摘要:本文针对大气层再入飞行器、临近空间高超声速飞行器的防热设计计算和防热材料改性优化对于真实服役环境下材料热物性测试和材料处理的需求,提出了变真空和变氧分压精密控制解决方案。解决方案的关键内容是通过质量流量计控制氧含量,并通过分程控制法进行高精度的真空控制。此解放方案对应的配套装置可用于各种材料高温热物理性能参数测试和考核设备,并已在CVD和PVT工艺生产半导体材料中得到了应用。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
一、问题的提出
所谓氧分压氧分压定义为气体混合物中氧气体组分的压力,它对应于氧气体组分单独占据整个体积时所施加的总压力。氧分压是一个常用来表征物质氧化环境的变量,特别是在高温条件下,氧分压是一个重要的环境变量。
在飞行服役过程的高温条件下,以树脂基防热复合材料、低烧蚀和零烧蚀类结构复合材料、耐高温金属材料为代表的飞行器外层防热材料的传热性能与材料所处环境的氧分压指标密切关联。在高温环境下,树脂基防热复合材料发生的热解碳化反应,低烧蚀/零烧蚀类结构复合材料发生的碳基体、碳化硅基体升华、氧化过程,耐高温金属材料发生的表面氧化反应,均受到材料所处环境的氧含量影响。在相同的高温环境下,材料表面成分、结构和传热性能随所处环境氧分压的变化而产生巨大差异。因此,在材料研究和地面考核试验中需要在可变氧分压的高温环境中对材料进行热处理后进行各种性能测试,有时甚至在相应的测试仪器上直接模拟出可变氧分压高温环境并对材料的各种物理性能进行测试。
在飞行器用防热材料的物理性能考核和测试评价中,温度、气压和氧分压是三个重要环境变量,而目前的大多数测试试验仪器和设备最多也只能模拟出温度和气压变化环境,还无法实现可变氧分压环境的精密控制,如材料的导热系数和热辐射系数还只能在变温变真空环境下进行测试,材料烧蚀过程的性能研究还只能用高温真空环境下炭化后的样品进行测试,这些都无法获得不同氧分压下材料的真实性能数据。日前有客户提出了低气压和氧分压的精密控制要求,为以下几个方面的测试和试验提供配套:
(1)在高温真空碳化炉基础上进行配套实现变真空和变氧分压精密控制,并可多次循环,以在交变环境条件下对多种防热材料进行处理,如对树脂基防热复合材料进行炭化处理,对低烧蚀/零烧蚀类结构复合材料和耐高温金属材料进行表面处理。
(2)对烧蚀试验装置配备实现变真空和变氧分压精密控制,以考核不同温度、真空度和氧分压条件下的烧蚀性能和隔热性能。
(3)在高温热辐射性能测试设备的基础上,配套实现变真空和变氧分压精密控制,以测量不同条件下材料的热辐射性能(光谱反射率和半球向全发射率)。
本文将针对大气层再入飞行器、临近空间高超声速飞行器的防热设计计算和防热材料改性优化对于真实服役环境下材料热物性测试和材料处理的需求,提出变真空和变氧分压精密控制解决方案。此解决方案将采用分程控制来实现高精度的真空度控制,此解放方案对应的配套装置可用于各种材料高温热物理性能参数测试和考核设备。
二、解决方案
根据氧分压的定义,对于氧气和氮气组成的混合气体,其中的氧分压就等于混合气体中氧气摩尔分数乘以混合气体的绝对压力值。由此可见,在氧分压控制过程中需要对氧气在混合气体中所占的摩尔分数和混合气体的绝对压力同时进行控制。
另外,在客户提出的需求中,所涉及的绝对压力都是小于一个大气压的真空环境,混合气体一般为氮气和氧气,因此氧分压的控制问题就可以归结为以下两部分内容:
(1)控制氧气在混合气体中的摩尔数。
(2)控制混合气体的真空度(绝对压力)。
为实现上述两部分控制内容,本文所提出的解决方法为如图1所示的氧分压控制系统。
图1 氧分压控制系统结构示意图
如图1所示,为了控制氧气在混合气体中的摩尔数,采用了两个气体质量流量计分别控制由气瓶流出的氮气和氧气,使混气罐中氧气在混合气体中的摩尔数按照设定值进行自动控制,由此保证混合气体和氧气的摩尔数之比始终为精密可控。此时混合罐中混合气体为大于一个大气压的正压。
具有确定混合气体与氧气摩尔数之比的混合气体经电动针阀进入高温炉,混合器流过高温炉后再经电动球阀和真空泵排出,通过同时快速调节电动针阀和球阀的开度使进气流量和排气流量达到动态平衡,则能实现高温炉内的真空度精密控制。
为了实现宽量程范围内的真空度控制,解决方案中配置了两个不同量程的真空计,双通道真空压力控制器采用分程控制形式进行真空度控制。分程控制形式是压力控制器分别采集两只真空计信号,当进行低气压高真空控制时,控制器将电动球阀开度控制为最大,同时调节电动针阀的开度来控制进气流量来实现高真空控制。当进行高气压低真空控制时,控制器将电动针阀调节到某一固定开度并保持不变,同时调节电动球阀的开度来控制排气流量来实现低真空控制。
总之,上述氧分压精密控制解决方案的技术成熟很高,并经过了大量试验,验证了此方案的可行性和可靠性,可完全满足客户对高温条件下氧分压控制的需求,此方案也已在众多其他真空设备和工艺中(如CVD和PVT工艺)得到了应用。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~