运动的螺旋轨道半径r与运行时间t的平方根成正比。带电粒子经多次加速后,圆周轨道半径达到最大并获得最大的能量,在该点处粒子将被束流提取装置提取引出。 若粒子的质量为m,所带电荷为q,所具有的运动速度为v,运动方向垂直于磁感应强度为B的磁力线,粒子受到垂直于v和B的劳仑兹(Lorentz)力的作用,使粒子沿着曲率半径为r的轨道作圆周运动。不同能量的离子在等时性磁场中沿各自的平衡轨道运行时,其回旋的周期与高频电场的周期相等。已知,一个带电量为q的粒子在磁场B中的回旋频率为[img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105649_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112105726_01_1623423_3.jpg[/img] 粒子的能量、磁场强度和粒子轨道半径是加速器的三个主要参数 相同q/m的不同粒子,如氘核和氦核,用相同射频(RF)和磁场强度,可以加速到相同的速度,而氘核的动能是氦核动能的一半。在回旋加速器中,为了加速质子达到与氘核相同的速度,往往在设计中使磁场强度B减低一半。加速所需的高频频率F和磁场强度B取决于粒子的质量和带电电荷q。通常根据所需的核反应能量及粒子的质量来设计加速电场频率和磁场强度。但随着粒子旋转速度的提高和能量的增加,相对论作用使得粒子质量将不再是一个常数,即m≠m0,当粒子的速度增加时,它的相对质量(Relativistic mass)也增加。因此,在匀强磁场中其旋转周期也不是一个常数,并且粒子会逐渐进入减速状态。因此,为了使粒子获得较高的能量,或增加磁场强度或改变F,这在一个普通的回旋加速器中是不可能达到的,而且质子在这样的回旋加速器中是不可能被加速到20MeV以上。所以传统的回旋加速器只能加速粒子到一定的能量。为此出现了等时性回旋加速器或调频加速器。 在回旋加速器中,带电粒子经多次加速后,圆周轨道直径达到最大而接近Dees的边缘并具有最大的能量,在该点粒子被束流提取装置提取出。一个粒子从回旋加速器中心飞行到提取装置的总时间约为5ms。在PETtrace回旋加速器中,质子达到16.5MeV的能量约飞行200圈,氘核达到8.5MeV的能量约飞行80圈。

  • 【原创】常用的商品化回旋加速器的类型

    【原创】常用的商品化回旋加速器的类型

    [center]常用的商品化回旋加速器的类型[/center] 回旋加速器已成为现代分子核医学研究和应用的重要工具。分布在全世界PET中心的医用回旋加速器,根据加速粒子种类分为正离子回旋加速器、负离子回旋加速器;根据加速粒子种类的多少分为单粒子加速器(Single-particle accelerator)和多粒子加速器(Multi-particle accelerator);根据提供束流加速平面与地平面是平行还是垂直而分为水平加速平面回旋加速器(卧式加速器)(horizontal-cyclotron)和垂直加速平面回旋加速器(立式加速器)(vertical-cyclotron)。 正离子回旋加速器生产正电子核素的许多核反应是由正离子介入来完成的,因此可用正离子回旋加速器直接加速正离子来轰击(Bombardment)靶核生产正电子核素。但加速正离子后得到的高能粒子束需要由金属电极偏转板形成的偏转电场来完成束流的引出,在引出过程中,高能粒子束与金属电极板以及屏蔽材料之间发生碰撞会引起附加的辐射。 负离子回旋加速器则利用碳剥离膜(stripping foil)(简称碳膜)来完成高能粒子束的引出。碳膜被驱动装置定位在回旋加速器内粒子旋转轨道半径上,当粒子束流的能量达到所需的最大能量时,所有出现在提取碳膜区域的负离子束必须穿过碳膜,在穿过碳膜期间,两个约束松弛的外层电子被剥离,负离子失去电子,转变为正离子。由于轴向磁场恒定不变,改变了电极性的粒子束受到与原来相反方向的磁场力的作用而改变了在磁场中运动方向,从而被引出而进入靶室。提取膜的位置直接确定束流的能量,并能够调整引出的束流引导进入任意的同位素生产靶。 单粒子加速器仅加速单一的离子,如EBCO TR19和GE MINItrace回旋加速器以质子(p)为加速粒子,进行经p介入核反应来完成正电子核素的生产,如利用16O(p, α)13N和18O(p, n)18F核反应分别生产13N和18F正电子核素。多粒子加速器可以加速两种以上的带电粒子,以多种核反应谱来完成正电子核素的生产,如PETtrace回旋加速器可加速质子和氘核,利用不同的靶材料按特定的核反应谱来生产11C,13N,15O和18F正电子核素;SCANDITRONIX公司生产的MC32回旋加速器则是多能量、多粒子的回旋加速器,除生产用于PET研究的正电子核素外,还用于生产其他同位素。该加速器除可加速氢核和氘核的正负离子外,还可加速氦核-3和α粒子。 立式加速器有较好的场地和维修服务优势,其场地优势包括着地点(footprint)小和所需要的空间高度低;虽然立式加速器的机体比卧式加速器高,它的磁轭门(Yoke)可以单向水平打开,而卧式加速器需要较高的空间限度以保证Yoke向上提升,因此需要昂贵的液压起重系统。立式加速器的维修服务优势是容易对中心区域的装置进行顺畅地维修和更换。再者,立式加速器的靶位往往局域化,这样因靶位而产生的放射性局限在一个区域,而卧式加速器的靶位常常在回旋加速器的周边,因此,回旋加速器的四周都分布有放射性。图1所示国内常用的几种医用回旋加速器。[center][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112112145_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211220_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112112214_01_1623423_3.jpg[/img][/center]

  • 【原创】回旋加速器的发展史

    【原创】回旋加速器的发展史

    早期的加速器只能使带电粒子在高压电场中加速一次,因而粒子所能达到的能量受到高压技术的限制。为此,象R. Widerö e等一些加速器的先驱者在20年代,就探索利用同一电压多次加速带电粒子,并成功地演示了用同一高频电压使钠和钾离子加速二次的直线装置,并指出重复利用这种方式,原则上可加速离子达到任意高的能量。但由于受到高频技术的限制,这样的装置太大,也太昂贵,也不适用于加速轻离子如质子、氘核等进行原子核研究,结果未能得到发展应用。 1930年,Earnest O. Lawrence提出了回旋加速器的理论,他设想用磁场使带电粒子沿圆弧形轨道旋转,多次反复地通过高频加速电场,直至达到高能量。1931年,他和他的学生利文斯顿(M. S. Livingston)一起,研制了世界上第一台回旋加速器,这台加速器的磁极直径只有10cm,加速电压为2kV,可加速氘离子达到80keV的能量(图1),向人们证实了他们所提出的回旋加速器原理。随后,经M. Stanley Livingston资助,建造了一台25cm直径的较大回旋加速器,其被加速粒子的能量可达到1MeV。回旋加速器的光辉成就不仅在于它创造了当时人工加速带电粒子的能量记录,更重要的是它所展示的回旋共振加速方式奠定了人们研发各种高能粒子加速器的基础。[img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_625814_1623423_3.jpg[/img] 30年代以来,回旋加速器的发展经历了二个重要的阶段。前20年,人们按照劳伦斯的原理建造了一批所谓经典回旋加速器,其中最大的可生产44MeV的α粒子或22MeV的质子。但由于相对论效应所引起的矛盾和限制,经典回旋加速器的能量难以超过每核子20多MeV的能量范围。后来,人们基于1938年托马斯(L. H. Thomas)提出的建议,发展了新型的回旋加速器。因此,在1945年研制的同步回旋加速器通过改变加速电压的频率,解决了相对论的影响。利用该加速器可使被加速粒子的能量达到700MeV。使用可变的频率,回旋加速器不需要长时间使用高电压,几个周期后也同样可获得最大的能量。在同步回旋加速器中最典型的加速电压是10kV,并且,可通过改变加速室的大小(如半径、磁场),限制粒子的最大能量。 60年代后,在世界范围掀起了研发等时性回旋加速器的高潮。等时性回旋加速器(Isochronous cyclotron)是由3个扇极组合(compact-pole 3 sector)的回旋加速器,能量可变,以第一和第三偕波模式对正离子进行加速。在第一偕波中,质子被加速到6 MeV~ 30 MeV, 氘核在12.5 MeV~25 MeV, α粒子在25 MeV~50 MeV, He3 +2离子在18 MeV ~62 MeV 。磁场的变化通过9对圆形的调节线圈来完成,磁场的梯度与半径的比率为(4.5 – 3.5)×10-3 T/cm。磁场方位角通过六对偕波线圈进行校正。RF系统由180°的两个Dee组成,其操作电压达到80kV,RF振荡器是一种典型的6级振荡器,其频率范围在8.5 - 19 MHz 。通常典型的离子源呈放射状,并且可以通过控制系统进行遥控,在中心区域有一个可以活动的狭缝进行相位调节和中心定位。使用非均匀电场的静电偏转仪(electrostatic deflector)和磁场屏蔽通道进行束流提取,在偏转仪上的最大电势可达到70 kV 。对30 MeV强度为15 mA质子在径向和轴向的发射度(Emittance)为16p mm.mrad 。能量扩散为0.6%,亮度高,在靶内的束流可达到几百mA。用不同的探针进行束流强度的测量,这些探针有普通TV的可视性探针;薄层扫描探针和非截断式(non-interceptive)束流诊断装置。系统对束流的敏感性为1mA,飞行时间精确到0.2 ns 。束流可以传送到六个靶位,可完成100%的传送。该回旋加速器最早在1972年由INP建造,它可使质子加速达到1 MeV,束流强度为几百mA,主要用于回旋加速器系统(离子源、磁场等)的研究。 70年代以来,为了适应重离子物理研究的需要,成功地研制出了能加速周期表上全部元素的全离子、可变能量的等时性回旋加速器,使每台加速器的使用效益大大提高。此外,近年来还发展了超导磁体的等时性回旋加速器。超导技术的应用对减小加速器的尺寸、扩展能量范围和降低运行费用等方面为加速器的发展开辟新的领域。目前的同步加速器可以产生笔尖型(pencil-thin )的细小束流,其离子的能量可以达到天然辐射能的100,000倍。通过设计边缘磁场来改变每级加速管的离子轨道半径。最大的质子同步加速器是Main Ring(500GeV)和Tevatron(1TeV)在Fermi National Accelerator Laboratory Chicago;较高级质子同步加速器的是在Geneva的European Laboratory for Particle Physics (CERN)安装应用的SPS(Super Proton Synchrotron), 450 GeV。(图2,3所示的超导加速器)[img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211241_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211258_01_1623423_3.jpg[/img]

回旋加速器相关的耗材

  • GC 加速器烤箱插入工具 | 23849
    产品特点:GC 加速器烤箱插入工具GC Accelerator Oven Insert Kit订货号:23849适用于Agilent 6890和7890仪器● 在更短的时间内获得相同的GC分离 - 使用GC加速器工具和EZGC方法转换器将方法精确地转换为按比例缩小的列格式。● 按比例缩小的方法可以加快分析时间并提高样品通量,而无需资金投入。● GC 加速器工具可轻松安装,不会损坏GC色谱柱或干扰MS接口。产品名称:GC 加速器烤箱插入工具仪器:适用于Agilent 6890和7890仪器GC加速器工具专为GC-MS用户设计,提供了一种加速样品分析的简便方法。 通过减少烘箱体积,这些插入物可以实现更快的升温速率,从而缩短了烘箱循环时间,并且可以提高样品通量和处理冲洗样品的能力。 当使用更快的斜率时,可以使用Restek的EZGC方法转换器将现有方法精确缩小为更小,高效,窄孔的色谱柱。 通过缩小的色谱柱,正确翻译的方法和GC加速器试剂盒,您可以在很短的时间内获得相同的色谱分离 - 通常具有更高的灵敏度 - 无需进行资本投资。
  • Glass Expansion 067019A T1003-Ni TF1003-Ni 镍加速器
    Nickel Accelerator 镍加速器
  • JD90B回旋声光报警器
    JD90B回旋声光报警器 JD90警示灯有2种形式供用户选择,分别为单光警示灯JD90A和声光一体警示灯JD90B. n光源类型:JD90A单光警示灯有多种光源类型供用户选择,LED、超亮LED、白炽灯及氙灯。其中超亮LED的亮度是普通LED的3倍以上,并且有更多颜色供选择。例如纯白、纯绿及纯蓝色,使用寿命亦大幅延长,正常环境下可运行10万小时,免去了日常的维护工作。JD90B声光一体警示灯在JD90A单光警示灯的基础上成功的将声音系统与光系统结合在一起,除了JD90A所能满足的光源外还可分别结合4种声音类型,蜂鸣、喇叭、音乐、语言、满足不同环境下的使用需求。JD90B声系统的声音响度分3种:80db,100db,120db
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制