在涡度协方差系统中,如何确保测量准确?

测量仪器本身是否会对测量结果造成偏差?
                                                 ——在涡度协方差系统中,如何确保测量准确


        三维超声风速仪是涡度协方差测量系统中的核心测量组件。有研究表明,在对风速进行测量时,哪怕超声风速仪传感器的体积很小,也会对风速测量结果产生偏差【1,2,3,4,5,6】。另外,如果采用合体式设计思路,即把三维超声风速仪和气体分析仪合二为一。由于气体分析仪位于三维超声风速仪采样空间内部或与其非常接近【7,8】风速的测量误差就会很大(图1)。

三维超声风速仪

图1 若物体距离三维超声风速仪太近,如气体分析仪,就会导致其风速测量不可靠。

 
        理论上,涡度协方差系统最好测量同一涡旋的风速和其对应的气体密度。但在实际测量时,却不能这样。合体式设计思路,由于其测量组件本身就会对涡旋造成扰动,这种扰动所导致的测量误差很难被量化,且不可进行后续订正【6,7,8,9】。
 
那怎么办呢?研究表明,一个简单的解决方案就是采用分体式思路:三维超声风速仪和气体分析仪以一定间距(10-20cm)分开测量。这种分体式测量,只需对原始数据做一个简单的数据订正就可以得到准确结果【10,11,12】。
 
li-cor的涡度协方差测量系统以严谨的科研成果为依据,采用分体式设计思路(图2),确保了涡度通量数据的准确、可靠。

 li-cor分体式涡度协方差测量系统

图2 li-cor分体式涡度协方差测量系统设计思路

 
参考文献
[1] wyngaard, j. c., 1981. the effects ofprobe-induced flow distortion on atmospheric turbulence measurements. journalof applied meteorology, 20: 784-794.
[2] wyngaard, j. c., 1988. flow-distortioneffects on scalar flux measurements in the surface layer: implications forsensor design. in hicks, b. b. (eds) topics in micrometeorology. a festschriftfor arch dyer. springer, dordrecht.
[3] frank, j. m., w. j. massman, and b. e.ewers, 2013. underestimates of sensible heat flux due to vertical velocitymeasurement errors in non-orthogonal sonic anemometers. agricultural and forestmeteorology, 171-172: 72-81.
[4] horst, t. w., s. r. semmer, and g.maclean, 2015. correction of a non-orthogonal, three-component sonic anemometerfor flow distortion by transducer shadowing. boundary-layer meteorology, 155(3): 371-395.
[5] frank, j. m., w. j. massman, e.swiatek, h. a. zimmerman, and b. e. ewers, 2016. all sonic anemometers need tocorrect for transducer and structural shadowing in their velocity measurements.journal of atmospheric and oceanic technology, 33(1): 149-167.
[6] huq, s., f. de roo, t. foken, m.mauder, 2017. evaluation of probe-induced flow distortion of campbell csat3sonic anemometers by numerical simulation. boundary-layer meteorology, 165(1):9-28.
[7] horst, t. w., r. vogt, and s. p.oncley, 2016. measurements of flow distortion within the irgason integratedsonic anemometer and co2/h2o gas analyzer. boundary-layer meteorology, 160(1):1-15.
[8] dyer, a. j., 1981. flow distortion bysupporting structures. boundary-layer meteorology, 20(2): 243-251.
[9] grare, l., l. lenain, and w. k.melville, 2016. the influence of wind direction on campbell scientific csat3and gill r3-50 sonic anemometer measurements. journal of atmospheric andoceanic technology, 33(11): 2477-2497.
[10] moore, c. j., 1986. frequency responsecorrections for eddy covariance systems. boundary-layer meteorology, 37: 17-35.
[11] horst, t. w., and d. h. lenschow,2009. attenuation of scalar fluxes measured with spatially-displaced sensors.boundary-layer meteorology, 130(2): 275-300.
[12] mauder, m., and t. foken, 2011.documentation and instruction manual of the eddy-covariance software packagetk3.


阅读59次
关注
最新动态
推荐产品
更多

相关产品

当前位置: 北京力高泰 动态 在涡度协方差系统中,如何确保测量准确?

关注

拨打电话

留言咨询