Depth Profile Analysis of Solid State Li-Ion Battery Device by Laser Induced Breakdown Spectroscopy (LIBS)

2020/06/10   下载量: 1

方案摘要

方案下载
应用领域 能源/新能源
检测样本 锂电池
检测项目
参考标准

在当今社会,智能手机和平板电脑等电子设备正成为人类日常活动的重要组成部分。这些电子产品不断发展,使其结构更紧凑、重量更轻,这也就对电池的功率输出和寿命提出了越来越高的要求。为了应对这些技术挑战,锂离子电池技术也在不断进步,在保持紧凑和轻便特性的同时,还能够产生更高的能量输出和更强的循环性能。 本文介绍了激光诱导击穿光谱(LIBS)对锂离子电池重要元件化学组成的关键元素进行深度分析的能力。这些组件包括正极、负极和固态电解质。典型的基于解决方案的元素分析技术,如电感耦合等离子体发射光谱(ICP-OES)和电感耦合等离子体发射质谱(ICP-MS),不能揭示这些部件的结构信息。另一种流行的元素分析技术X射线荧光光谱(XRF)无法为锂离子电池电极的重要元素提供元素覆盖,例如Li、B、C、O、F、N。其它表面和深度分析技术,需要复杂的真空仪器,如二次离子质谱(SIMS)、辉光放电质谱(GD-MS)、俄歇电子能谱(AES)和X射线光电子能谱(XPS),检测速度慢或者价格昂贵。LIBS提供锂离子电池组件在实验室或工厂的深度分析能力,具有很出色的分析速度。LIBS还具有从H - Pu到大含量范围(ppm - wt. %)的基本覆盖。

方案下载
配置单
方案详情

2锂离子电池器件结构的元素深度剖析(锂金属负极、LiPON固态电解质、LiCoO2正极和置于玻璃基板上钛集电器)

在图2中,将不同组分的特征元素与原子发射线的检测数据相结合,很容易看出何时开始剥蚀电池的各个层。例如,锂金属负极的激光剥蚀会伴随着强的锂元素发射信号。剥蚀进入LiPON固态电解质层时,检测到P发射信号。同样,CoO发射线可以用来跟踪LiCoO2正极层的剥蚀,并评估正极层内的相对成分变化。


上一篇 时间门控拉曼散射的典型应用案例
下一篇 激光诱导击穿光谱(LIBS)对固态锂离子电池的深度剖析

文献贡献者

相关仪器 更多
相关方案
更多

相关产品

当前位置: 富尔邦 方案 Depth Profile Analysis of Solid State Li-Ion Battery Device by Laser Induced Breakdown Spectroscopy (LIBS)

关注

拨打电话

留言咨询