仪器信息网APP
选仪器、听讲座、看资讯

核磁实验专贴-以单一化合物为例向您呈现数十种核磁实验及谱图

核磁共振技术(NMR)

  • 大家平时学习工作上所接触的可能80%是氢谱,10%是碳谱。通常而言,对于大部分简单化合物而言,这两种谱图或许就可以满足大家的需要,而诸如氟谱,磷谱,hsqc,hmbc, cosy,noesy,roesy,j分辨谱大家更多是在教科书中见到,而诸如hsqc-noesy,选择性noe,h-n hsqc/hmbc,f-h hoesy,j-hmbc等诸多实验大家可能都没有听说过。一方面,大家可能会觉得这些谱图收费不菲;另一方面大家也许被这些奇怪的名字吓到。其实,在接触了这些实验后,我个人认为,最难的恰恰是用的最多的氢谱。而其他实验作为氢谱和碳谱的有力补充,在很多场合下被发现对于谱图解释有着“豁然开朗”的作用。
    因此,我有一个想法。开一个专贴,从尽可能少的已知结构化合物着手,利用公司的Bruker 400M核磁共振谱仪,逐渐以谱图的形式向大家展示一些有用的核磁实验,同时针对不同实验做一些粗浅的分析。希望通过这些实验,大家可以从新的角度寻找到解决自己工作和科研中遇到问题的突破口,或者找到一些创新点。如果能由此产生一些新的发现,那更将是我的荣幸。
    而至于做这些实验的费用,打一个小小的广告。因为这些实验需要用到公司仪器,因此我也向领导申请更新了核磁服务的范围,新的核磁服务价格将在某个时候公布在一楼和二楼,价格会很低。 默认的实验参数就是我放上来的这些谱图的实验参数,至于一些特殊要求需要调整到哪些参数,我也会在谱图中慢慢细化。
    个人水平有限,这个帖子只是起一个抛砖引玉的作用。有什么错误大家多提意见。
    ———————————————————————————————————————
    距离这个帖子发布已经过了一段时间,随着谱图种类的增多,谱图之间的关系也变得凌乱。为了便于大家更方便地找到自己感兴趣的谱图,我决定在一楼做一个简单的索引,之后如果有更新的谱图,大家也能在索引中第一时间看到。
    另外,欢迎各位老师搜索qq群《NMR核磁波谱应用论坛》来一同交流核磁技术上的问题

    一维部分


    HNMR 3楼
    HNMR参数 4楼
    CNMR 6楼
    CNMR参数 7楼
    定量碳谱 53楼
    DEPT45 5楼
    DEPT90 5楼
    DEPT135 5楼
    H同核去耦 24楼
    F去耦氢谱 25楼
    H溶剂峰压制 29楼
    C溶剂峰压制 29楼
    FNMR 27楼
    PNMR 27楼
    SiNMR 27楼
    DNMR 28楼
    1D选择性TOCSY 36楼
    1D选择性NOESY 48楼
    1D选择性ROESY 51楼
    1D-INADEQUATE 38楼
    1,1-ADEQUATE 41楼
    1,1-ADEQUATE(重聚) 55楼
    SELINA 39楼


    二维部分


    二维参数设置 33楼
    H-C HSQC 13楼
    H-C HSQC(edit) 14楼
    H-N HSQC 22楼
    H-N HMBC 23楼
    H-C HMBC 37楼
    H-C HMBC(J-filter) 37楼
    J-HMBC 42楼
    同核J分辨谱 17楼
    异核J分辨谱 18楼
    H-H COSY 30楼
    C-H COSY 31楼
    TOCSY 32楼
    HSQC-TOCSY 34楼
    HSQC-TOCSY(edit) 34楼
    NOESY 46楼
    HSQC-NOESY 47楼
    ROESY 49楼
    HSQC-ROESY 50楼
    H-F HOESY 52楼
    2D-INADEQUATE 40楼
  • 该帖子已被管理者-设置为精华,下面是奖励记录:
    +关注 私聊
  • tcxuefeng

    第1楼2012/06/16

    关于我公司400M核磁对外服务价格已经给出,由于是技术贴就不大段张贴了。大家可以下载下面附件来和我联系

0
    +关注 私聊
  • tcxuefeng

    第2楼2012/06/16

    如不特殊说明,本帖中的谱图均来源于购买的标准品



    CAS:607-07-1

    5-甲氧基色胺

    celan:LZ根据我的建议已经做了修改,谢谢LZ谦虚和敬业的学术精神!谢谢LZ为本版的贡献!请继续精彩!

0
    +关注 私聊
  • tcxuefeng

    第3楼2012/06/16

    结构并不是太复杂的一个化合物。照例先放上氢谱。

    HNMR


    从氢谱可以先试着做一下简单归属。
    从高场开始,12是端位的NH2,10和11显然是两个亚甲基出的峰,14为与氧相连的甲基。
    从耦合常数上来看,6和7应该是苯环上相邻两个氢, 而2和9是另外两个孤立的氢。
    如果是初学者,可能大致就归类到这样。而10和11,2和9以及6和7具体归属也许并不好作判断(事实上由于7为dd,9为d,可以通过计算耦合常数讲7与9进行确定,与此同时6与2也确定下来了,但10与11的归属有一定难度,从谱图来看,10的峰型比11略为宽,由于N的核四极矩影响,与N直接相邻的CH2一般会略宽一些,然后之后的实验否定了这个结果,下面我会细说),而最低场的活泼氢是NH的。
    而很多情况下并没有一些明显的证据可以单从HNMR准确判断所有峰的归属,尤其在做多维实验前,我的习惯是如果氢谱某些峰的归属处于模棱两可的情况时,先不做判断,因为随着实验的进行,一些确定因素会渐渐浮上水面。

3
    +关注 私聊
  • tcxuefeng

    第4楼2012/06/16

    HNMR参数


    上面这张图是第一张氢谱图的右半部分,我所出的每一张核磁谱图都会有这一栏。因为论坛图片显示大小的关系,我将它单独截下来做一个简单解释。
    很多人并不会留意核磁参数的设置,其实适当的了解还是很有用的。对于核磁操作人员来说,可以通过这些参数看出一些谱图“失败”的原因;而对于解谱人员来说,了解这些参数有利于做到对自己的谱图“心中有数”,并且可以DIY自己的实验,和核磁操作者更好地进行交流。
    这里我将一些我觉得比较实用的参数用黄色标记,并做简单的解释。
    PULPROG:pulse program 是实验的脉冲序列。zg30是氢谱最常用到的脉冲序列,为30度激发。
    TD:采样点数。这个值决定了FID的真实采样点。值越大,点越多,在谱宽确定的情况下,会延长采样时间。一般氢谱没有必要去改,默认的即可。
    SI:变换点数。决定了傅里叶转换后的谱图点数。和TD相对应,但只能是2的N次方。是过程参数,一般大于TD的一半即可。
    SWH:谱宽。绝大部分的氢谱出峰在-2 ppm至18 ppm之间,对应20 ppm的谱宽。对于400MHZ的核磁,即对应400x20=8000HZ的谱宽。如果您的化合物结构比较特殊,对于谱图的呈现范围有特殊要求,可以提前和核磁操作人员联系。他们一般会通过修改SWH和O1P来进行调整。
    FIDRES:谱图分辨率。这个值一般会被忽略,但其实很重要。举个例子,如果你的核磁谱图分辨率为0.5Hz,但是你在文章中说你的某个峰耦合常数是0.32HZ,这显然就是错的。因为谱图是由数据点构成,而两个最接近的点间隔都有0.5,你怎么会看到小于0.5的细微结构呢?事实上,这张图给出的fidres是fid的分辨率,但是涉及到傅里叶转换后的频域谱图,SWH/SI应该是文献中给出的分辨率。
    SOLVENT:实验中用于溶解样品的氘代试剂。
    NS:重复扫描次数。氢核灵敏度高,一般情况下扫1次结果就很好了。如果你的样品很少或者溶解度很差,你可以要求核磁人员增加扫描次数,当然这需要付出额外的扫描时间。谱图信噪比正比于扫描次数的1/2次方。
    D1:弛豫等待时间。一般在做严格的定量谱图时这个值很重要,而通常的谱图默认即可。
    SF:在此核磁的磁场强度下,H1的共振频率为400MHZ,即所谓的400M核磁。
    LB:窗函数的重要参数。这个值越大,信噪比越高,但分辨率差(大数值适用于灵敏度低但不注重分辨率的碳谱);这个值小,分辨率提升但信噪比变差。

    对于普通氢谱而言,NS,SWH是解谱人员在实验前可以向核磁人员要求DIY的参数。D1用于定量实验中,也不排除一些文献中规定了D1的取值。单纯改脉冲激发角度一般没什么用,但有些文献喜欢强调这一值,也可以单独向操作者要求。LB是处理参数,可以在得到谱图后自行进行调整。

    celan:论坛上曾有过不少朋友的帖子提问过NMR实验参数的意义问题,tcxuefeng朋友是个有心人,他将bruker NMR的实验参数做了注释,这对NMR图谱分析者是有用的,感兴趣者不妨粘贴下来。

3
  • 该帖子已被版主-celan加5积分,加2经验;加分理由:NMR参数注解
    +关注 私聊
  • tcxuefeng

    第5楼2012/06/17

    DEPT135


    由于之后还要针对这个化合物做各种二维实验,因此碳谱的归属是必须要做的。与氢谱想比,由于C13的丰度小,以及碳本身的旋磁比仅为H核的1/4,因此做碳谱需要比氢谱花更多的时间。很多氢谱扫描一次信噪比已经很好,但相同浓度的碳谱要得到同样的信噪比却需要数千次的扫描——即意味着数千倍的时间,因此很多合成人员的碳谱都被安排在晚上过夜。而事实上,很多情况下在得到氢谱的数据后,如果需要加做碳谱往往只是解谱人员对某些基团的不确定,当这些基团不是季碳的时候,有一种碳谱能够在1/3的时间内得到比普通碳谱更好的结果——DEPT!
    DEPT是Distortion Enhancement by Polarization Transfer的缩写,翻译成中文就是无畸变极化转移增强。其碳信号增强原理与大名鼎鼎的INEPT相似,但是较后者有更多的优点,原理我就不多说了,在氢谱不能给出满意答案不得不求助于碳谱的信息时,我会习惯先做一个DEPT135!
    上图即是这一结构的DEPT135的谱图,我们可以看到有正和负两种相位,这正是DEPT135的奇妙之处!它能够让CH3和CH信号为正,CH2信号为负,而不与氢相连的季碳不出信号!(即所谓的奇正偶负)由于普通碳谱对氢去耦后不像氢谱能观察到相邻基团的耦合信息,对于碳谱的解读很多时候只能靠数碳的个数和看化学位移来大致判断,当化合物结构很复杂时,对于碳的归属往往让人一筹莫展。但DEPT135能在更短的时间内帮我们把这些信号分类:去除掉季碳信号;将碳信号按照正负排列;更别说还能大幅度减少实验时间——何乐而不为呢。几乎只瞄了一眼这图我们就可以清晰认出,43和30 ppm的两个负峰为亚甲基的碳,55.8 ppm的那个峰为与氧相连的甲基碳,低场的4个峰为环上的4个CH。
    不过对于解谱人员有一点需要了解的是,拿到手的谱图相位有可能是反的。因为在输入相位校正命令的时候软件自动将最高的峰定义为正,有时候当CH2的信号最强时,往往会被校正为正峰。对于软件而言,正负只是相对的。如果出现了谱图中碳信号与预想中正负完全相反时,可以要求核磁人员将信号校正过来。
    此外,DEPT谱还有另外两种常见的形式,分别是DEPT45和DEPT90。与DEPT135一样,所有DEPT实验都没有季碳信号。(这里要注意,与碳谱不同,理论上氘代溶剂DEPT应该不出峰。但是实际上有时候能够在DEPT谱上看到较弱的溶剂信号。这一信号可以对应碳谱的溶剂出峰位置予以排除)但是,区别在于DEPT45中所有CH,CH2,CH3均为正峰,而DEPT90中我们理论上仅能看到CH信号。在DEPT家族中,DEPT135给出的信息显然最多,因此一般做135即可。而与另外两种实验结果线性组合可以给出CH,CH2,CH3三种信号的三个独立子谱。

    为了让帖子更为完整,今天补充做了DEPT90和DEPT45的谱图如下,方便大家与DEPT135进行区别。可以看到,在DEPT90的谱图上还是可以看到残留的季碳信号的,这是由于90度H脉冲与实际值偏差导致,可以通过调节仪器的P3时间来优化谱图。
    DEPT90


    DEPT 45

3
  • 该帖子已被版主-celan加5积分,加2经验;加分理由:DEPT
    +关注 私聊
  • tcxuefeng

    第6楼2012/06/17

    C13CPD

        即普通的碳谱。CPD的意思是组合脉冲去耦的意思(Composite Pulse Decoupled)这种碳谱由于对氢去耦,因此出的碳都是单峰而观察不到H对C的裂分。由于CH的一键耦合常数很大,如果没有CPD,峰和峰之间相互重叠很严重,将严重影响解谱。此外,弛豫等待期对氢去耦能产生NOE效应从而增强碳信号,因此C13CPD是最常规的碳谱。在之前DEPT135的帮助下,我们很快能判断新出的4个碳信号为季碳上面的C。如果进一步分析,我们可能可以认为最低场153 ppm的为与氧直接相连的季碳,但是还是那句话,在有后续谱图的前提下,我们暂不做分析。姑且将谱图的碳指认进行到上图所标示的结果为止。
        针对普通碳谱而言,我觉得有几个需要注意的地方。
        一是由于这一脉冲仅对氢核去耦,因此一些有自旋的核并不在去耦之内。因此在碳谱中如果看到很明显的裂分结构,要注意F,P,D这些元素的存在。如图中特征的溶剂峰,即为D对C耦合所造成(根据2In+1规则,D的spin为1,甲基由3个D组成,因此形成2x1x3+1的7重峰型),而F,P这类丰度较高的1/2核将造成和H相类似的裂分峰型。
        另一方面,可以发现,季碳峰的峰高较低。一般而言,C13CPD不能和氢谱一样定量。主要原因有两点:一是碳谱去耦过程中引入的NOE效应对不同的级数碳影响不同,针对季碳这一增强可以忽略不计;二是碳的弛豫恢复时间分布很广且很长,举个不恰当的例子,对于甲基而言可能激发5秒后已经恢复到平衡位置,而对于季碳可能才恢复了1/10。造成的结果就是可能第一次扫描大家信号都出1,但是第二次扫描因为短时间内恢复程度不同,甲基信号可能变成2,而季碳才1.1,而随着碳谱扫描次数的增加,这一差距愈发明显。针对这一情况,有类似的反转门控去耦脉冲可用于碳谱定量及门控去耦碳谱可用于保留
    NOE增强下H对C裂分情况的观察。后面有机会我会把这两种谱图放上来。但是这一现象也给我们一个启示,通常而言季碳或者芳香环上的碳在同样扫描条件下峰高较低;而一些类似的C如长链烷烃中间的CH2也可以通过普通的C13CPD部分定量。

0
    +关注 私聊
  • tcxuefeng

    第7楼2012/06/17

    CNMR参数

    碳谱的参数和氢谱差不多,这里就不一一叙述。不过有几个比较特殊的参数我用黄色标记了。
    NS:由于碳的灵敏度差,Bruker默认的扫描次数为1024,一些样品量少的碳谱往往会扫数万次。不过这个样品因为浓度很高,为了节省扫描时间,16次就已经有了很好的结果了。因此在扫碳谱的时候,浓度提高比增加扫描次数好的多。
    SWH:碳的信号范围一般在-20-220ppm。由于碳的激发频率在400MHZ核磁上为100M,因此谱宽换算成HZ为240x100=24000HZ。这一数值可以根据特殊样品,要求核磁操作人员进行调整。
    D1:相对于氢谱而言,碳的弛豫等待时间更为重要一些,但一般也就限于定量碳谱。原因上面已经提到,要考虑弛豫恢复时间。不过针对一般的碳谱,这个数值不需要做太大改动。
    SF:由于碳13的旋磁比约为H核的1/4,因此碳的激发频率在400MHZ核磁上约为100MHZ。
    LB:由于碳的谱宽范围广,并且通常不用观察耦合裂分,因此相对于氢谱,碳的分辨率要求比较低;而与氢相比,碳的信噪比要求比较高。因此,可以通过调高LB值,达到理想的效果。不过这一数值可以在做完核磁谱图后再做调整。

    总之,与氢谱相比,碳谱的NS,SWH,D1可以根据化合物特殊性质,要求核磁操作人员在扫描前进行修改。

0
    +关注 私聊
  • celan

    第8楼2012/06/17

    5-Methoxytryptamine hydrochloride

0
    +关注 私聊
  • celan

    第9楼2012/06/18

    谢谢楼主的好帖!请继续。

0
    +关注 私聊
  • tcxuefeng

    第10楼2012/06/18

    感谢版主的推荐。因为平时白天不方便上网,我将利用空余时间慢慢完成这个帖子。水平有限,难免有错误的地方,还请大家多多指教!

2
查看更多
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...