测量充压仪

仪器信息网测量充压仪专题为您提供2024年最新测量充压仪价格报价、厂家品牌的相关信息, 包括测量充压仪参数、型号等,不管是国产,还是进口品牌的测量充压仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测量充压仪相关的耗材配件、试剂标物,还有测量充压仪相关的最新资讯、资料,以及测量充压仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

测量充压仪相关的厂商

  • 波形护栏生产厂家——君安冲压件有限公司——品质源于专业!君安交通设施有限公司,历经50年发展与传承,专业生产波形护栏及其配件。自行研制开发了镀锌、喷塑生产线。独特的表面处理工艺,延长了产品的使用寿命,赢得新老客户的一直好评。严格稳定的材料供货渠道,保证了产品原材料的质量。先进的管理理念。尊重人才,以人为本。公司历来注重人才的培养。给员工创造良好的发展平台,在员工整体素质提高的基础上,实现公司整体层次的飞跃。严把质量关。公司有一批高素质的质检员。在每一批货物出库之前,严格检验,禁止不合格产品流向市场。对客户负责!公司业务简介:公司致力于交通设施的发展,专业大批量生产波形护栏、护栏板、立柱及相应配件(防阻块、柱帽、轮廓标、托架、方垫片、防眩板支架、声屏障、螺栓)。
    留言咨询
  • 上海博众测量技术有限公司致力于为制药、生命科学、微电子、锂电池、航空航天、钢铁、交通、电力、烟草、空分、净化、除湿干燥等行业的客户提供受控环境、过程气体以及大气环境监测所需的温湿度、露点、压力、二氧化碳及其他气体浓度分析、风速风向等关键控制参数的测量、记录、监测、验证解决方案。我们还可以为客户提供从测量方案设计、测量产品的选型推荐、销售、成套、系统集成、软件编制、IQOQ验证等软硬件产品,并可为所供产品或系统提供在生命周期的内的维保及计量校准服务。因为我们专业、诚信所以值得您的信赖!品牌及合作伙伴:l 芬兰VAISALA : 温湿度、露点、二氧化碳、油中水分、 大气压、风速风向等气象测量产品l 英国MICHELL : 湿度发生器、镜面露点仪、碳氢露点及氧气测量、干燥等标准设备l 美国GE DRUCK : 压力测量传感器及变送器、压力及电信号校验设备l 美国SETRA: 微差压测量变送器、微差压开关、微差压校验仪l 美国TSI: 便携式室内空气参数测试仪器、便携式粉尘仪、质量流量计等l 加拿大VERITEQ :高精度温湿度一体记录仪 、高精度温度度记录仪、热电偶记录仪 模拟 信号记录仪、EMS监测系统、GMP/FDA/GSP温湿度分布、验证l 德国TESTO : 持式多功能测量仪表l Airmonic :温湿度、露点、结露预警、二氧化碳、气象、IAQ、烟气排放、压 力等环境及过程流体的数据测量、传输、监测、记录、分析的方案 提供和系统集成,以及成套业务l Bodhi: 露点测量变送器、二次显示仪表、一体化监测处理系统、一体化测量变送器、便携式采样系统、温湿度监测系统、室内空气品质测量变送器等
    留言咨询
  • 柚木测量技术(上海)有限公司是YUUKI计器工业株式会社在中国的总经销商。日本国YUUKI计器工业株式会社,总部设在日本东京,是一家专业从事高精度压力传感器研发、设计、制造的企业,产品广泛应用于气体及液体的压力、差压、液位和流量测量等。企业施行科技引导、精工制造、用户至上之产品理念。公司设立了传感器技术研究所和检测中心,并长期与日本多家公、科研院所联合,进行产品的研究和开发。企业以高效的团队,精良的生产设备,严格的质量保证体系,提供高质量、高效率的产品和服务来以确保公司产品符合世界不同地区、行业的技术标准。
    留言咨询

测量充压仪相关的仪器

  • ATS-201M硅钢片铁损测量仪(简称铁损仪)适合电机、变压器生产厂家,在原料采购或生产现场,用于快速检测硅钢片的品质,也可对冲压后的硅钢片进行品质检测。该仪器参照国标GB/T13789-92中的测量方法,采用单片机控制技术和A/D、D/A相结合,内置正弦波励磁电源,直接显示铁损Ps值(W/kg),磁场Hm值(A/cm)或磁感Bm值(T)。适用于测量各种厚度的冷轧取向、无取向和热轧的硅钢片。可选择定B或定H测量,定B测量Ps时保持磁通正弦,有效消除谐波影响。 产品特点 采用3.5寸明亮液晶屏显示,解决了屏闪问题 对于测试结果的数值,提高了直读性和稳定性 面板升级为16键键盘,具备复用功能,使操作更加人性化 磁感设定范围三个存储点Bm1、Bm2、Bm3均提升为500-2500mT 新增加了自检功能,可以对随机附带的标样片进行校准操作,使测量数值更精准 产品参数供电方式交流220V±10% 50Hz,1A显示方式3.5寸明亮液晶显示测试频率50Hz、60Hz自由选择测量模式定B和定H二种测量模式磁感设定范围(定B测量)Bm1:500-2500mT;Bm2:500-2500mT;Bm3:500-2500mT;磁场设定范围(定H测量)Hm1:500-9999A/m; Hm2:500-9999A/m;Hm3:500-9999A/m;硅钢片尺寸要求简易探头:≥20*20mm表面平整标准探头:宽30mm,长≥100mm;表面平整无毛刺测试重复性±1%(恒温环境同一条件下)测试准确度简易探头:5%标准探头:铁损(Ps)3%(按方圈样品折算);磁感(Bm)2%显示刷新率3次/秒外形尺寸金属机箱:235×90×330mm(宽×高×深),4.5kg
    留言咨询
  • 球囊充压装置综合性能测试仪一,用途YY/T 0450的本部分规定了血管内球囊扩张导管用一次性使用手动式充压装置(简称“充压装 置”)的要求,该产品适用于对 YY 0285.4 所规定的球囊扩张导管的球囊打压,使其膨胀从而达到扩张 血管或释放支架的目的。血管内栓塞的释放装置和球囊阻断导管的充压装置具有与本部分所规定的充压装置相类似的结 构。本标准对这些装置不适用。二,适用标准:YY/T 0450.3—2016附录ABC三, 原理主要用于医用球囊、充气球囊、扩张球囊、硅胶球囊、呼吸球囊等的泄露爆破试验、水压爆破试验、试验压力-88-1KPa,可进行多工位试验,试验过程、结果互不影响。四,技术参数1. 试验压力:88-1KPa,触摸屏界面控制2. 测量精度:±0.5%FS(传感器精度)3. 保压时间:0-9999S任意设定4. 峰值记录及数据导出5. 测试工位:单工位6. 管路锁紧方式:手动7. 试验介质:纯净水或去离子水;8. 材质:水槽不锈钢9. 测试项目:指针压力表性能试验,数字压力表性能试验,充压装置性能试验10. 控制系统:PLC+变频器+数字调压阀控制;11,测试软件1套;12,触摸屏:彩色7寸威纶通触摸屏;13,测试介质:空气或者压缩空气,空压机0-0.4MPA(客户自备);14,高压气管:耐压1.5MPA以上压力,高精度压力传感器和低压传感器界面切换;15,主机外观结构配置水槽和不锈钢托盘,保证测试桌面不泄水,不喷水。16,不锈钢接头1套鲁尔17,冲压速率:出厂已设置好,客户根据要求可设置更大,界面窗口已放开功能,任意设置6, 配置清单1, 说明书1本;2, 测试软件1份;3, 不锈钢托盘1只;4, 操作视频1份;5, 主机1台;6, 合格证1份;
    留言咨询
  • 一,用途YY/T 0450的本部分规定了血管内球囊扩张导管用一次性使用手动式充压装置(简称“充压装 置”)的要求,该产品适用于对 YY 0285.4 所规定的球囊扩张导管的球囊打压,使其膨胀从而达到扩张 血管或释放支架的目的。血管内栓塞的释放装置和球囊阻断导管的充压装置具有与本部分所规定的充压装置相类似的结 构。本标准对这些装置不适用。二,适用标准:YY/T 0450.3—2016附录ABC三, 原理主要用于医用球囊、充气球囊、扩张球囊、硅胶球囊、呼吸球囊等的泄露爆破试验、水压爆破试验、试验压力-88-1KPa,可进行多工位试验,试验过程、结果互不影响。 四,技术参数1. 试验压力:88-1KPa,触摸屏界面控制2. 测量精度:±0.5%FS(传感器精度)3. 保压时间:0-9999S任意设定4. 峰值记录及数据导出5. 测试工位:单工位6. 管路锁紧方式:手动7. 试验介质:纯净水或去离子水;8. 材质:水槽不锈钢9. 测试项目:指针压力表性能试验,数字压力表性能试验,充压装置性能试验10. 控制系统:PLC+变频器+数字调压阀控制;11,测试软件1套;12,触摸屏:彩色7寸威纶通触摸屏;13,测试介质:空气或者压缩空气,空压机0-0.4MPA(客户自备);14,高压气管:耐压1.5MPA以上压力,高精度压力传感器和低压传感器界面切换;15,主机外观结构配置水槽和不锈钢托盘,保证测试桌面不泄水,不喷水。16,不锈钢接头1套鲁尔17,冲压速率:出厂已设置好,客户根据要求可设置更大,界面窗口已放开功能,任意设置 六,配置清单1,说明书1本;2,测试软件1份;3,不锈钢托盘1只;4,操作视频1份;5,主机1台;6,合格证1份;
    留言咨询

测量充压仪相关的资讯

  • 赛默飞世尔为拉伸流变仪扩充测量选件
    ——现可使用法向力测量法量化流体的拉伸性能   德国卡尔斯鲁厄市(2009年3月10日)— 服务科学,世界领先的赛默飞世尔科技近日宣布已扩充其Thermo Scientific HAAKE CaBER拉伸流变仪的测量选件。作为流变学领域的先锋,该公司提供的唯一一款用于商业用途的拉伸流变仪,可使用法向力测量法将流体的拉伸性能加以量化。这些选件是与卡尔斯鲁厄理工学院Manfred Wilhelm博士(教授)及其研究团队合作开发的。Rüdiger Brummer(拜尔斯道夫集团旗下公司,位于汉堡)为该项目提供了应用工程方面的支持。   拉伸流变仪操作简便,使用软件控制,其测量原理是将样品置于上下两块平板之间,高速上移上平板从而产生流体细丝。激光测微仪可用于测定细丝直径随时间变化而产生的收缩情况。物理效应(包括表面张力、弹性、粘度及传质等)决定了拉伸流,并可通过模型拟合分析加以量化。使用这种方法,可为流体充填性能、粘合剂固化、喷涂性能或打印油墨与墙体涂料的雾化等工艺流程开启重要的发展方向。该测量原理对可拉伸出圆柱形细丝的弹性样品十分适用,例如,化妆品乳液、染发剂、打印机油墨、食品或某些粘合剂等。   如今,拓展后的测量原理还可测量产生非圆柱体细丝的样品,并且基于一套灵敏度高、反应快的亚毫牛级的法向力测量法,集成在设备下部的测量模块中,并结合了现代数据记录技术。在上平板已开始上移的同时,测量作用在下平板上的法向力。通过这种方法,可获得有关流体细丝形成和拉伸性能的信息,而这些信息是使用经典HAAKE CaBER设备无法获得的。   “出于保护客户投资的考虑,我们正在销售的新仪器都附带了这项新测量选件” ,赛默飞世尔科技材料物性表征部副总裁兼总经理马库斯施莱尔(Markus Schreyer)表示,“同时我们确信,已有的HAAKE CaBER测试台也能通过扩展,添加这项测量原理。”   凭借全面的Thermo Scientific物料表征解决方案,赛默飞世尔科技公司成功为各行各业提供支持。其产品可分析并测量塑料、食品、化妆品、药品以及油墨、涂料以及石化产品的粘度、弹性、加工性能及受温度影响的力学变化等特性。欲获取更多信息,请访问:www.thermo.com/mc。   Thermo Scientific是服务科学,全球领先的赛默飞世尔公司旗下的子公司。 Thermo Scientific 拉伸流变仪HAAKE CaBER 关于赛默飞世尔科技 赛默飞世尔科技有限公司(Thermo Fisher Scientific Inc.)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界变得更健康、更清洁、更安全。公司年度营收达到105亿美元,拥有员工34,000多人,为350,000多家客户提供服务。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、研究院和政府机构以及环境与工业过程控制装备制造商等。该公司借助于 Thermo Scientific 和 Fisher Scientific 这两个主要品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific 能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室工作流程综合解决方案。Fisher Scientific 则提供了一系列用于卫生保健,科学研究,以及安全和教育领域的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲了解更多信息,请登陆:www.thermofisher.com(英文),www.thermo.com.cn(中文)。
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm, (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 海克斯康白光拍照设备在模具及冲压行业的应用
    您了解模具行业先进的质量控制解决方案吗?您了解白光测量技术吗?您知道怎样在节省资金投入的情况下,缩短模具及冲压件试制周期吗?该讲座将为您系统的解析如何利用白光照相测量设备从模具加工前、加工中、至冲压试制及后期模具维护期间,进行模具质量检测、合模模拟装配分析、制件批量分析及制件模拟装配分析,未雨绸缪及时发现问题、解决问题的全过程。   海克斯康计量频道2010-5-5邀您参与《白光拍照设备在模具及冲压行业的应用介绍》在线研讨会,敬请关注! 会议参与地址http://www.hexagonmetrology.com.cn/channel/index-s.aspx

测量充压仪相关的方案

测量充压仪相关的资料

测量充压仪相关的试剂

测量充压仪相关的论坛

  • 【求助】填充柱的柱前压怎样测才精确?

    因为现在计算需要柱前压数据,但是我的色谱是GC9790,柱前压的压力表最大量程为0.5MPa,每个小格为0.02MPa,我在怎么估计这误差还是很大啊,不知道各位有什么方法能精确测量柱前压?谢补充一下我用的是TCD填充柱的

  • 【资料】差压式流量计-流量测量方法和仪表的选用

    差压式流量计-流量测量方法和仪表的选用差压式流量计(以下简称DPF或流量计)是根据安装于管道中流量检测件产生的差压、已知的流体条件和检测件与管道的几何尺寸来测量流量的仪表。DPF由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件的型式对DPF分类,如孔扳流量计、文丘里管流量计及均速管流量计等。二次装置为各种机械、电子、机电一体式差压计,差压变送器和流量显示及计算仪表,它已发展为三化(系列化、通用化及标准化)程度很高的种类规格庞杂的一大类仪表。差压计既可用于测量流量参数,也可测量其他参数(如压力、物位、密度等)。

测量充压仪相关的耗材

  • FEMTOEASY超短脉冲测量仪MS-FROG
    FEMTOEASY超短脉冲测量仪MS-FROG MS-FROG 代表 Multi-Shot Frequency Resolved Optical Gating。FEMTOEASY超短脉冲测量仪MS-FROG基于二次谐波发生,使其可靠且紧凑。它是专门为具有亚 nJ 脉冲能量的激光源开发的。它允许测量从 4 fs 到 80 ps 的脉冲。高扫描速度允许进行实时操作测量和优化。MS-FROG-SP 在精细扫描模式下的分辨率为 50 阿秒,因此可以测量超短脉冲和长脉冲。我们的 MS-FROG 集成了专门为 FROG 测量开发的内置光谱仪。它们保证了脉冲表征应用的高光谱分辨率和最佳性能。此外,它们完全可以根据您的激光规格进行配置。最重要的是我们的专有算法允许立即从每个记录的光谱中提取信息,从而实时重建您的脉冲!与所有Femto Easy产品一样,MS-FROG 易于安装和使用。产品特性用户友好界面:无需校准,也无需调整用途广泛:适用于不同波长范围脉冲测量脉冲宽度测量范围:4 fs到80 ps)高灵敏度(亚nJ脉冲)用户友好且功能强大的软件(STAR)精细扫描模式下的分辨率为 50as提供光纤连接头选项(FC / APC,FC / PC)FEMTOEASY超短脉冲测量仪MS-FROG参数规格:MS-FROG型号MS-FROGMS-FROG-SPMS-FROG-LPMS-FROG-SLP脉冲宽度范围最小值 110 fs-50 fs4 fs20 fs4 fs最大值40 ps40 ps80 ps80 ps精细扫描模式范围不适用4至100 fs不适用4-100 fs可达光谱范围(nm)500-2000 2光谱窗口Δλ(nm)从200到700 2最小时间分辨率1fs标准:1 fs2 fs标准:2 fs精细扫描:0.05 fs精细扫描:0.05 fs扫描速度 65 ps /秒标准: 65 ps / s 130 ps /s标准: 130 ps / s精细扫描: 400 fs / s精细扫描:400 fs / s输入脉冲重复率100 Hz至GHz 3最小输入脉冲能量41 MHz50 pJ10 nJ50 pJ10 nJ100 MHz5 pJ1 nJ5 pJ1nJ输入偏振线性垂直侦测CMOS 12位-3 Mpx-72 dBPC接口USB 3.1光束高度(mm)69-148尺寸(毫米)326 x 194x 1291 根据所需的激光规格进行优化2 有效光谱带宽可根据客户要求定义在可需要的光谱范围内。可以提供额外的光谱仪来处理不同的光谱窗口。3 低重复率可供选择4 这些值给出了一个数量级。准确的灵敏度取决于许多参数(脉冲宽度、光束轮廓、波长...) 附加 MISS 光谱仪默认的 MS-FROG 配置包括一台成像光谱仪 MISS。为了扩展设备的波长范围,可以订购额外的即插即用 MISS 光谱仪并在系统内更换光纤输入连接器 可选项描述额外晶体默认的 MS-FROG 配置包括一个晶体。为了扩展设备的波长范围,可以在系统内切换额外的即插即用晶体 带光纤连接器的即插即用准直模块。可以安装在 MS-FROG 上,轻松将输入从自由空间切换到光纤。无需对齐。低能量内部模块可在激光功率过弱时提高 MS-FROG 的灵敏度低重复率激光重复率低时使用的同步模式。100 Hz 及以下强制,500 Hz 以下推荐相位匹配默认 MS-FROG 配置适用于给定的中心波长。相位匹配允许调谐 SHG 晶体以测量具有最佳 SNR 的不同中心波长 少周期扩展 将最小脉冲持续时间扩展到几个周期脉冲范围。MS-FROG 低至 10 fs,MS-FROG-SP 和 MS-FROG-SLP 低至 4 fs 软件界面FEMTOEASY超短脉冲测量仪MS-FROG软件特性:实时提取单次脉冲特性:时间分布强度和相位、基本频谱和相位、啁啾、三阶色散… … 多种算法(包括 Ptychographic 迭代引擎)相结合,以提高重建速度和质量增强的背景和热像素处理,以获得最佳动态和信噪比客户端/服务器接口,允许通过网络远程控制所有数据都可以导出为最常见的格式
  • 东京精密 三坐标测量仪配件侧头 其他物性测试仪配件
    三坐标测量仪配件侧头 17806282711合作、共赢!美国热电:直读光谱仪ARL8860、XRF、XRD ICP、电镜、电子能谱仪德国徕卡:金相显微镜、体视显微镜、电镜制样设备英斯特朗:疲劳试验机、万能试验机; 摆锤冲击试验机、落锤冲击试验机东京精密:圆度仪、轮廓仪、粗糙度仪、三坐标美国法如:激光跟踪仪、关节臂及扫描 日本奥林巴斯手持光谱仪 德国帕马斯颗粒计数器租赁检测:便携式三坐标、激光跟踪仪、3D扫描仪为客户提供专业的检测服务,帮客户挖掘新的赢利空间!上海澳信检测技术有限公司青岛澳信仪器有限公司青岛澳信质量技术服务有限公司联系地址:青岛市城阳区山河路702号上海地址:上海浦东新区川沙路1098号新美测(青岛)测试科技有限公司提供测试服务:静态力学测试主要包括拉伸、压缩、弯曲、剪切等;动态疲劳测试主要包括:拉拉疲劳、拉压疲劳、压压疲劳、裂纹扩展速率等
  • 雾度测量仪配件
    雾度测量仪配件能够精确测量在玻璃或硅晶圆衬底上薄膜的总透过率和漫透过率,根据公式Haze(λ)=DT(λ)/TT(λ)从而获得雾度值,测量光谱范围为400-900nm。薄膜的总透过率,总反射率,漫透过率对于太阳能光伏制造非常重要,雾度测量仪配件通过三个光谱仪测量400-900nm范围内的光谱,不需要移动或改变任何部件,保证测量精度和使用寿命。雾度测量仪配件采用模块化设计,具有高度的可拓展性,充分满足不同客户的多种需要。例如,自动光学窗口可更换,简化操作,减少用户的人工干预操作。还有厚度和反射率测量模块可集成,从而满足客户测量薄膜厚度和折射率的需求。除此之外,还可以根据用户的预算情况配备自动扫描或手动扫描的机制,可以适合任何尺寸的样品,包括面积大于1平方米的玻璃板。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制