仪器信息网APP
选仪器、听讲座、看资讯

仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!

导读:本研究揭示了扭曲的二维卤化物钙钛矿超晶格作为新兴的室温摩尔激子材料平台的潜力,通过引入超出传统范德华相互作用的离子层间耦合。

科学背景】

摩尔纹超晶格是指在两个二维材料或层状结构叠加时形成的周期性结构,能够引发出多种量子现象,如超导性和莫特绝缘体。然而,迄今为止,这些研究主要集中在范德华层材料上,其层间相互作用较弱,限制了能量调制的深度和在室温下的应用。

具体而言,范德华层材料的摩尔图案受到其相对弱的范德华力的限制,这导致形成的平带对热波动和杂质非常敏感,因此在低温下观察到的平带物理现象远多于室温条件下的观察。为了克服这一限制,科学家们开始寻找更强的层间相互作用,以增加能量调制的深度,从而实现室温下的摩尔纹材料

在此背景下,二维卤化物钙钛矿被提出作为一个潜在的解决方案,因其具有离子键合和更强的层间耦合能力。然而,要实现这一概念,必须克服多个技术难题。首先,传统的二维钙钛矿合成方法通常依赖于有机配体,这些配体太过庞大,阻碍了层间的电子耦合,从而不利于摩尔纹超晶格的构建。其次,控制二维钙钛矿的厚度和侧向尺寸,尤其是在特定扭角下的生长,是一项具有挑战性的工程任务。

为了解决这些问题,美国普渡大学(Purdue University)Letian Dou & Libai Huang教授、中国科学技术大学张树辰,上海科技大学Yuan Lu等教授携手开发了一种新的合成方法,成功制备出无配体、超薄、大面积的二维卤化物钙钛矿晶体。这些人工扭曲的结构展现了清晰的方形摩尔纹图案,并在扭角约为10°时显示出局域的激子和电荷。通过高分辨透射电子显微镜和瞬态光致发光显微镜等技术手段,研究团队验证了这些摩尔纹超晶格的形成及其在平带物理方面的潜力。

仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!

科学亮点

(1)实验首次展示了利用超薄、无配体卤化物钙钛矿构建摩尔纹超晶格的成功尝试。此前,大面积的二维非范德华材料在控制厚度和扭角方面存在挑战,本研究通过合理的合成方法克服了这些难题,成功制备了具有方形摩尔纹图案的扭曲钙钛矿层。


(2)实验通过高分辨透射电子显微镜清晰展示了这些超薄钙钛矿层的方形摩尔纹超晶格,这些结构在扭角约为10°时显现出局域的明亮激子和捕获的电荷。


(3)通过扭角依赖的瞬态光致发光显微镜和电学特性表征,研究发现摩尔势阱引起的局域激子导致了显著增强的激子发射。这些结果不仅验证了理论预测的平带增加的振子强度,也展示了扭曲钙钛矿结构作为独特的室温摩尔材料平台的潜力。

科学图文】

仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!

图1: 通过平衡溶液方法和表征,将RP-相二维2D钙钛矿转化为APbX3相。

仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!

图2. 在钙钛矿转角层twisted perovskite layers,TPLs中的方形莫尔图案。

仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!

图3. 在MAPbI3 钙钛矿转角层TPLs中,依赖于转角的激子输运和湮灭。

仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!

图 4. 在MAPbI3 钙钛矿转角层TPLS中,依赖于扭转角的光致发光photoluminescence,PL发射。

科学结论

本研究揭示了扭曲的二维卤化物钙钛矿超晶格作为新兴的室温摩尔激子材料平台的潜力,通过引入超出传统范德华相互作用的离子层间耦合。这不仅拓展了摩尔材料的选择范围,还为光发射、光-物质相互作用等应用(如激子激光和激子极化子)提供了新的探索可能性。激子的增强振子强度不仅为设计能量和电荷传输功能提供了更多机会,还为太阳能电池和LED等领域的应用开发提供了潜在的技术路径。此外,通过调节阳离子和外部压力来控制层间距离,我们展示了钙钛矿结构的高度可调性,这为优化摩尔激子的定域和性质提供了有力工具。未来,进一步研究晶格松弛效应对摩尔平带稳定性的影响,并推动更完善的理论模型和改进的显微镜技术,将有助于深入理解这一新兴领域的基础物理与应用潜力。

原文详情:hang, S., Jin, L., Lu, Y. et al. Moiré superlattices in twisted two-dimensional halide perovskites. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01921-0


来源于:仪器信息网

打开APP,掌握第一手行业动态
打赏
点赞

近期会议

更多

热门评论

新闻专题

更多推荐

写评论…
0

科学背景】

摩尔纹超晶格是指在两个二维材料或层状结构叠加时形成的周期性结构,能够引发出多种量子现象,如超导性和莫特绝缘体。然而,迄今为止,这些研究主要集中在范德华层材料上,其层间相互作用较弱,限制了能量调制的深度和在室温下的应用。

具体而言,范德华层材料的摩尔图案受到其相对弱的范德华力的限制,这导致形成的平带对热波动和杂质非常敏感,因此在低温下观察到的平带物理现象远多于室温条件下的观察。为了克服这一限制,科学家们开始寻找更强的层间相互作用,以增加能量调制的深度,从而实现室温下的摩尔纹材料

在此背景下,二维卤化物钙钛矿被提出作为一个潜在的解决方案,因其具有离子键合和更强的层间耦合能力。然而,要实现这一概念,必须克服多个技术难题。首先,传统的二维钙钛矿合成方法通常依赖于有机配体,这些配体太过庞大,阻碍了层间的电子耦合,从而不利于摩尔纹超晶格的构建。其次,控制二维钙钛矿的厚度和侧向尺寸,尤其是在特定扭角下的生长,是一项具有挑战性的工程任务。

为了解决这些问题,美国普渡大学(Purdue University)Letian Dou & Libai Huang教授、中国科学技术大学张树辰,上海科技大学Yuan Lu等教授携手开发了一种新的合成方法,成功制备出无配体、超薄、大面积的二维卤化物钙钛矿晶体。这些人工扭曲的结构展现了清晰的方形摩尔纹图案,并在扭角约为10°时显示出局域的激子和电荷。通过高分辨透射电子显微镜和瞬态光致发光显微镜等技术手段,研究团队验证了这些摩尔纹超晶格的形成及其在平带物理方面的潜力。

仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!

科学亮点

(1)实验首次展示了利用超薄、无配体卤化物钙钛矿构建摩尔纹超晶格的成功尝试。此前,大面积的二维非范德华材料在控制厚度和扭角方面存在挑战,本研究通过合理的合成方法克服了这些难题,成功制备了具有方形摩尔纹图案的扭曲钙钛矿层。


(2)实验通过高分辨透射电子显微镜清晰展示了这些超薄钙钛矿层的方形摩尔纹超晶格,这些结构在扭角约为10°时显现出局域的明亮激子和捕获的电荷。


(3)通过扭角依赖的瞬态光致发光显微镜和电学特性表征,研究发现摩尔势阱引起的局域激子导致了显著增强的激子发射。这些结果不仅验证了理论预测的平带增加的振子强度,也展示了扭曲钙钛矿结构作为独特的室温摩尔材料平台的潜力。

科学图文】

仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!

图1: 通过平衡溶液方法和表征,将RP-相二维2D钙钛矿转化为APbX3相。

仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!

图2. 在钙钛矿转角层twisted perovskite layers,TPLs中的方形莫尔图案。

仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!

图3. 在MAPbI3 钙钛矿转角层TPLs中,依赖于转角的激子输运和湮灭。

仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!

图 4. 在MAPbI3 钙钛矿转角层TPLS中,依赖于扭转角的光致发光photoluminescence,PL发射。

科学结论

本研究揭示了扭曲的二维卤化物钙钛矿超晶格作为新兴的室温摩尔激子材料平台的潜力,通过引入超出传统范德华相互作用的离子层间耦合。这不仅拓展了摩尔材料的选择范围,还为光发射、光-物质相互作用等应用(如激子激光和激子极化子)提供了新的探索可能性。激子的增强振子强度不仅为设计能量和电荷传输功能提供了更多机会,还为太阳能电池和LED等领域的应用开发提供了潜在的技术路径。此外,通过调节阳离子和外部压力来控制层间距离,我们展示了钙钛矿结构的高度可调性,这为优化摩尔激子的定域和性质提供了有力工具。未来,进一步研究晶格松弛效应对摩尔平带稳定性的影响,并推动更完善的理论模型和改进的显微镜技术,将有助于深入理解这一新兴领域的基础物理与应用潜力。

原文详情:hang, S., Jin, L., Lu, Y. et al. Moiré superlattices in twisted two-dimensional halide perovskites. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01921-0