正电子谱仪

仪器信息网正电子谱仪专题为您提供2024年最新正电子谱仪价格报价、厂家品牌的相关信息, 包括正电子谱仪参数、型号等,不管是国产,还是进口品牌的正电子谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合正电子谱仪相关的耗材配件、试剂标物,还有正电子谱仪相关的最新资讯、资料,以及正电子谱仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

正电子谱仪相关的厂商

  • 西安宇正电子科技有限公司从事传感器、变送器及配套仪器仪表和工控系统生产和销售的技术型企业。自公司成立以来,公司以加强改革生产技术为保障,以市场需求为导向,以服务客户为遵旨,以不断学习、创新来赢得市场竞争力为发展战略。  公司主要生产经营以传感器、变送器为主导产品,配套显示仪表、信号采集系统和无线传输系统等。传感器、变送器涉及的种类包括压力、液位、称重、温湿度、位移、流量、霍尔、光电、编码器等,现已广泛应用于各行各业的自动化测量控制领域。这些产品的功能强大,性能稳定可靠,品质优良,制造工艺精湛,严格遵照国家器具制造标准要求。  在公司不断发展、创新中,根据不同工业场合下对信号采集和测量控制的需求,公司配套开发出与这些传感器、变送器相匹配的显示仪表、记录仪表。以YZ-4000多通道无纸记录仪为代表,它借助 485 通讯接口与计算机相连,可以同时采集多路不同传感器信号(如压力、温度、流量等),这些输入信号一般为4~20mA电流 , 采集到信号后,计算机上的软件界面就可实时以曲线、数据表格形式显示和保存被测物理量的变化,界面直观,易于观察,便于后期的数据处理。  公司以“技术创新、诚信为本”的原则,注重企业形象,以良好的社会效益和售后服务在广大客户中赢得了很高的信誉,已在国内拥有长期稳定合作的优质客户群。公司秉承“诚信为本、质量为魂,用技术和服务为客户创造价值”的宗旨,对所经营的所有产品提供技术支持和完善的售后服务,真正做到“质量过硬,用户满意”!  公司时刻以发展为第一要务,服务客户同步,不断进行生产技术、销售模式和管理机制的革新,丰富企业文化,建立员工激励制度,营业额连续多年高百分比持续增长,为企业今后的更快更好地发展打下了坚实的基础。西安宇正电子也真诚希望与国内外同行一道,携手合作,共同发展,创造未来!
    留言咨询
  • 【公司简介】 郑州云正电子科技有限公司是集产品研发、生产的高新技术科技企业。公司致力于智能互联健康体检设备(身高体重秤、多功能体检机、健康一体机)研发与制造,在健康体检、健康综合管理、云健康等领域拥有多年产品研发及客户合作经验。公司自主研发的智能互联设备,已获得多项专利。产品已经出口20多个国家和地区。我们将不断努力为客户提供优质的产品及技术支持。云正科技愿与社会各界合作,竭诚为您提供品质的产品及服务。
    留言咨询
  • 济南晶正电子科技有限公司成立于2010年, 坐落于济南市综合保税区,是一家致力于纳微米级厚度光电、压电单晶薄膜材料研发、生产及销售为一体的高新技术企业。公司拥有产业化生产基地,研发团队由海归学者领军,凭借在晶体材料和半导体领域丰富的经验,在国际上率先开发出并产业化300-900纳米厚度铌酸锂单晶薄膜材料产品。晶正产品具有完全自主知识产权,并拥有多项相关技术专利。公司产品涵盖多种规格高技术难度、高规格晶体薄膜材料,可用于制作高性能调制器、滤波器、探测器、晶振及高密度信息存储器件等,在光电、压电、铁电、太赫兹、红外探测等领域具有广泛的发展前景和显著的应用优势,能够带来巨大经济效益和社会效益。
    留言咨询

正电子谱仪相关的仪器

  • 正电子湮没寿命谱仪 400-860-5168转3524
    正电子湮没寿命谱仪:又名高分子材料分析仪 1930年Dirac从理论上预言了正电子的存在和1932年Anderson在观察宇宙线中发现了正电子之后,揭开了研究物质和反物质相互作用的序幕。1951年Deutsch发现了正电子和电子构成的束缚态—正电子素的存在更加深了对正电子物理的研究工作,同时,也开展了许多应用研究工作,形成了一门独立的课题正电子湮没谱学。 随着对正电子和正电子素及其与物质相互作用特性的深入了解,使正电子湮没技术在原子物理、分子物理、固态物理、表面物理、化学及生物学、医学等领域得到广泛应用,并取得独特的研究成果。它在诸如检验量子电动力学基本理论、研究弱相互作用、基本对称性及天体物理等基础科学中也发挥了重要作用。同时,随着人们对正电子湮没技术方法学上研究的深入进展,使这一门引人注目的新兴课题得到更快的发展。 实验用放射源22Na,其衰变纲图如右图所示。该源发生 衰变放出一个正电子后几乎同时(仅迟3 ps左右)还发射一个能量为1.28 MeV的 光子。因此,测量1.28 MeV的 光子与正电子湮没后放出的 光子(0.511 MeV)之间的时间间隔,就可得到正电子寿命。对每个湮没事件都可测得湮没过程所需时间。对足够多的湮没事件(~106个)进行统计,就可得到一个正电子湮没寿命谱。系统集成测试报告参数:系统时间分辨率(用50μCi 60Co源测量):保证值:≤ 200ps;典型值:≤ 180ps
    留言咨询
  • 正电子湮没寿命谱仪/正电子寿命皮秒定时系统positron annihilation lifetime产品简介 放射源发射出高能正电子射入物质中后,首先在极短时间内(约10-12ps以下)通过一系列非弹性碰撞减速,损失绝大部分能量至热能,这一过程称为注入与热化。热化后的正电子将在样品中进行无规扩散热运动,晶格中空位、位错等缺陷往往带有等效负电荷,由于库仑引力 正电子容易被这些缺陷捕获而停止扩散,并将在物质内部与电子发生湮没。从正电子射入物质到发生湮没所经历的时间一般称为正电子寿命。由于湮没是随机的,正电子湮没寿命只能从大量湮没事件统计得出。 正电子寿命谱仪性能特点正电子湮没技术对材料的结构相变和原子尺度的缺陷极为敏感,已经成为研究物质微观结构和电子结构的无损的探测分析手段。正电子湮没作为微观分析技术一种,其主要研究范围在于针对原子尺寸的微结构和缺陷。与通常的微观结构分析如STM、SEM、TEM等技术相比,正电子湮没技术不仅可以提供缺陷的尺寸信息、相变信息,而且可以提供缺陷随深度分布的信息,能够深入的分析材料的电子结构以及正电子湮没处的化学环境等,弥补了其他微观探测技术的不足,具有不可替代性。 应用领域1.金属材料的形变、疲劳、淬火、辐照、掺杂、氢损伤等在材料中造成的空位、位错、空位团等缺陷以及研究这些缺陷的退火效应。2.材料中相变过程,如合金中的沉淀现象、马氏体相变、非晶态材料中的晶化过程、离子固体中的相变、液晶及其他高分子材料,聚合物中的相变,凝聚态物理等3.研究固体的能带结构、费米面、空位形成能等4.研究材料的表面和表层结构和缺陷。 技术优势1.他对样品材料的种类几乎没有什么限制,可以是固体、液体或气体,可以是金属、半导体、绝缘体或高分子材料,可以是单晶、多晶或液晶等,适用于凡是与材料的电子密度及动量有关的问题。2.对样品温度没有限制,可以跨越材料的熔点或凝固点,而信息又是通过贯穿能力很强的γ射线携带而来,因此可以对样品做高低温的动态原位测量,测量时可施加电场、磁场、高气压、真空等特殊环境。3.研究样品中原子尺度的缺陷,如晶格中缺少一个或多个原子的缺陷,这些缺陷在电镜、X衍射中研究颇为困难。技术参数1.时间分辨率=120ps2.计数率1000cps,可自动计数3.自动能窗调节4.高压漂移,自动修正5.数据文件无需修改格式,可直接解谱6.小巧台式,安装环境要求低此外可提供正电子湮没辐射角关联、多普勒展宽谱、慢化正电子谱仪。
    留言咨询
  • 正电子湮没寿命谱仪1.正电子湮没寿命谱仪应用于材料科学领域中半导体材料类缺陷的测试。这是一套测量设备和电源一体化的正电子湮没寿命谱仪。在寿命测试中,使用3GSPS来测算寿命时间,这是由两种BaF2 的闪烁体产生的高速脉冲信号所导入的。在多普勒宽谱(CDB)中,二维的柱图是由两个锗半导体探测器的波高分布特征值所计算出的。此外,这套正电子湮没寿命谱仪也可以用AMOC模式来测试相关材料的寿命时间及电子动量密度分布2.技术特征在寿命测试中,使用3GSPS来测算寿命时间,这是由两种BaF2 的闪烁体产生的高速脉冲信号所导入的。在多普勒宽谱(CDB)中,二维的柱图是由两个锗半导体探测器的波高分布特征值所计算出的。此外,这套测试设备也可以用AMOC模式来测试相关材料的寿命时间及电子动量密度分布3.技术原理时间分析光谱计、DSP多通道分析模块、前置放大器电源模块、高压电源模块、供电支架、BaF2闪烁体探测器、Ge半导体探测器、计算机PC、交换中心(每个模块PC和局域网电缆连接)4.应用案例四川大学中科院高能物理研究所日本各大高校研究所
    留言咨询

正电子谱仪相关的资讯

  • 世界首台数字化正电子发射断层成像仪问世
    记者12月10日从武汉光电国家实验室(筹)获悉,华中科技大学教授谢庆国带领科研团队,成功研发出世界首台数字化正电子发射断层成像仪(PET)。利用该数字PET追踪到的肿瘤,仅为目前商用PET能够发现的最小肿瘤的二十分之一,有助于更早、更灵敏地发现肿瘤、诊断癌症。   谢庆国介绍说,首台数字PET已完成了13例肺癌、肝癌、卵巢癌等癌症鼠,16例阿尔茨海默病鼠,30例正常鼠模型的研究。这些研究对仪器性能进行了全面验证,特别是证实了在空间分辨率上的重大突破。   2001年以来,谢庆国带领的医、工、理等13个学科交叉融合的团队,发明了一种“多电压阈值采样方法”,成功获得了足够信息的采集,准确得到了待测量的“信号”,实现了精确的图像重建,进而通过学、研、产的协同创新,完成了从数字PET理论发现,到关键探测器工业化生产,到商业机装配与动物成像试验的整个研发过程。   中国核学会核医学分会理事长、华中科技大学附属协和医院PET中心教授张永学称,分辨率上任何一点进步,在医学上都是革命性突破,对患者都意味着生命的延长,对医生意味着治疗的最佳时机与精准度 数字PET能使PET系统性能提升到一个新境界,可以更早检测和更准确诊断出疾病。   美国芝加哥大学终身教授、PET成像领域知名专家高建民博士认为,谢庆国开创了数字PET的先河,其中最迫切的是将技术转化为产业优势,实现中国尖端医学成像设备的产业升级和跨越式大发展。
  • 2000万!东北师范大学化学学院球差校正电子显微镜(进口)设备采购项目
    项目编号:SYZX2022-290项目名称:东北师范大学化学学院球差校正电子显微镜(进口)设备采购预算金额:2000.0000000 万元(人民币)采购需求:1项目编号:SYZX2022-290。2项目名称:东北师范大学化学学院球差校正电子显微镜(进口)设备采购。3 采购方式:公开招标。4预算金额:274.5万美元(人民币限额2000万元)。5采购需求:一台球差校正电子显微镜(详见招标文件“第五章 项目需求”)。6合同履行期限(供货期):合同签订之日起300日内完成交付、安装及调试。7本项目不接受联合体投标。合同履行期限:合同签订之日起300日内完成交付、安装及调试。本项目( 不接受 )联合体投标。
  • 【自传】像差校正电镜技术先驱之Knut Urban
    p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " 【简介】 /span /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " span style=" font-size: 18px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/d0dc0dbb-1e74-46e2-b64b-1356a6ea1c91.jpg" title=" 图片1.png" alt=" 图片1.png" / /span strong span style=" font-size: 18px " br/ /span /strong /span /p p span style=" color: rgb(0, 112, 192) font-size: 18px " /span /p p style=" text-align: justify text-indent: 2em " Knut Urban,德国物理学家。曾就读于斯图加特大学,并于1972年获得物理学博士学位,之后前往斯图加特的马克斯· 普朗克金属研究所。 /p p style=" text-align: justify text-indent: 2em " 1986年,Knut Urban被任命为德国埃尔兰根-纽伦堡大学材料性能教授,一年后,成为亚琛工业大学实验物理系主任和尤利希奥地利维也纳大学微结构研究所所长。在此期间,Knut Urban与Harald Rose和Maximilian Haider合作获得了第一个像差校正的透射电子显微镜结果,该成果于1998年发表。 /p p style=" text-align: justify text-indent: 2em " 随后, span style=" text-align: justify text-indent: 32px " Knut& nbsp /span Urban致力于将像差校正的透射电子显微镜应用于材料科学,尤其专注于晶格内原子的精确排列与材料物理特性之间的联系。 /p p style=" text-align: justify text-indent: 2em " 2004年,Knut Urban被选为厄恩斯特· 鲁斯卡电子显微镜和光谱学中心的主任之一,自2012年以来,一直是亚琛工业大学的JARA高级教授。 span style=" text-align: justify text-indent: 32px " Knut& nbsp /span Urban已获得多项荣誉,这些奖项包括美国材料研究学会的冯· 希佩尔奖,并与 span style=" text-align: justify text-indent: 32px " Harald& nbsp /span Rose和 span style=" text-align: justify text-indent: 32px " Maximilian& nbsp /span Haider共同获得了沃尔夫物理学奖,本田生态技术奖和BBVA基础科学知识前沿奖。Knut Urban还是包括美国材料研究学会,德国物理学会和日本金属与材料学会在内的多个科学机构的荣誉会员。 /p p style=" text-align: justify text-indent: 2em " 2020年,Knut Urban与Maximilian Haider、Harald Rose、Ondrej L. Krivanek一起获得了科维理纳米科学奖。科维理纳米科学奖评审委员会认为,Knut Urban为首台像差校正常规透射电子显微镜的实现做出了突出贡献。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/noimg/faf1d133-0893-47d3-88dd-7cec59b90830.gif" title=" 1.gif" alt=" 1.gif" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 从左至右:Maximilian Haider, Knut Urban, Harald Rose, Ondrej L. Krivanek /span /p p span style=" color: rgb(127, 127, 127) " br/ /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px " 【 span style=" text-align: justify text-indent: 32px " Knut Urban& nbsp /span 自传】 /span /strong /span strong /strong /p p style=" text-align: justify text-indent: 2em " 我在战后初期的德国斯图加特长大,这个城市因汽车工业和众多中小型工企而闻名。 /p p style=" text-align: justify text-indent: 2em " 我的父亲是一名电气工程师,经营着一家小型电动机公司。在过去的几十年里,父亲的一系列研发成了公司的主要产品。在我的家里,有很多关于科学和技术的思考、阅读和讨论。除了感谢父母的关心,我还感谢他们的一种批判、开放、合作的思维方式,这对我后来的发展非常有益,尤其是在职业上。 /p p style=" text-align: justify text-indent: 2em " 当我还是个小学生的时候,就利用学到的技术和祖父一起建造了我的第一台光学望远镜,这台仪器连接着一台反射望远镜,可用于更进一步的观察。几年后,我成为斯图加特天文台最年轻的成员。这就是我如何从天文学进入物理学的过程。 /p p style=" text-align: justify text-indent: 2em " 高中毕业后,我加入了西门子(Siemens)公司,在电气工程领域做了为期一年的学徒,这是六十年代进入大学学习物理的先决条件。这段时期对我来说很重要,通过与工人们一起学习生产和设计等电子工程技术,不仅让我获得了重要的专业知识,还增强了社交能力。 /p p style=" text-align: justify text-indent: 2em " 随后,我进入斯图加特技术大学(the Technical Univercity of Stuttgart)学习物理。期间,我受到博世(Bosch)公司在半导体领域工作的启发,在大学期间完成了半导体领域的实验文凭论文。在这里,我学到了很多有关低温、半导体的光学特性以及晶格缺陷如何影响半导体的光学特性等知识。这是我进入固态物理学,特别是进入晶体缺陷物理学的过程。 /p p style=" text-align: justify text-indent: 2em " 我的整个职业生涯进一步决定性因素是Alfred Seeger(斯图加特大学固体物理学教授,Max Planck金属研究所所长)对我在低温下塑性变形锗光学性质的研究结果感兴趣,并帮助我完成了博士学位论文。Seeger因在晶体缺陷领域的开拓性工作而享誉国际,并且是当时最灵活变通的固态物理学家之一,他所研究的领域和所使用的实验和理论方法都是非常多样的。 /p p style=" text-align: justify text-indent: 2em " Seeger向他的博士生介绍了具有挑战性的课题,并相信他们会成功。根据他的提议,我不得不跳入冷水中,为Max Planck研究所的新型高压电子显微镜搭建一个物镜台。难点在于,该平台应允许在不影响显微镜分辨率的情况下将样品冷却至液氦温度(-269℃),以便研究金属中的原子晶格缺陷。别的团队尝试了大约十年,都没有成功。用于冷却的沸腾氦的振动和低温的不稳定性破坏了光学分辨率。Seeger为我提供了在柏林的Fritz Haber研究所为Ernst Ruska进行系统设计和建造的机会。(Ruska后来因电子显微镜的研发而获得了诺贝尔奖。) /p p style=" text-align: justify text-indent: 2em " 作为一名彻头彻尾的工程师,Ruska一开始对我这个年轻的物理学家持怀疑态度。但在Siemens和Bosch车间的工作让我为这份高要求的工作做好了准备,几个月后,我联系Ruska进行面试,腋下夹着一大捆图纸走近他时,令他印象深刻。从那时起,他就怀着极大的兴趣关注了我的工作,并向我提供了研究所的所有设施。一个有新的、独立想法的新人可以取得别人所无法接受的突破,这种情况并不少见。 /p p style=" text-align: justify text-indent: 2em " 高压电子显微镜中的氦冷却物装置成为我们多年来直接在高分辨率观察下进行实验的平台。这种显微镜有一个吸引人的优点,即在高电子能量下,可以通过电子-原子位移产生原子缺陷,而在低能量下,可以在任何所需温度下观察它们的二次反应。我自己也得到了一些新的研究结果,其中最重要的就是发现了辐射引起的原子缺陷扩散(由电子缺陷相互作用引起)以及合金中旋节线有序性的证明,这是一种基于特殊晶格对称性的复杂工艺,经过多年的理论讨论,但是从未经过实验证明。 /p p style=" text-align: justify text-indent: 2em " 80年代后期,我离开了Max Planck研究所,成为埃朗根大学材料科学教授。几年后,我搬到了Jü lich研究中心,担任固态科学研究所所长,并兼任亚琛工业大学实验物理教席。在此期间,我开始对准晶体这一新兴领域产生了兴趣,之后不久,Dan Shechtman因其发现获得了诺贝尔奖。 /p p style=" text-align: justify text-indent: 2em " 结合低温和高温原位电子显微镜技术,我首次证明了合金中的准晶体相是由高温时非晶态自行形成(之前认为进入准晶相的唯一途径是从熔体中骤冷),并发表了论文,这篇论文成为我进入准晶体科学家“俱乐部”的“入场券”。 /p p style=" text-align: justify text-indent: 2em " 几年后,当偶然发现其中一张图像中的位错是一种与晶体塑性行为密切相关的晶格缺陷时,我开始对准晶体塑性感兴趣,并在这一领域工作了很多年。位错的发现非常令人兴奋,因为它出乎意料。准晶体是基于六维晶格的,要了解这些晶格缺陷的拓扑结构非常困难。同样复杂的是,在电子显微镜中对这些缺陷进行定量表征的对比理论的提出,让我们忙了很长一段时间。另外,位错的观察表明,准晶体材料一般来说很脆,可能会发生塑性变形,我们通过在高压电子显微镜下进行原位实验证明了这一点。 /p p style=" text-align: justify text-indent: 2em " 80年代是固态物理学和材料科学令人振奋的年代,尤其是氧化物材料高温超导性的发现以及扫描隧道显微镜(STM)的发明。我们从Alfred Seeger那里学到的很多新固态物理学内容,以及他为我们提供的例证,伴随了我的整个职业生涯中。当时,我刚刚接管了德国国家研究中心的一个研究所,该研究所拥有合理的设备和人员资源,于是我就全身心地投入了另外两个工作组的建设,一个是STM,另一个是氧化物超导体的研究。 /p p style=" text-align: justify text-indent: 2em " STM最初是作为表面物理技术引入的,由于我对晶格缺陷感兴趣,我们建立了一个新的STM,成为第一个研究半导体中单掺杂原子以及其电场、扩散和在器件pn结中行为的团队;而先进半导体技术,则是一个非常有趣的研究。对于氧化物超导体,有两件事被证明是对我们有利的。为了实现自己的想法,我们建造了用于沉积超导薄膜及器件的设施,并使用我们最先进的电子显微镜直接检查膜沉积结果的质量并对其不断改进。我们在Josephson装置和高频性能方面突破了国际记录,我们的超导微波谐振器被用于国际通信卫星项目。 /p p style=" text-align: justify text-indent: 2em " 当时的电子显微镜比以往任何时候都功能强大,我们为能够在80年代末投入使用新仪器而感到自豪,它们在200 kV时的分辨率约2.4埃,300 kV时的分辨率约1.7埃,这非常出色。另一方面,它们仍未达到原子尺寸,这在包括我在内的固态物理学家看来像“圣杯”一样。 /p p style=" text-align: justify text-indent: 2em " 1989年9月的“DreiLä ndertagung”(奥地利、德国和瑞士的电子显微镜学会四年一次的传统会议)上,Maximilian Haider和Harald Rose告诉我,有一个项目将决定性地改变我们未来的职业生涯,当然也将改变电子显微镜的“职业生涯”,这是一个大事件。Harald Rose刚刚完成了一项新的像差校正电子显微镜物镜的理论研究,保守估计,在目前的电子技术水平下,这种物镜有可能实现。几个月后,我们同意向大众基金会提交一份联合申请。目的是在海德堡欧洲分子生物学实验室的Haider实验室研制新的半平面校正透镜(即现在的“Rose 校正透镜”),并实现将其应用到经过适当改进的商用常规透射电子显微镜(CTEM)中。 /p p style=" text-align: justify text-indent: 2em " 由于在CTEM中还必须校正离轴像差,这是比较常见的情况,它自动包括扫描透射电子显微镜(STEM)的校正情况。由于该领域数十年的失败以及行业缺乏兴趣,美国资助机构决定不再资助像差校正电子光学系统的研发,因此全球相应的工作组开始解散。 /p p style=" text-align: justify text-indent: 2em " 大众基金会一般不为纯仪器的研发提供资金,但我们认为我们的项目有机会获得资助。作为一个由专门研究电子光学的理论和实验物理学家以及对不同领域具有研究兴趣的材料学家组成的团队,我们能从材料科学应用的角度来证明此项目的合理性。在经过一次真正的范式改变之后,今天,现在,电子光学中的像差校正问题得到了解决,并且原子副原子材料科学研究成为了我们日常生活的一部分,且几乎不可能使自己回到科学显然没有为原子分辨电子显微镜做准备的那个年代。 /p p style=" text-align: justify text-indent: 2em " 在材料科学即将进入纳米技术的时代,人们非常希望能达到原子范围的尺寸。但是几十年来电子光学无法实现,校正电子透镜像差的问题实在太困难了,这打击了材料科学家认为电子光学将能够帮助他们的信心。因此,最大的问题是说服我的同事——材料学家:我们的理论更好,比之前的尝试有更大的机会能取得突破。 /p p style=" text-align: justify text-indent: 2em " 在这种情况下,我决定在德国以及国外的材料科学的机构中举办多次演讲,并且组织了一些专门的会议来宣传材料科学对原子电光分辨率的需求。后来,我们的提案在最终审核会议上一票险胜,获得了资助。1997年,世界上第一台经过像差校正的透射电子显微镜的分辨率显示超过了1.4aiq(200 kV),几乎是未经校正仪器分辨率的两倍,这使我们能够在锗晶体中显示原子分辨率。 /p p style=" text-align: justify text-indent: 2em " 每个物理学家在大学的前几年都会学到原子世界遵守的量子物理,而这在很多方面与我们在日常生活中习惯的经典物理学有很大不同。所以如果我们想掌握原子尺寸获得的图像,还有很多东西需要学习。与外行人(直观地)看到高分辨率图像时的假设相反,原子不能被直接看到。电子对原子的电场起反应,因此需要特殊的光学操作才能获得图像。我们到底看到了什么,是我们接下来几个月的重点问题。努力最终得到了丰厚的回报,期间,仪器已移至Jü lich,在前人没有想到的特殊的新成像条件下,我们第一次成功地看到了氧化物中的氧原子。 /p p style=" text-align: justify text-indent: 2em " 氧化物正在成为最重要的材料类别之一,但是,由于其低散射能力,之前电子显微镜观测不到氧及其它轻原子,现在,这种情况突然改变了,氧化物化学家们非常热情,我们也已经从事材料中氧的研究许多年了。 /p p style=" text-align: justify text-indent: 2em " 通过原子像差校正电子显微镜解决的第一个重要的材料科学问题是证明了YBaCuO铜链平面中氧原子的顺序,这对高温超导理论非常重要,以前没有人能直接看到这些材料中的氧。此外,我们可以证明且测量BaTiO(和其他钙钛矿)晶格缺陷中氧原子的化学计量,从而解决了氧化物化学领域的一个长期争论。这再次证明了我们材料科学研究团队在这些领域以及电子显微对比理论方面的能力,使我们能够充分利用与电子光学同事同研发的新仪器。从一开始吸引我的是,我们发现通过将定量像差校正电子显微镜和测量与计算机中的量子物理和光学图像模拟相结合,可以测量原子位置和原子位移,且精确度比皮米计还高。这实际上是一个无法想象的维度,它相当于氢原子玻尔直径的百分之一,进入这些微小的维度意味着可以进入大量物理现象发生的领域。此外,显微镜和计算机模拟的结合为我们提供了有关所成像原子化学性质和浓度的分析信息。 /p p style=" text-align: justify text-indent: 2em " 2004年,我当选为德国物理学会主席,该学会是世界上历史最悠久,也是最大的物理学会,拥有超6万名会员。能够为这个协会服务,我一直感到特别的荣幸。该学会有很多非常文明的会长,是值得我们钦佩的人物,但是他们对物理学发展的巨大贡献却是我们所无法超越的。 /p p style=" text-align: justify text-indent: 2em " 科学领域是国际性的,能够遇见各国志同道合的人并跨越国界进行合作,是我的荣幸,我和许多同事也成为了一生挚友。以上这段简短的叙述是我整个科学生涯的摘录,没有提到我在法国巴黎附近的Saclay研究中心,在日本仙台东北大学担任客座教授,以及在中国的学校(清华大学和西安交通大学)多年的工作经历。 /p p br/ /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p a href=" https://www.instrument.com.cn/news/20200608/540683.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Maximilian Haider /span /a /p p a href=" https://www.instrument.com.cn/news/20201104/563818.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Harald Rose /span /a /p p a href=" https://www.instrument.com.cn/news/20201112/564599.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Ondrej L. Krivanek /span /a /p p br/ /p

正电子谱仪相关的方案

正电子谱仪相关的资料

正电子谱仪相关的试剂

正电子谱仪相关的论坛

  • 【求助】关于正电子湮灭谱和Na-22

    关于正电子湮灭谱和Na-22我们新进了一台正电子湮灭谱,根据设备需要我们要使用Na-22作为放射源,此前没有类似设备,没有相关经验,因为涉及放射源所以单位比较谨慎,特来请教!1 Na-22的形态、使用、保存、处理?在正电子湮灭谱中Na-22属于固定使用的放射源还是属于需要在中短期不定期更换的耗材? 如果是耗材,平时Na-22该如何保存,替换下来的Na-22该如何处理?2 在正电子湮灭谱的使用过程中,仪器放置的环境有什么特别要求,,需要如何隔离?希望有正电子湮灭谱使用经验的老师指点一下!谢谢我的QQ 57536786电话 E-mail:57536786@qq.com

  • 【原创】正电子核素生产

    [size=3][font=宋体]与[/font][font=Times New Roman]MRI[/font][font=宋体],[/font][font=Times New Roman]CT[/font][font=宋体]等其他影像设备不同,[/font][font=Times New Roman]PET[/font][font=宋体]是一种高级的医学影像设备,它利用组织中分布的正电子标记的放射性药物所产生的光子信息来获得病变组织的影像及其定量指标。这些放射性药物在体内的转运、代谢、分布和动力学状态通过正电子核素示踪而显示,反映相应组织的生理生化特性,它可使疾病在开始出现症状之前,进行评价和诊断,观察其发展过程,为治疗方案的制定提供客观的依据。[/font][/size][size=3][font=Times New Roman] [/font][font=宋体]正电子放射性药物是实施[/font][font=Times New Roman]PET[/font][font=宋体]显像的先决条件之一,为了满足[/font][font=Times New Roman]PET[/font][font=宋体]的常规临床应用必须选择有效的放射性药物。现在,在许多的临床[/font][font=Times New Roman]PET[/font][font=宋体]中心已开发了许多有价值的正电子示踪剂,并广泛的应用于基础和临床研究。这些正电子示踪剂大多使用[/font][font=Times New Roman][sup]11[/sup]C[/font][font=宋体],[/font][font=Times New Roman][sup]13[/sup]N[/font][font=宋体],[/font][font=Times New Roman][sup]15[/sup]O[/font][font=宋体]和[/font][font=Times New Roman][sup]18[/sup]F[/font][font=宋体]等正电子核素进行标记,由于它们的半衰期很短,因此这些核素必须用小型的回旋加速器适时生产,并在较短的时间内标记合成出适宜的正电子示踪剂进行[/font][font=Times New Roman]PET[/font][font=宋体]显像。[/font][/size][size=3][font=宋体]目前,在全世界的很多[/font][font=Times New Roman]PET[/font][font=宋体]中心已开发了多种正电子示踪剂,并应用于探查血流、氧代谢、葡萄糖代谢、蛋白质合成和神经递质活动等。这些放射性药物必须具备如下的标准:①器官的摄取性,即反映重要的和可鉴定的生理生化过程;②摄取程度,即对疾病、药物、或刺激等所引起的生理或生化改变是敏感的;③进行定量,即能够测量感兴趣区([/font][font=Times New Roman]ROI[/font][font=宋体])的放射性浓度,并与通常使用的示踪剂动力模式一致;④有效性,即安全可靠的合成或由其他[/font][font=Times New Roman]PET[/font][font=宋体]中心供给。[/font][/size][font=宋体]小型医用回旋加速器是[/font][font='Times New Roman']PET[/font][font=宋体]中心的基本配置,它普遍使用质子和氘核两种加速粒子轰击特定的靶物质,生产出以适当化学形式存在的正电子核素。[/font]

  • 丁肇中团队公布AMS成果 正电子可能来自暗物质

    阿尔法磁谱仪项目发布首个实验结果正电子可能来自人们一直寻找的暗物质2013年04月04日 来源: 中国科技网 作者: 魏东 李宁 中国科技网讯 日内瓦时间4月3日下午5时,在欧洲核子中心,由诺贝尔物理奖获得者丁肇中主持的阿尔法磁谱仪(AMS)项目发布了第一个实验结果,已发现40多万个正电子,这些正电子有可能来自脉冲星或人们一直寻找的暗物质。 据介绍,由AMS探测的40多万个正电子,是目前太空中直接观测、分析到的最多的高能量反物质粒子。每一个收集的讯号参数都需要仔细的重建、分类与存档,由数个AMS物理学家小组进行独立的分析,以确保结果精确。 暗物质是源于暗物质粒子的碰撞还是银河系中脉冲星?对此,丁肇中表示,答案在不久将见分晓。他认为,AMS有能力探索新物理,它将在国际空间站长期观测,预计每年记录160亿个宇宙射线信号,并传回地面。 作为安装于太空中的精密粒子探测装置,AMS从2011年5月19日至今,已观测超过311亿个宇宙射线,其能量高达数万亿电子伏特。其中,前18个月的太空实际探测运转中,AMS分析了250亿个初级宇宙射线;确认了680万个电子及其反粒子——正电子的事例。 AMS实验表明,正电子与电子的比率没有显示出空间的各向异性,即高能的正电子不是来自于空间某个特定的方向,此举为新物理现象找到了论据。 AMS项目耗资21亿美元,是上世纪和本世纪初世界上最大的科学计划之一,也是目前唯一被永久安放在国际空间站上具有开创性的大型科学实验。实验过程可能持续15—20年,目的是探测外层空间反物质与暗物质。有16个国家和地区的600余名科学家参与其中。2011年5月16日,AMS由美国“奋进号”航天飞机送入太空。山东大学程林教授带领团队设计完成了在国际空间站上运行的粒子探测装置——阿尔法磁谱仪的热系统,这是由中国制造的唯一大型组件,解决了太空粒子探测的关键工程问题。(记者 魏东 通讯员 李宁) 《科技日报》(2013-4-4 一版)

正电子谱仪相关的耗材

  • 石墨烯薄膜25X25mm正电子发射断层显像板
    增长方法:CVD合成、转移方法:清洁迁移取样法、质量控制:光学显微镜、拉曼光谱、扫描电镜和投射电镜批签,外观(颜色):透明,透明度:97%,外观(形状):薄,覆盖率:95%,石墨烯层数:1,厚度(原理上):0.345毫微米,场效应管电子AI203迁移率:2,000cm2/Vs,场效应管SIO2/SI的电子迁移率:4,000cm2/Vs,表面电阻:170欧姆平方米,晶粒尺寸:约10μm,正电子发射断层显像板厚度:175μm,应用:有机太阳能电池、有机发光二极管、正电子发射断层显像板、氧化铟锡更换、石墨烯研究柔性显示器。
  • 石墨烯薄膜4英寸正电子发射断层显像板
    透明度:97%,外观(形状):薄,覆盖率:95%,石墨烯层数:1,厚度(原理上):0.345毫微米,场效应管电子AI203迁移率:2,000cm2/Vs,场效应管SIO2/SI的电子迁移率:4,000cm2/Vs,表面电阻:170欧姆平方米,晶粒尺寸:约10μm,正电子发射断层显像板厚度:175μm。
  • 石墨烯薄膜10X10mm正电子发射断层显像板
    透明度:97%,外观(形状):薄,覆盖率:95%,石墨烯层数:1,厚度(原理上):0.345毫微米,场效应管电子AI203迁移率:2,000cm2/Vs,场效应管SIO2/SI的电子迁移率:4,000cm2/Vs,表面电阻:170欧姆平方米,晶粒尺寸:约10μm,正电子发射断层显像板厚度:175μm,应用:有机太阳能电池、氧化铟锡更换、石墨烯研究柔性显示器。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制