仪器信息网APP
选仪器、听讲座、看资讯

广州大学王家海教授团队:立方体核酸结构解决纳米孔传感器大问题

导读:在CRISPR-Cas12a技术的帮助下,实现了乙型肝炎病毒(HBV)靶点引发的DNA立方体裂解,从而构建出了一种传感策略。

研究背景

单分子分析技术在生物传感和生物医学中具有广泛应用前景。纳米孔作为最有前途的单分子传感技术之一,在超灵敏、易操作和无标记分析方面具有独特的优势。近年来,纳米孔技术在DNA测序、生物分子相互作用探索和生物分子检测方面得到了广泛应用。

固态纳米孔是纳米孔技术中常用的一种的,其具备优异的机械稳定性和孔径灵活性。然而,由于其相对蛋白质纳米孔而言分辨率和选择性较低,在开发生物传感器进行单分子分析时,存在两个重大挑战:

(1)尺寸较小(1~10nm)的化学或生物靶标物由于其与纳米孔的较弱相互作用而难以产生可识别的过孔信号;

(2) 广泛存在于生物样品或缓冲液中的蛋白质干扰物会显著提升纳米孔的噪声水平,甚至淹没过孔信号。

为解决这两大挑战,王家海教授带领团队中陈达奇老师共同设计了新型传感策略:1、以核酸立方体结构作为信号分子提升小目标的信噪比,实现了超高信噪比的过孔信号;2、利用CRISPR–Cas12a技术,将小片段核酸被测物的浓度成功转化为核酸立方体的数量,并耦合了PCR扩增技术进一步提升检测灵敏度,实现了对核酸片段超高灵敏度与选择性的检测,突破了上述两点技术瓶颈,并应用在HBV的检测中。

广州大学王家海教授团队:立方体核酸结构解决纳米孔传感器大问题

图1 技术原理图:利用DNA立方体为信号分子,并应用CRISPR–Cas12a技术将目标核酸片段浓度转化为DNA立方体的数量,产生高信噪比、高选择性的过孔信号。

王家海教授为第一作者、团队成员陈达奇老师为通讯作者,在国际知名期刊Analyst上发表题为“A signal on-off strategy based on the digestion of DNA cubes assisted by the CRISPR–Cas12a system for ultrasensitive HBV detection in solid-state nanopores”的研究工作,广州大学第一单位。

工作亮点

在本工作中,我们开发了克服固态纳米孔两大挑战的有效方法:

1、将DNA立方体用作信号转换器,可以实现超高(>50:1)信噪比(SNR)过孔信号,即使在富含蛋白质干扰物的缓冲液中,这种信号也依然能保持。

为了探索信号最优的纳米结构,我们尝试了以下4种结构,分别为环形M13mp18 DNA、Lambda DNA、DNA四面体和DNA立方体。四种结构都可以在不含稳定蛋白的缓冲液中产生可见易位信号,但是DNA立方体是其中信噪比最高的。而当稳定蛋白在缓冲液中时,仅DNA立方体能维持稳定的过孔信号,其他三种核酸纳米结构作为信号分子的过孔信号都不同程度地淹没在玻璃纳米孔传感器的增强噪声中。因此,最终选择了DNA立方体来开发我们的传感策略,因为它具有极高的信噪比和强大的抗干扰能力。

广州大学王家海教授团队:立方体核酸结构解决纳米孔传感器大问题

图2 在不同缓冲条件下,DNA立方体作为信号转换器的性能。(a) 环形M13mp18 ssDNA、Lambda DNA、DNA四面体和DNA立方体在含有或不含BSA的缓冲液中的过孔信号。(b) DNA立方体在含有不同浓度BSA的缓冲液中的事件率。DNA立方体的浓度均为30nM。

2、在CRISPR-Cas12a技术的帮助下,实现了乙型肝炎病毒(HBV)靶点引发的DNA立方体裂解,从而构建出了一种传感策略。当HBV阴性时,过孔信号正常;当HBV阳性时,过孔信号消失;从而实现了HBV阳性或阴性分类,其检测限达到3aM。并且,这个方法选择性非常高,对其他病毒序列如HPV、HIV等均无假阳性现象。此外,利用我们的方法,本工作中的所有反应缓冲液都可以购买后直接使用,其成分无需为了纳米孔应用做进一步优化,这对固态纳米孔的商业化应用有很大帮助。

广州大学王家海教授团队:立方体核酸结构解决纳米孔传感器大问题

图3 传感器在实际样本中的性能。对其他类型的病毒如HPV和HIV样本,均显示阴性。对于HBV样本,当浓度超过3aM,便可以识别出阳性结果

文章链接: https://pubs.rsc.org/en/content/articlelanding/2022/an/d2an01402e

来源于:仪器信息网

打开APP,掌握第一手行业动态
打赏
点赞

相关会议

更多

热门评论

写评论…
0

研究背景

单分子分析技术在生物传感和生物医学中具有广泛应用前景。纳米孔作为最有前途的单分子传感技术之一,在超灵敏、易操作和无标记分析方面具有独特的优势。近年来,纳米孔技术在DNA测序、生物分子相互作用探索和生物分子检测方面得到了广泛应用。

固态纳米孔是纳米孔技术中常用的一种的,其具备优异的机械稳定性和孔径灵活性。然而,由于其相对蛋白质纳米孔而言分辨率和选择性较低,在开发生物传感器进行单分子分析时,存在两个重大挑战:

(1)尺寸较小(1~10nm)的化学或生物靶标物由于其与纳米孔的较弱相互作用而难以产生可识别的过孔信号;

(2) 广泛存在于生物样品或缓冲液中的蛋白质干扰物会显著提升纳米孔的噪声水平,甚至淹没过孔信号。

为解决这两大挑战,王家海教授带领团队中陈达奇老师共同设计了新型传感策略:1、以核酸立方体结构作为信号分子提升小目标的信噪比,实现了超高信噪比的过孔信号;2、利用CRISPR–Cas12a技术,将小片段核酸被测物的浓度成功转化为核酸立方体的数量,并耦合了PCR扩增技术进一步提升检测灵敏度,实现了对核酸片段超高灵敏度与选择性的检测,突破了上述两点技术瓶颈,并应用在HBV的检测中。

广州大学王家海教授团队:立方体核酸结构解决纳米孔传感器大问题

图1 技术原理图:利用DNA立方体为信号分子,并应用CRISPR–Cas12a技术将目标核酸片段浓度转化为DNA立方体的数量,产生高信噪比、高选择性的过孔信号。

王家海教授为第一作者、团队成员陈达奇老师为通讯作者,在国际知名期刊Analyst上发表题为“A signal on-off strategy based on the digestion of DNA cubes assisted by the CRISPR–Cas12a system for ultrasensitive HBV detection in solid-state nanopores”的研究工作,广州大学第一单位。

工作亮点

在本工作中,我们开发了克服固态纳米孔两大挑战的有效方法:

1、将DNA立方体用作信号转换器,可以实现超高(>50:1)信噪比(SNR)过孔信号,即使在富含蛋白质干扰物的缓冲液中,这种信号也依然能保持。

为了探索信号最优的纳米结构,我们尝试了以下4种结构,分别为环形M13mp18 DNA、Lambda DNA、DNA四面体和DNA立方体。四种结构都可以在不含稳定蛋白的缓冲液中产生可见易位信号,但是DNA立方体是其中信噪比最高的。而当稳定蛋白在缓冲液中时,仅DNA立方体能维持稳定的过孔信号,其他三种核酸纳米结构作为信号分子的过孔信号都不同程度地淹没在玻璃纳米孔传感器的增强噪声中。因此,最终选择了DNA立方体来开发我们的传感策略,因为它具有极高的信噪比和强大的抗干扰能力。

广州大学王家海教授团队:立方体核酸结构解决纳米孔传感器大问题

图2 在不同缓冲条件下,DNA立方体作为信号转换器的性能。(a) 环形M13mp18 ssDNA、Lambda DNA、DNA四面体和DNA立方体在含有或不含BSA的缓冲液中的过孔信号。(b) DNA立方体在含有不同浓度BSA的缓冲液中的事件率。DNA立方体的浓度均为30nM。

2、在CRISPR-Cas12a技术的帮助下,实现了乙型肝炎病毒(HBV)靶点引发的DNA立方体裂解,从而构建出了一种传感策略。当HBV阴性时,过孔信号正常;当HBV阳性时,过孔信号消失;从而实现了HBV阳性或阴性分类,其检测限达到3aM。并且,这个方法选择性非常高,对其他病毒序列如HPV、HIV等均无假阳性现象。此外,利用我们的方法,本工作中的所有反应缓冲液都可以购买后直接使用,其成分无需为了纳米孔应用做进一步优化,这对固态纳米孔的商业化应用有很大帮助。

广州大学王家海教授团队:立方体核酸结构解决纳米孔传感器大问题

图3 传感器在实际样本中的性能。对其他类型的病毒如HPV和HIV样本,均显示阴性。对于HBV样本,当浓度超过3aM,便可以识别出阳性结果

文章链接: https://pubs.rsc.org/en/content/articlelanding/2022/an/d2an01402e