仪器信息网APP
选仪器、听讲座、看资讯

【原创】安全转移生物样本

  • 艺达思贸易
    2011/05/20
  • 私聊

厂商论坛

  • 随着全球对生物技术和生物替代燃料开发的日益重视,使用包含生物材料的流体进行的分析工作也越来越多。无论该种分析涉及血细胞计数还是细菌培养(涉及许多其他生命科学应用),它们都有一个共同点,这就是经常需要将生物样本从一个地方转移到另一个地方。有时这种转移可手动完成(例如手持式移液器),但对高通量的需求持续推动着人们开发更加自动化的技术。

    目前很多研究人员面临的挑战就是,各种泵送技术对细胞物质造成的负面影响:

    · 往复泵——生命科学分析工作中最常使用的两种往复泵为隔膜泵和柱塞/注射泵。隔膜泵通常由单向阀和一个柔性膜片(安装在驱动电机轴上)组成,该隔膜通过自身“脉冲”动作推动液体在泵内进出。柱塞/注射泵则将正排量活塞或柱塞与某些类型的旋转剪切阀结合,通过活塞或柱塞的移动推动液体移动。

    这两种类型的往复泵都会带来细胞活性的问题,这是由于细胞会暴露在较强的真空力和剪切力下。这些力量会使细胞破裂,从而大大降低细胞活性以及进行更长期试验的可能性。此外这两种泵送技术还会造成清洁困难,从而导致样本夹带和交叉污染的可能性增加。

    · 齿轮泵——齿轮泵通过两个(或多个)啮合齿轮的高速旋转进行工作。随着“主动”齿轮和“从动”齿轮在高速旋转时相互接合,流体也在轮齿间向前移动。由于流体在高速转移时会受到物理应力的影响,因此这种泵送方式会为生物样本带来一些问题。例如轮齿经常会剪切细胞物质,从而导致分析样本或液体失效。此外,由于流体会接触泵的机械部分,样本间的交叉污染也难以避免。

    目前运用日益普遍的一种泵送技术采用了蠕动泵。蠕动泵通过一系列滚柱,很容易地对软壁管道进行压缩和扩展。该种泵送技术具有维持细胞活性和减少样本间交叉污染的多种优势:

    · 真空力小——蠕动泵通常采用软壁弹性管道。这种管道很容易被压缩,并可以很快恢复原始形状。蠕动泵使用的滚柱能够在管座下旋转的同时完全压缩流路管道。压缩后滚柱继续移动,管道也会重新扩张至原始形状,形成的低真空则可以在下一个滚柱再次压缩管道前将液体拉进管道。管道重复扩张形成的低真空足以移动液体但不会损害细胞物质。

    · 剪切力小——蠕动泵可保持相当一致的流量(泵的固有脉动效应除外)并避免流体与泵的机械部件直接接触。这两种特性都能将样本可能承受的剪切力减到最小,并帮助增加样本存活率。

    · 管道压缩点数量最少——由于软壁蠕动管道仅在有限的点完全压缩,大部分管道保持开放,从而降低了生物材料被压缩和损害的可能性。

    · 仅使用管道流路——蠕动泵的一个独特设计在于只有管道与被转移材料接触,被转移的材料不会接触泵的机械部分。这将使管道能够在用于不同分析工作前进行清洗、灭菌或更换,从而消除了样本间交叉污染的可能性。

    滚柱和管座设计也是大部分单通道Ismatec®泵的特色,它们通过滚柱在管座上推压管道。目前的很多泵都采用平面滚柱和管座,而大部分Ismatec单通道泵采用凸面滚柱和有一定弧度的凹面管座。Ismatec的滚柱在接触管道时仅会压缩管道中心,生物材料可通过缝隙进入管道壁以避免受到损害或破坏。(见下图1

    为对比此种滚柱/管座设计与其他设计而进行的独立研究清楚表明,该种设计可以同时提高细胞浓度(培养期间)和细胞活性。见下表12


    蠕动泵也存在需要考虑的一些缺陷,例如泵在工作时经受的压差十分有限。另外管道本身也需要克服一些挑战,例如弹性管道的化学兼容性不够广泛,使用过程中也会发生磨损,从而导致管道在使用期间流量不稳定及/或发生变化。

    事实上最重要的或许是蠕动泵需要承受脉动,这是其工作过程中的固有现象。脉动流会在离开管道流路时导致液体“喷洒”,另外分析腔内流量的不断变化也会导致实时流量分析无法提供确定的结果。

    虽然蠕动泵技术的这些局限阻碍了其在一些应用中的使用,但对很多应用—尤其是那些因涉及生物样本而被分类为“生命科学”的应用—蠕动泵是最佳选择
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...