仪器信息网APP
选仪器、听讲座、看资讯

仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!

导读:本文利用范德瓦尔斯异质结构实现太赫兹频率下声子的高效生成、检测和操控。通过精确控制原子薄层的集成,作者展示了几层石墨烯作为宽带声子换能器和单层WSe2作为高灵敏度传感器的效果。

科学背景】

在过去几十年中,声子工程在微波频率范围内取得了显著进展,推动了微波声学滤波器、声光调制器和量子信息处理中量子比特的转换。然而,随着科学技术的发展和需求的增加,太赫兹频率下的声子工程成为了一个备受关注的领域。太赫兹频率的声子工程不仅有望带来更高速度和更大带宽的声学技术,还能够在更高温度下实现单声子量子态,同时对于非金属固体中的热传导也具有重要意义。

太赫兹频率(约为6 THz)下的声子工程存在着诸多挑战,主要包括在亚纳米尺度下实现精确的材料控制和在这一频段有效声子耦合的困难。由于太赫兹频率下的声子波长约为3 nm,要生成和操控这些相干声子需要超高精度的材料工程技术。此外,宽带检测太赫兹声子不仅需要超快的时间响应,还需对纳米厚度材料中的振动具有高度敏感性。

为了解决这些挑战,美国加利福尼亚大学伯克利分校王枫教授团队依托范德瓦尔斯异质结构,精确集成了原子薄层,利用几层石墨烯作为超宽带声子换能器,成功实现了高达3 THz频谱内容的太赫兹声子的高效产生。同时,利用单层WSe2作为敏感传感器,通过激子-声子耦合和强光-物质相互作用,实现了对太赫兹声子的高保真度检测。通过在单个异质结构中结合这些能力,并检测对入射机械波的响应,作者开展了太赫兹声子光谱学,类似于传统光谱学中对电磁波响应的检测。

特别地,本研究还展示了单层WSe2嵌入六方氮化硼中能够有效阻挡太赫兹声子传输的能力,通过量化分析确定了异质界面处的力常数,从而深入理解了这些结构在太赫兹频率下声子传播的特性。这些成果为超宽带声学滤波器和调制器的实现提供了新的技术路径,同时也为热工程中结构化材料的设计提供了新的思路和方法。

仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!

科学亮点

(1)实验首次通过精确集成原子薄层在范德瓦尔斯异质结构中,研究团队使用几层石墨烯作为超宽带声子换能器,并利用单层WSe2作为高灵敏度的声子传感器。


(2)实验通过以下几个关键点取得了突破性的结果:

首次展示了几层石墨能够高效转换飞秒近红外脉冲为高达3 THz的宽带声子脉冲。

单层WSe2显示出优异的激子-声子耦合和强光-物质相互作用,实现了对太赫兹声子的高保真度检测。

利用合适设计的范德瓦尔斯异质结构堆叠,成功实现了对太赫兹声子的灵活操控和高品质因子声子腔的构建。

单层WSe2嵌入六方氮化硼中有效阻挡了太赫兹声子的传输,同时量化了异质界面处的力常数和声子在材料中的传播速度。

科学图文


仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!

图1: 具有范德瓦尔斯异质结构的太赫兹声子谱。


仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!

图2:在六方氮化硼hexagonal boron nitridehBN中,声子传播速度的测定。

仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!

图3:太赫兹声子腔和法布里-珀罗模式。

仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!

图4: 太赫兹反射和透射光谱,以及一维质量-弹簧模型模拟。


科学结论

本文利用范德瓦尔斯异质结构实现太赫兹频率下声子的高效生成、检测和操控。通过精确控制原子薄层的集成,作者展示了几层石墨烯作为宽带声子换能器和单层WSe2作为高灵敏度传感器的效果。这不仅为超快声学控制和量子声子操作提供了新的技术途径,还为新型热材料设计带来了可能性。本文揭示了太赫兹声子的特殊物理性质,如超短波长、大能量带宽和高Q值,这些性质为声子布里渊区的控制提供了全新视角。

此外,利用太赫兹声子进行声学测距和声光效应不仅可能实现对亚纳米级界面的高分辨率探测,还能在极紫外和X射线波段上实现声学控制。这些发现不仅在基础科学上有重要意义,还为开发高性能声学器件、声子超材料以及人造热绝缘体提供了理论和实验基础。

原文详情:Yoon, Y., Lu, Z., Uzundal, C. et al. Terahertz phonon engineering with van der Waals heterostructures. Nature (2024). https://doi.org/10.1038/s41586-024-07604-9



来源于:仪器信息网

打开APP,掌握第一手行业动态
打赏
点赞

近期会议

更多

热门评论

新闻专题

更多推荐

写评论…
0

科学背景】

在过去几十年中,声子工程在微波频率范围内取得了显著进展,推动了微波声学滤波器、声光调制器和量子信息处理中量子比特的转换。然而,随着科学技术的发展和需求的增加,太赫兹频率下的声子工程成为了一个备受关注的领域。太赫兹频率的声子工程不仅有望带来更高速度和更大带宽的声学技术,还能够在更高温度下实现单声子量子态,同时对于非金属固体中的热传导也具有重要意义。

太赫兹频率(约为6 THz)下的声子工程存在着诸多挑战,主要包括在亚纳米尺度下实现精确的材料控制和在这一频段有效声子耦合的困难。由于太赫兹频率下的声子波长约为3 nm,要生成和操控这些相干声子需要超高精度的材料工程技术。此外,宽带检测太赫兹声子不仅需要超快的时间响应,还需对纳米厚度材料中的振动具有高度敏感性。

为了解决这些挑战,美国加利福尼亚大学伯克利分校王枫教授团队依托范德瓦尔斯异质结构,精确集成了原子薄层,利用几层石墨烯作为超宽带声子换能器,成功实现了高达3 THz频谱内容的太赫兹声子的高效产生。同时,利用单层WSe2作为敏感传感器,通过激子-声子耦合和强光-物质相互作用,实现了对太赫兹声子的高保真度检测。通过在单个异质结构中结合这些能力,并检测对入射机械波的响应,作者开展了太赫兹声子光谱学,类似于传统光谱学中对电磁波响应的检测。

特别地,本研究还展示了单层WSe2嵌入六方氮化硼中能够有效阻挡太赫兹声子传输的能力,通过量化分析确定了异质界面处的力常数,从而深入理解了这些结构在太赫兹频率下声子传播的特性。这些成果为超宽带声学滤波器和调制器的实现提供了新的技术路径,同时也为热工程中结构化材料的设计提供了新的思路和方法。

仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!

科学亮点

(1)实验首次通过精确集成原子薄层在范德瓦尔斯异质结构中,研究团队使用几层石墨烯作为超宽带声子换能器,并利用单层WSe2作为高灵敏度的声子传感器。


(2)实验通过以下几个关键点取得了突破性的结果:

首次展示了几层石墨能够高效转换飞秒近红外脉冲为高达3 THz的宽带声子脉冲。

单层WSe2显示出优异的激子-声子耦合和强光-物质相互作用,实现了对太赫兹声子的高保真度检测。

利用合适设计的范德瓦尔斯异质结构堆叠,成功实现了对太赫兹声子的灵活操控和高品质因子声子腔的构建。

单层WSe2嵌入六方氮化硼中有效阻挡了太赫兹声子的传输,同时量化了异质界面处的力常数和声子在材料中的传播速度。

科学图文


仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!

图1: 具有范德瓦尔斯异质结构的太赫兹声子谱。


仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!

图2:在六方氮化硼hexagonal boron nitridehBN中,声子传播速度的测定。

仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!

图3:太赫兹声子腔和法布里-珀罗模式。

仪器情报,科学家首次发现了高达3 THz频谱的太赫兹声子超材料!

图4: 太赫兹反射和透射光谱,以及一维质量-弹簧模型模拟。


科学结论

本文利用范德瓦尔斯异质结构实现太赫兹频率下声子的高效生成、检测和操控。通过精确控制原子薄层的集成,作者展示了几层石墨烯作为宽带声子换能器和单层WSe2作为高灵敏度传感器的效果。这不仅为超快声学控制和量子声子操作提供了新的技术途径,还为新型热材料设计带来了可能性。本文揭示了太赫兹声子的特殊物理性质,如超短波长、大能量带宽和高Q值,这些性质为声子布里渊区的控制提供了全新视角。

此外,利用太赫兹声子进行声学测距和声光效应不仅可能实现对亚纳米级界面的高分辨率探测,还能在极紫外和X射线波段上实现声学控制。这些发现不仅在基础科学上有重要意义,还为开发高性能声学器件、声子超材料以及人造热绝缘体提供了理论和实验基础。

原文详情:Yoon, Y., Lu, Z., Uzundal, C. et al. Terahertz phonon engineering with van der Waals heterostructures. Nature (2024). https://doi.org/10.1038/s41586-024-07604-9