仪器信息网APP
选仪器、听讲座、看资讯

仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!

导读:本文揭示了非均匀应变对热传输的重要影响,并提供了对功能器件进行应变工程设计的价值。通过深入探究应变梯度对声子传输的影响,作者拓展了对材料热传输机制的理解,为开发新型高效热管理技术提供了新思路。

科学背景】

随着纳米技术的迅猛发展,纳米材料在各种高性能器件中的应用引起了广泛关注。纳米尺度结构可以产生极端应变,从而实现前所未有的材料特性,例如定制的电子带隙、提高的超导温度和增强的电催化活性。通过应变工程对材料的物理化学性质进行调控已成为一个重要的研究方向。然而,尽管对均匀应变对热流影响的研究已有不少进展,非均匀应变的影响却由于界面和缺陷的共存而未得到充分研究和理解。

应变工程是通过机械变形引入应力,从而调节材料的电子、光学和热学等性质的重要方法。在均匀应变条件下,材料的性质变化相对容易预测和控制。然而,实际应用中,材料通常处于非均匀应变状态,这种应变状态下的材料特性却复杂得多,尤其是在热传导方面,非均匀应变的影响尚未被系统地研究和理解。这一知识空白阻碍了高性能纳米器件的设计与优化,因为热管理是提高器件效率和寿命的关键瓶颈。

为了探索非均匀应变对热传导的影响,北京大学的杨林&杜进隆&高鹏团队联合提出了一种通过弯曲单个硅纳米带(SiNRs)来引入非均匀应变的新方法,并测量了其热传导性能。硅纳米带是一种重要的半导体材料,在纳米电子学和光电子学中具有广泛的应用前景。通过在定制的微设备上弯曲单个硅纳米带,引入了精确控制的应变梯度,同时使用电子能量损失光谱(EELS)在扫描透射电子显微镜(STEM)中以亚纳米分辨率表征局部振动光谱。

结果显示,应变梯度为每纳米0.112%时,硅纳米带的热导率显著降低34 ± 5%,这与均匀应变下几乎恒定的热导率形成鲜明对比。通过直接测量局部声子模式并将其与纳米级应变梯度相关联,研究揭示了弯曲引起的晶格应变梯度显著改变了振动状态并展宽了声子光谱。这种声子光谱展宽效应增强了声子散射,显著阻碍了热传导。

仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!

科学图文

为了研究非均匀应变对硅纳米带热传导的影响,研究者在图1a展示了不同应变条件下热导率(κ)的变化。均匀应变下的硅块和硅纳米线在实验测量(实心符号)和理论模型(空心符号)下的κ变化几乎保持不变,而弯曲硅纳米带的测量数据显示随着应变增加,κ急剧下降,这种变化在应变达到6%时尤为明显。这表明非均匀应变对热传导的影响远大于均匀应变。图1b是悬浮微桥设备的示意图,展示了弯曲硅纳米带如何放置在桥的间隙上。放大的视图显示了由于非均匀应变引起的晶格变形情况。通过这种实验设计,研究者能够在不引入界面和缺陷等其他复杂因素的情况下,精确施加非均匀应变并测量其对热传导的影响。

图1c是弯曲硅纳米带的高分辨率透射电子显微镜(HRTEM)图像,插图显示了沿[110]轴的选定区域电子衍射图,验证了硅纳米带的单晶结构。这保证了实验结果的可靠性和可重复性。图1d和1e展示了在最大应变0.65%(图1d)和1.23%(图1e)下,无弯曲的两个弯曲硅纳米带的扫描电子显微镜(SEM)图像。计算的应变轮廓叠加在SEM图像上,以可视化应变分布。应变分布图显示,应变主要集中在纳米带的弯曲顶点附近,这进一步证实了实验中应变梯度的存在和影响。通过这些图像和数据,研究者表明非均匀应变能够显著影响热传导特性,并揭示了应变梯度下晶格动力学的新机制。

仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!

图1:Si中非均匀应变对热输运的显著抑制。

在图2中,研究者首先比较了无应力的SiNRs和弯曲SiNRs的热导率(κ),以理解非均匀应变对声子传输的影响。他们观察到弯曲SiNRs的κ明显低于无应力的SiNRs,并且κ的降低随着εmax的增加而增加。具体而言,对于两个弯曲SiNRs,随着最大主应变εmax的增加,其κ的降幅也逐渐增大。在300 K下,εmax为0.65%的弯曲SiNR no. 1的κ降低了4.2%,而εmax为1.23%的弯曲SiNR no. 2的κ降低了13.1%。为了进一步增加应变梯度并增强应变对声子传输的影响,研究者还制备了带有拐点的弯曲SiNRs,并对其进行了测量。相较于无应力的带有拐点的SiNRs,拐点形态导致了更大的εmax,从而进一步降低了κ。在300 K下,εmax为4.77%的带有拐点的SiNR的κ降低了34±5%,随着温度降至50 K,其降幅进一步增加至43±6%。这些结果表明,在中等应变梯度下,非均匀应变可以显著抑制热传输,从而为纳米材料的热管理提供了新的思路和方法。

仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!

图2. 弯曲Si纳米带的温度依赖性κ。

图3进一步研究了应变对声子传输的影响,通过直接测量弯曲SiNRs的局部声子谱和表征应变梯度沿着应变梯度的演变。研究者利用STEM-EELS技术获得了高空间和能量分辨率的声子谱数据,这为研究非均匀应变条件下的声子传输提供了直接证据。图中展示了不同应变状态下横向声学和横向光学模式的局部振动谱,结果显示,横向声学模式在从压缩到拉伸应变时表现出蓝移,而横向光学模式则显示出红移。这一观察结果与理论计算相吻合,并且显示出非均匀应变导致的晶格畸变对声子谱的影响。此外,研究者还对带有拐点的SiNR进行了测量,并观察到类似的结果。这些实验结果揭示了非均匀应变对声子传输的影响机制,为进一步理解纳米尺度材料的热传输提供了重要线索。


仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!

图3. 空间解析应变调制声子模式。

声子谱展宽效应是指静态分布的晶格应变引起声子频率在给定波矢处的展宽,导致声子散射速率增强。图4a是声子色散关系的示意图,表明在均匀应变情况下存在单一的关系线,而在非均匀应变情况下,由于晶格应变梯度的存在,声子色散关系被扰动,呈现出频率分布。图4b左侧展示了Si的声子色散计算结果,不同应变状态下的声子色散关系。而右侧展示了在给定应变梯度下每个声子模式的应变梯度诱导声子散射率。这一模拟结果显示,随着应变梯度的增加,声子频率分布变宽,从而促进了声子的散射。声子谱展宽效应提高了声子频率的多样性,使得更多声子频率参与到声子-声子散射中,导致了更快的声子弛豫速率和更短的声子寿命。通过模拟计算,研究者还验证了实验结果中观察到的κ减小现象与声子谱展宽效应的关联。因此,图4提供了关于非均匀应变对热传输的基本机制的重要见解,进一步加深了对于材料中声子传输的理解。

仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!

图4. 非均匀应变诱导声子谱展宽的建模。

科学结论

本文揭示了非均匀应变对热传输的重要影响,并提供了对功能器件进行应变工程设计的价值。通过深入探究应变梯度对声子传输的影响,作者拓展了对材料热传输机制的理解,为开发新型高效热管理技术提供了新思路。特别是,在探索了非均匀应变如何影响声子传输方面,作者不仅揭示了新的声子散射机制,还发现了在材料设计中利用应变工程实现功能调控的潜在机会。

这项研究为设计和优化热电器件、热管理系统和热控制器件提供了新的思路和方向。通过结合实验和理论模拟,作者不仅扩展了对声子传输的认识,还为未来材料科学和器件工程领域的发展提供了重要的科学基础。

原文详情:Yang, L., Yue, S., Tao, Y. et al. Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain. Nature (2024). https://doi.org/10.1038/s41586-024-07390-4



来源于:仪器信息网

打开APP,掌握第一手行业动态
打赏
点赞

近期会议

更多

热门评论

新闻专题

更多推荐

写评论…
0

科学背景】

随着纳米技术的迅猛发展,纳米材料在各种高性能器件中的应用引起了广泛关注。纳米尺度结构可以产生极端应变,从而实现前所未有的材料特性,例如定制的电子带隙、提高的超导温度和增强的电催化活性。通过应变工程对材料的物理化学性质进行调控已成为一个重要的研究方向。然而,尽管对均匀应变对热流影响的研究已有不少进展,非均匀应变的影响却由于界面和缺陷的共存而未得到充分研究和理解。

应变工程是通过机械变形引入应力,从而调节材料的电子、光学和热学等性质的重要方法。在均匀应变条件下,材料的性质变化相对容易预测和控制。然而,实际应用中,材料通常处于非均匀应变状态,这种应变状态下的材料特性却复杂得多,尤其是在热传导方面,非均匀应变的影响尚未被系统地研究和理解。这一知识空白阻碍了高性能纳米器件的设计与优化,因为热管理是提高器件效率和寿命的关键瓶颈。

为了探索非均匀应变对热传导的影响,北京大学的杨林&杜进隆&高鹏团队联合提出了一种通过弯曲单个硅纳米带(SiNRs)来引入非均匀应变的新方法,并测量了其热传导性能。硅纳米带是一种重要的半导体材料,在纳米电子学和光电子学中具有广泛的应用前景。通过在定制的微设备上弯曲单个硅纳米带,引入了精确控制的应变梯度,同时使用电子能量损失光谱(EELS)在扫描透射电子显微镜(STEM)中以亚纳米分辨率表征局部振动光谱。

结果显示,应变梯度为每纳米0.112%时,硅纳米带的热导率显著降低34 ± 5%,这与均匀应变下几乎恒定的热导率形成鲜明对比。通过直接测量局部声子模式并将其与纳米级应变梯度相关联,研究揭示了弯曲引起的晶格应变梯度显著改变了振动状态并展宽了声子光谱。这种声子光谱展宽效应增强了声子散射,显著阻碍了热传导。

仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!

科学图文

为了研究非均匀应变对硅纳米带热传导的影响,研究者在图1a展示了不同应变条件下热导率(κ)的变化。均匀应变下的硅块和硅纳米线在实验测量(实心符号)和理论模型(空心符号)下的κ变化几乎保持不变,而弯曲硅纳米带的测量数据显示随着应变增加,κ急剧下降,这种变化在应变达到6%时尤为明显。这表明非均匀应变对热传导的影响远大于均匀应变。图1b是悬浮微桥设备的示意图,展示了弯曲硅纳米带如何放置在桥的间隙上。放大的视图显示了由于非均匀应变引起的晶格变形情况。通过这种实验设计,研究者能够在不引入界面和缺陷等其他复杂因素的情况下,精确施加非均匀应变并测量其对热传导的影响。

图1c是弯曲硅纳米带的高分辨率透射电子显微镜(HRTEM)图像,插图显示了沿[110]轴的选定区域电子衍射图,验证了硅纳米带的单晶结构。这保证了实验结果的可靠性和可重复性。图1d和1e展示了在最大应变0.65%(图1d)和1.23%(图1e)下,无弯曲的两个弯曲硅纳米带的扫描电子显微镜(SEM)图像。计算的应变轮廓叠加在SEM图像上,以可视化应变分布。应变分布图显示,应变主要集中在纳米带的弯曲顶点附近,这进一步证实了实验中应变梯度的存在和影响。通过这些图像和数据,研究者表明非均匀应变能够显著影响热传导特性,并揭示了应变梯度下晶格动力学的新机制。

仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!

图1:Si中非均匀应变对热输运的显著抑制。

在图2中,研究者首先比较了无应力的SiNRs和弯曲SiNRs的热导率(κ),以理解非均匀应变对声子传输的影响。他们观察到弯曲SiNRs的κ明显低于无应力的SiNRs,并且κ的降低随着εmax的增加而增加。具体而言,对于两个弯曲SiNRs,随着最大主应变εmax的增加,其κ的降幅也逐渐增大。在300 K下,εmax为0.65%的弯曲SiNR no. 1的κ降低了4.2%,而εmax为1.23%的弯曲SiNR no. 2的κ降低了13.1%。为了进一步增加应变梯度并增强应变对声子传输的影响,研究者还制备了带有拐点的弯曲SiNRs,并对其进行了测量。相较于无应力的带有拐点的SiNRs,拐点形态导致了更大的εmax,从而进一步降低了κ。在300 K下,εmax为4.77%的带有拐点的SiNR的κ降低了34±5%,随着温度降至50 K,其降幅进一步增加至43±6%。这些结果表明,在中等应变梯度下,非均匀应变可以显著抑制热传输,从而为纳米材料的热管理提供了新的思路和方法。

仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!

图2. 弯曲Si纳米带的温度依赖性κ。

图3进一步研究了应变对声子传输的影响,通过直接测量弯曲SiNRs的局部声子谱和表征应变梯度沿着应变梯度的演变。研究者利用STEM-EELS技术获得了高空间和能量分辨率的声子谱数据,这为研究非均匀应变条件下的声子传输提供了直接证据。图中展示了不同应变状态下横向声学和横向光学模式的局部振动谱,结果显示,横向声学模式在从压缩到拉伸应变时表现出蓝移,而横向光学模式则显示出红移。这一观察结果与理论计算相吻合,并且显示出非均匀应变导致的晶格畸变对声子谱的影响。此外,研究者还对带有拐点的SiNR进行了测量,并观察到类似的结果。这些实验结果揭示了非均匀应变对声子传输的影响机制,为进一步理解纳米尺度材料的热传输提供了重要线索。


仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!

图3. 空间解析应变调制声子模式。

声子谱展宽效应是指静态分布的晶格应变引起声子频率在给定波矢处的展宽,导致声子散射速率增强。图4a是声子色散关系的示意图,表明在均匀应变情况下存在单一的关系线,而在非均匀应变情况下,由于晶格应变梯度的存在,声子色散关系被扰动,呈现出频率分布。图4b左侧展示了Si的声子色散计算结果,不同应变状态下的声子色散关系。而右侧展示了在给定应变梯度下每个声子模式的应变梯度诱导声子散射率。这一模拟结果显示,随着应变梯度的增加,声子频率分布变宽,从而促进了声子的散射。声子谱展宽效应提高了声子频率的多样性,使得更多声子频率参与到声子-声子散射中,导致了更快的声子弛豫速率和更短的声子寿命。通过模拟计算,研究者还验证了实验结果中观察到的κ减小现象与声子谱展宽效应的关联。因此,图4提供了关于非均匀应变对热传输的基本机制的重要见解,进一步加深了对于材料中声子传输的理解。

仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!

图4. 非均匀应变诱导声子谱展宽的建模。

科学结论

本文揭示了非均匀应变对热传输的重要影响,并提供了对功能器件进行应变工程设计的价值。通过深入探究应变梯度对声子传输的影响,作者拓展了对材料热传输机制的理解,为开发新型高效热管理技术提供了新思路。特别是,在探索了非均匀应变如何影响声子传输方面,作者不仅揭示了新的声子散射机制,还发现了在材料设计中利用应变工程实现功能调控的潜在机会。

这项研究为设计和优化热电器件、热管理系统和热控制器件提供了新的思路和方向。通过结合实验和理论模拟,作者不仅扩展了对声子传输的认识,还为未来材料科学和器件工程领域的发展提供了重要的科学基础。

原文详情:Yang, L., Yue, S., Tao, Y. et al. Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain. Nature (2024). https://doi.org/10.1038/s41586-024-07390-4