夜市
第1楼2007/02/01
2.2.1仪器分析法
2.2.1.1色谱法是农残分析的常用方法,GC法是农残分析的经典技术。近年来,由于毛细管柱在分辨能力、灵敏度和分析速度等方面所具有的优势,毛细管柱气相色谱取代了填充柱气相色谱,成为多种类型或同一类型农药多残留分析最得力的工具,广泛应用于挥发性农药残留测定。测定有机氯农药常用ECD检测器,而测定有机磷农药则大多是火焰光度检测器和氮磷检测器。ECD检测器也可用于测定有机磷农药 [26] ,林渭海等[27]采用同一色谱填充柱和ECD检测器分离多种有机氯、有机磷混合农药。当然,并不是1根毛细管色谱柱、1种检测器就可解决所有农药的分离。
2.2.1.2对于挥发性差、极性和热不稳定的农药,不能直接或不适合GC分析。HPLC适合于测定热不稳定和强极性农药及其代谢物,同时一些新的检测器使用提高了检出灵敏度,因此HPLC在农残分析的应用日益广泛,尤其是氨基甲酸酯类农药。
2.2.1.3近年来色质联用技术日臻成熟。质谱法的优点就是可在多种残留物同时存在的情况下对其进行定性定量分析,尤其适合于多残留分析。在一些发达国家,GC/MS、HPLC/MS已成为常规的残留分析监测手段,成为定性及定量分析最得力的工具。
2.2.1.4 SFC是以超临界流体作为色谱流动相的色谱,能通过调节压力、温度、流动相组成多重梯度,选择最佳色谱条件。SFC既综合了GC与HPLC的优点,又弥补了它们的不足,可在较低温度下分析分子量较大、对热不稳定的化合物和极性较强的化合物,可与大部分GC、HPLC的检测器联用,还可与红外(FTIR)、MS联用,极大地拓宽了其应用范围。许多在GC或HPLC上需经衍生化才能分析的农药,都可用SFC直接测定。
2.2.1.5 CE特别适合于那些难以用传统的HPLC分离的离子化样品的分离与分析,具有分离效率高、快速、样品用量少等特点。采用毛细管区带电泳(CZE)或胶束电动色谱(MEKC)进行农药残留分析,对分离与检测均是最好选择[28]。CE/MS可用于谷物和其他基质中带电荷基团的农药及其代谢物的残留检测。开发研究灵敏度更高的检测系统将使毛细管区带电泳的优势得以充分发挥。
2.2.2生物检测技术生物技术在农残检测中的应用不断在增加,包括免疫测定法、生物测定法和生物传感器技术等。免疫分析(IA)被列为20世纪90年代优先研究、开发和利用的农残分析技术。美国化学会将免疫分析与气相色谱、液相色谱共同列为农残分析的支柱技术。近年来,免疫分析法尤其是酶免疫分析(EIA)的研究十分活跃。EIA的原理是基于有机磷、氨基甲酸酯杀虫剂能抑制酶(如胆碱酯酶、植物酶)的活性。IA开发过程需投入较多资金和较长时间,一旦开发成功则具有灵敏度高、特异性强、方便快捷、成本低、安全可靠等优点。国内一些农药速测卡是根据有机磷农药能强烈抑制胆碱酶的活性而研制开发的,适合于大批样品的速测。此外,国外一些公司推出了多种酶标试剂盒应用于常规分析及田间检测的快速筛选,作为仪器分析的辅助方法发挥了一定作用。
3 结语 目前农药残留分析的成分大多是化学合成的化学品,而生物农药逐步取代化学农药将是未来发展的趋势。今后农残分析对象的分子量将会大很多,将分析对象与原动植物组织中的蛋白质、多肽、核酸、细菌或病毒等分离也将会更加困难。新的农残分析技术必须与细胞化学、发酵化学、免疫化学和多肽排列结构等多方面学科知识相结合。农残分析技术综合性很强、涉及面广。随着科学技术的不断发展,农残分析技术也正在不断更新、完善,朝着小型化、自动化方向发展,也将更好地保障人类健康。