有害水华物种

2016/10/13   下载量: 12

方案摘要

方案下载
应用领域 生物产业
检测样本 生物环保
检测项目
参考标准 0

The conclusions of this study center on the flow chart in Figure 8 which explains how the CLS and PARAFAC methods in Solo can be compared as a basis for establishing rapid, reliable analysis methods for differentiating different algal types. The PARAFAC method, when calibrated with pure culture spectra, affords the capacity to rapidly and effectively separate and identify major algal orders (Cyanophyta, Chrysophyta and Chlorophyta). PARAFAC can also possibly identify different types of cyanobacteria more specifically based on evaluation component scores and score ratios. PARAFAC calibration may not yield unique spectral loadings for each algal culture nor necessarily allow unambiguous assignments of spectral components to identifiable physical components in the calibration data set. CLS on the other hand requires calibration with pure culture samples and exhibits the capacity to generate unique, culture-specific spectral component libraries. Further, based on independent cell density and biovolume calculations it was clear the CLS method can potentially provide rapid, reliable estimates of these parameters with high-precision. In conclusion, it is clear that the Aqualog EEM and Solo model analyses show potential for rapid evaluation of algal types and could prove useful in rapid field and laboratory level cyano harmful algal bloom identification, especially when carefully calibrated with pure algal culture samples. Due caution is noted in terms of dealing with the morphological and physiological properties of the samples in terms of spectroscopy and the requirement for due diligence in terms of establishing detection concentration limits in the ranges needed for positive identification. Importantly, it is well known that algal spectral properties are significantly affected by the light-environment, temperature and nutrient conditions among other factors so algal culture methods used for calibration would ideally take these factors into consideration and independent

方案下载
配置单
方案详情

The conclusions of this study center on the flow chart in Figure 8 which explains how the CLS and PARAFAC methods in Solo can be compared as a basis for establishing rapid, reliable analysis methods for differentiating different algal types. The PARAFAC method, when calibrated with pure culture spectra, affords the capacity to rapidly and effectively separate and identify major algal orders (Cyanophyta, Chrysophyta and Chlorophyta). PARAFAC can also possibly identify different types of cyanobacteria more specifically based on evaluation component scores and score ratios.  PARAFAC calibration may not yield unique spectral loadings for each algal culture nor necessarily allow unambiguous assignments of spectral components to identifiable physical components in the calibration data set. CLS on the other hand requires calibration with pure culture samples and exhibits the capacity to generate unique, culture-specific spectral component libraries. Further, based on independent cell density and biovolume calculations it was clear the CLS method can potentially provide rapid, reliable estimates of these parameters with high-precision. In conclusion, it is clear that the Aqualog EEM and Solo model analyses show potential for rapid evaluation of algal types and could prove useful in rapid field and laboratory level cyano harmful algal bloom identification, especially when carefully calibrated with pure algal culture samples. Due caution is noted in terms of dealing with the morphological and physiological properties of the samples in terms of spectroscopy and the requirement for due diligence in terms of establishing detection concentration limits in the ranges needed for positive identification. Importantly, it is well known that algal spectral properties are significantly affected by the light-environment, temperature and nutrient conditions among other factors so algal culture methods used for calibration would ideally take these factors into consideration and independent methods of qualification and quantification including taxonomic enumeration are advised.


上一篇 荧光光谱+蛋白质检测+荧光特性
下一篇 染料中亚皮摩尔荧光素的检测

文献贡献者

HORIBA(中国)
白金会员第22年
查看全部资料
相关仪器 更多
相关方案
更多

相关产品

当前位置: HORIBA 方案 有害水华物种

关注

拨打电话

留言咨询