植物校准计

仪器信息网植物校准计专题为您提供2024年最新植物校准计价格报价、厂家品牌的相关信息, 包括植物校准计参数、型号等,不管是国产,还是进口品牌的植物校准计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合植物校准计相关的耗材配件、试剂标物,还有植物校准计相关的最新资讯、资料,以及植物校准计相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

植物校准计相关的厂商

  • 广东省世通仪器检测服务有限公司,CNAS实验室认可地址:广东省东莞市道滘镇厚德上梁洲工业区四横路7号,注册号CNAS L3170 是通过国家授权认可的专门从事仪器计量、仪器校准、仪器检测第三方实验室和内校员培训机构,量具校准,量具计量、仪器检定 仪器标定...目前通过国家认可项目六百余项,可检测校准仪器设备高达几千余种,目前拥有长度、热工、力学、电学、无线电、理化、光学、声学等多个专业校准实验室。出具校准证书报告,校准合格证,符合客户审厂要求;出具的数据均可溯源至国家计量基准和国际单位制(SI),所出具的证书、报告完全满足ISO/IEC71025和ISO9000族的溯源性要求,ISO、CCC客户审核验厂年审。业务范围全国各地:广东(东莞市、广州、深圳、佛山、中山、江门、珠海、惠州、湛江、阳江)江苏、安徽、浙江、福建、江西、上海、广西、湖北、湖南、河南、北京、天津、河北、山西、内蒙古,陕西、四川、云南、贵州、重庆各地区都可安排检测下厂,仪器计量机构单位机构-世通仪器检测。
    留言咨询
  • 江苏东方航天校准检测公司公司成立于2010年3月,是华夏认证中心投资设立。通过了中国合格评定国家认可委员会(CNAS)能力认可,认可证书编号CNAS L5056。通过了江苏省质量监督局CMA认可,认可证书编号:181021340463. 炉温检测是第三方检测中心江苏东方航天校准检测有限公司的一个优势检测项目,可测0-1350度,目前已为湖北大冶特种钢、江阴兴澄钢铁、攀钢集团、中冶南方威仕、杭州华顺炉业、石钢、济南中船、中信戴卡等企业提供炉温方面的检测校准,出具带有CNAS和CMA认可标识的检测报告,协助客户通过了美国汽车工业行动集团AIAG 、美国石油协会API、 美国质量评审协会PRI等组织的认可。我公司可以为各种箱式炉、连续/半连续炉、井式炉、钟罩炉、真空炉、电阻炉、热处理等提供系统精度测试(SAT)、炉温均匀性(TUS)测试服务,出具CNAS认可的检测报告。2.江苏东方航天校准检测公司公司成立于2010年3月,是华夏认证中心投资设立。扭矩倍增器校准、液压泵校准、拉伸器检测、(气动、电动、 液压、中空扳手、驱动扳手)扭矩扳手校准检测是第三方检测中心江苏东方航天校准检测有限公司的一个优势项目,CNAS认可校准范围达到30000Nm,目前已为浙江运达、大唐风电、华锐能源、华能风电、国电等企业集团提供了扭矩扳手的校准服务,出具了带有CNAS章的证书,得到了用户的好评。我司 通过了中国合格评定国家认可委员会(CNAS)能力认可,认可证书编号CNAS L5056。通过了江苏省质量监督局CMA认可,认可证书编号:181021340463.
    留言咨询
  • 江苏世通仪器检测服务有限公司是经国家认可委员会认可,国际实验室互认组织(ILAC-MRA)授权,通过ISO17025国际计量准则的具有独立专业从事仪器校准检测及咨询培训的值得信赖的第三方公正实验室 世通仪器检测服务有限公司创立于2006年,总部设在制造名城东莞市,专业提供仪器校准,仪器校验,仪器外校,仪器计量,仪器检测,仪器校正,CNAS校正,仪器销售等服务。为方便江浙沪等华东地区服务,于2010年在江苏苏州成立江苏世通仪器检测服务有限公司, 并在当地政府的大力支持和关怀下,通过全体同仁不懈努力,于2013年9月,经CNAS(中国合格评定国家认可委员会)评审专家组队的专业评审团,对我司 实验室进行全面、严格、细致的指导和审核,确认我司昆山实验室完全符合ISO/IEC17025:2005 检测和校准实验室能力 的通用要求,给予高度评价和认可,于2013年12月21号正式颁发CNAS认证证书,证书编号:CNAS L6634, 符合ISO17025计量准则标准,ILAC-MRA(国际实验室互认组织)授权,出具的校准证书完全满足ISO、CCC、UL、QS、HACCP等国际 认证及工厂内部质量控制管理。为了满足不断增长客户的需要,同时体现我司为江苏地区仪器校准服务做出更大贡献的决心,经世通仪器校准领导团队研究决定,在原注册资金50万元人民币的基础上,直接增资至1000万元,同时变更公司名称,由原“昆山世通仪器检测服务有限公司”,变更为“江苏世通仪器检测服务有限公司”。既彰显公司实力,又是对所有客户服务质量最好的保障。这是对我司实验室各项管理工作的规范化、标准化的全面检测,是对公司持续稳定健康发展的重要保证。我们将不断优化和规范各项管理制度,不断提高体系运行的有效性,不断提高公司的管理水平,不江浙沪地区的所有客户提供最优质的仪器校验服务。江苏世通仪器校准中心秉着“公平、公正、准确、高效”的八字方针,设有:长度实验室、力学实验室、几何量实验室、衡器实验室、电学实验室、热工实验 室等专业仪器校准实验室。本校准中心可对以上类别范围的各国仪器进行校准并出具国际认可的法定校准证书。校准证书具有可靠性、权威性、公正性……Jiangsu Shitong Instruments Inspection Service Co., Ltd. was established after the examination and approval of Guangdong People’s Government, it is entitled legal person status. It is a third party impartiality laboratory engaging in calibration and test of instruments, and provides relevant information consultation trainingto customers.Shitong measurement and calibration laboratory is recognized by China National Accreditation Service for Conformity Assessment (CNAS), the accreditation No is L3170, authorized by International Laboratory Accreditation Cooperation (ILAC-MRA) too, passed the requirements of ISO17025international measurement principle, thus the calibration certificate and test report are acknowledged and recognized by accreditation organs and other members in countries and regions which signed multilateral agreement with CNAS.Shitong company holds the motto of science, impartiality, accuracy and high efficiency, established instruments inspection calibration center, measurement inspection instruments sale center, moreover, it was incorporated measurement inspection technique training consultation center with Guangdong Laboratories Federation (GDLF).The calibration inspection center of the company consists of calibration labs including Mechanics,Length, Weighing Apparatus, Electricity, Thermal Power, Geometry, etc. The calibration/inspection reports are characterized authority, reliability and impartiality.The measurement training center of the company provides technology consultation, employees training, lab proposal, and international standard collection to enterprises. It organizes expertsfrom home and abroad to implement professional qualification training for calibration personnel, test technicians, qualification certificate of quantity surveyor, uncertainty measurement, etc. Labor authorities and Guangdong Laboratories Federation will issue qualification certificate afterassessment passed.The instruments sale center of the company analyses measurement error to their instruments, price performance ratio, feasibility, maintenance level, etc. for customers. Providing perfect zero purchase risk for customers!
    留言咨询

植物校准计相关的仪器

  • HPV 茎流量传感器/Sap Flow SensorHPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用热脉冲速率法(HPV),测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量270mA信号输出:SDI-12线缆:5m,Max 60m
    留言咨询
  • AP4植物气孔计 400-860-5168转4470
    用途:AP4植物气孔计用来定量测量各种因素对气孔行为的影响,可方便、重复、准确地计算出气孔阻力。植物叶片气孔是植物体水分散失和光合作用所需CO2进入的通道。气孔特性是植物生理生态状态的一个十分重要的指标,它对于研究植物物种的特性和环境因子,如土壤水分状况、太阳辐射强度、污染物对植物的影响具有重要价值。AP4植物气孔计在数据采集的精度、方便性和仪器的整体设计、价格都在原有气孔计的基础上有很大突破。 测量原理:根据循环扩散原理,由植物叶片表面湿度的变化来进行测量计算。特点:AP4气孔计整机设计十分合理,全机由三部分组成:主机、传感器和附件(充电器、校准板等),仪器仅重3kg;在野外和实验室条件下,随时能进行标定,保证测定数据的高精度、高分辨率;自动快速的测量回路,温度补偿测定结果,测定时间小于15秒;使用的方便性:AP4气孔计的运行由内置微处理器控制,有十分便捷的操作程序。液晶屏上菜单式操作过程使用户易完成仪器的标定,数据的获取,浏览和存储过程,系统帮助按钮能为用户适时提供操作帮助;便捷安全的数据处理系统:存储单元能存储1500个读数,可通过RS232连线传输到计算机、打印机或其它小型终端设备。其数据格式适宜于直接输入一些通用数据处理软件,如Excel;数据采集的多样化:该机能够同时采集植物叶片气孔导度、气孔阻力、光照强度、大气相对湿度、温度等多种指标; 应用范围:植物蒸腾作用特点的研究;环境条件(光、温、水)对植物蒸腾作用的影响;逆境条件下,应用植物气孔导度,评价城市大气污染状况;全球变化,特别是在温室气体浓度升高情况下植物生理生态反应;目的植物筛选,应用植物气孔导度筛选抗旱植物、抗污染植物等。 技术规格: 气孔导度(mmol/m2/s)测量范围:5.0~1200 mmol/m2/s;分辨率:0.01~0.1mm/s;精度:±10%(5~800 mmol/m2 /s),±20%(800~1200 mmol/m2 /s)气孔导度(mm/s)测量范围:0.25~ 30.0 mm/s;分辨率:0.01~0.1mm/s;精度:±10%(0.25 ~20.0 mm/s),±20%(20.0 ~30.0 mm/s)气孔阻力测量范围:0.2 ~ 40 s/cm;分辨率:0.01~0.1;精度:±0.2 s cm-1(0.2~0. 5 s/cm),±10%(0. 5~40 s/cm)相对湿度测量范围:0~100%;分辨率:0.1;精度:±4%样品室温度测量范围:-5~+55℃;分辨率:0.1;精度:±0.7℃(0~+50℃)样品室和叶子温度差测量范围:-5~+5℃;分辨率:0.1;精度:±0.2℃(0~+50℃)光量子通量测量范围:0~2500 µ mol/m2 /s;分辨率:10;精度:±15%测量单位气孔导度:mmol/m2 /s、mm/s、cm/s;气孔阻力:s/cm、s/m、m2 s/mol传感器样品室槽状:2.5×17.5毫米;圆形:直径6毫米相对湿度传感器Vaisala 16663HM温度传感器高精度100K热电偶光传感器未滤光GaAsP光电二极管电缆长度1.2米尺寸110×30×27毫米重量130克(包含电缆)数据处理存储容量约1500个读数数据接口RS232接口,波特率9600软件用于windows操作系统,记录的数据可下载为逗号分隔的ASCⅡ数据文件(CSV)控制单元显示8行×40个字符LCD按键13个功能键,标准键盘尺寸300×200×140毫米重量3公斤供电电池内置电池,可连续工作20个小时充电器12~15V DC,0.5A,110、220或240AC电源(订购时指定)充电时间14个小时基本组成主机含有气路系统及分析计算系统传感头传感头包括两个叶室,一个槽状,另一个圆形。可针对不同形状的叶片来选择适当的叶室,传感头中含有微型电热调节器、RH传感器和PAR传感器校正盘一个特别铸造的有六组有精确直径的小孔的聚丙烯塑料盘,校正盘用潮湿的滤纸覆盖,提供了在已知速率下以扩散方式通过小孔的水蒸气源 产地:英国应用文献:[1] 彭致功,杨培岭,等. 日光温室条件下番茄植株蒸腾规律研究[J]. 干旱地区农业研究,2004,22(1):62-65.
    留言咨询
  • 植物多谱辐射计 400-860-5168转1490
    植物多谱辐射计仪器型号:TOP-2000型 操作原理:任何物质都具有发射、吸收及反射电磁波的特性,这是光谱信息检测的基本原理。通过测量每种物质内部成分相应的敏感波段光谱辐射的吸收、发送或反射特性,间接确定该物质的特性或组成成分。在实际应用时,仅需要选择某些特定波段来识别被选定物质的特性。利用窄带过滤器来选择可见光和近红外(NIR) 区电磁波谱的某些波段。此波段区域可以用于量化各种胁迫导致的植物冠层发射率差异。400-900纳米的可见/近红外波段对探测和评估植物叶片病害的严重性十分有用。近红外区的长波波段可以用于估计植物的生理参数与生物化学成份等信息。仪器为8通道通用光谱检测分析仪,最大可支持16通道不同波段的通用光谱信息采集仪器,用户可以根据实际须要定制不同波段的滤光片进行光谱检测。 仪器用途:1、植物生长调节剂的评估2、客观有效地对各种叶片病害的评级3、监测应用除草剂的效果4、用于土壤改善和肥力的研究 5、叶面施肥的研究6、灌溉日程安排的研究7、干旱对植物生长和产量的影响8、不同基因型的特性 9、试验地变异的评估 配置:该系统包括辐射计、笔记本电脑、伸长杆 (可伸长到3.5米)、数据连接线、使用手册。 功能特点:1、内置传感器自动校正与太阳光方向角自动校准模块。2、仪器高矮可调节。3、能够在少云的情况下使用。4、8个波段与Landsat卫星热波谱图的前8条波段相似。5、重量轻、便于携带。6、数据可直接导入计算机,以便分析之用。 技术参数:A、归一化植被指数(NDVI) B、叶面积指数(LAI)C、氮数含量(N) D、植辐射指数(FITI) 波段:8个中心波长:550nm,650nm,780nm,870nm, 910nm,940nm,970nm,1100nm操作范围:0~+50℃,0~100%相对湿度不凝结,65%的相对湿度下贮藏反射率区间:0~100% 分辨率:0.06% 精确度:±2% 采样位数:16位高速AD采样仪器通信:USB 2.0标准协议通信尺寸:100×100×80mm 存储数据容量:160个响应时间:2秒重量:1kg
    留言咨询

植物校准计相关的资讯

  • 中国合格评定国家认可委员会关于CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》网上公示征求意见的通知
    各相关机构和人员:中国合格评定国家认可委员会(CNAS)组织制定了CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》。目前已完成文件征求意见稿,现于网上公示征求意见。请相关机构和人员对该文件有修改建议或意见,请填写附件中的意见征询表,并于2024年3月18日前反馈至CNAS秘书处。联系人:富宏坤联系电话:010-67105451Email:fuhk@cnas.org.cn附件:附件1:CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》(征求意见稿)附件2:CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》的编制说明附件3:认可规范文件修订内容差异对照表CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》附件4:CNAS文件意见征询表CNAS-CL01-A014:202X《检测和校准实验室能力认可准则在植物检疫领域的应用说明》
  • 中国合格评定国家认可委员会发布CNAS-CL01-A014:2024《检测和校准实验室能力认可准则在植物检疫领域的应用说明》及其实施安排
    关于发布CNAS-CL01-A014:2024《检测和校准实验室能力认可准则在植物检疫领域的应用说明》及其实施安排的通知  认可规范文件(CNAS-CL01-A014:2024 与CNAS-CL01-A014:2018)修订内容差异对照表
  • 博伦气象发布HPV 植物茎流传感器/植物液流计新品
    HPV 茎流量传感器/Sap Flow SensorHPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用双方法(DMA)热脉冲法,测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量茎流量传感器参考文献:1. Kim, H.K. Park, J. Hwang, I. Investigating water transport through the xylem network in vascular plants.J. Exp. Bot. 2014, 65, 1895–1904. [CrossRef] [PubMed]2. Steppe, K. Vandegehuchte, M.W. Tognetti, R. Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]3. Vandegehuchte, M.W. Steppe, K. Sap-flux density measurement methods: Working principles andapplicability. Funct. Plant Biol. 2013, 40, 213–223. [CrossRef]4. Marshall, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 , 33, 385–396.[CrossRef] [PubMed]5. Cohen, Y. Fuchs, M. Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4, 391–397.[CrossRef]6. Green, S.R. Clothier, B. Jardine, B. Theory and practical application of heat pulse to measure sap flow.Agron. J. 2003, 95, 1371–1379. [CrossRef]7. Burgess, S.S.O. Adams, M.A. Turner, N.C. Beverly, C.R. Ong, C.K. Khan, A.A.H. Bleby, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 , 21, 589–598. [CrossRef]8. Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 , 8, 350. [CrossRef]9. Bleby, T.M. McElrone, A.J. Burgess, S.S.O. Limitations of the HRM: Great at low flow rates, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts, Seville, Spain, 22–24 October 2008.10. Pearsall, K.R. Williams, L.E. Castorani, S. Bleby, T.M. McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014, 41, 874–883. [CrossRef]11. Clearwater, M.J. Luo, Z. Mazzeo, M. Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 , 32, 1652–1663.[CrossRef]12. Green, S.R. Romero, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951, 19–29. [CrossRef]13. Green, S. Clothier, B. Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846, 95–104. [CrossRef]14. Ferreira, M.I. Green, S. Concei??o, N. Fernández, J. Assessing hydraulic redistribution with thecompensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 , 425, 21–41.[CrossRef]15. Romero, R. Muriel, J.L. Garcia, I. Green, S.R. Clothier, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012, 951, 31–38. [CrossRef]16. Testi, L. Villalobos, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 , 149, 730–734. [CrossRef]17. Vandegehuchte, M.W. Steppe, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196, 306–317. [CrossRef] [PubMed]18. Kluitenberg, G.J. Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.Agric. For. Meteorol. 2004, 126, 169–173. [CrossRef]19. Vandegehuchte, M.W. Steppe, K. Improving sap-flux density measurements by correctly determiningthermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012 , 32, 930–942.[CrossRef]20. Looker, N. Martin, J. Jencso, K. Hu, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223, 60–71. [CrossRef]21. Edwards, W.R.N. Warwick, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulsetechnique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984, 27, 537–543. [CrossRef]22. Becker, P. Edwards, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19, 767–768. [CrossRef]23. Hogg, E.H. Black, T.A. den Hartog, G. Neumann, H.H. Zimmermann, R. Hurdle, P.A. Blanken, P.D. Nesic, Z. Yang, P.C. Staebler, R.M. et al. A comparison of sap flow and eddy fluxes of water vapor from aboreal deciduous forest. J. Geophys. Res. 1997, 102, 28929–28937. [CrossRef]24. Barkas, W.W. Fibre saturation point of wood. Nature 1935, 135, 545. [CrossRef]25. Kollmann, F.F.P. Cote, W.A., Jr. Principles of Wood Science and Technology: Solid Wood Springer: Berlin Heidelberg, Germany, 1968.26. Swanson, R.H. Whitfield, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,32, 221–239. [CrossRef]27. Barrett, D.J. Hatton, T.J. Ash, J.E. Ball, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 , 18, 463–469. [CrossRef]28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition Queensland Government: Brisbane, Australia, 2016.29. Steppe,K. de Pauw, D.J.W. Doody, T.M. Teskey, R.O. A comparison of sap flux density using thermaldissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 , 150, 1046–1056. [CrossRef]30. López-Bernal, A. Testi, L. Villalobos, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216, 321–329. [CrossRef] [PubMed]31. Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [CrossRef] [PubMed]32. Cohen, Y. Fuchs, M. Falkenflug, V. Moreshet, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80, 398–402. [CrossRef]33. Cohen, Y. Takeuchi, S. Nozaka, J. Yano, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85, 1080–1086. [CrossRef]34. Lassoie, J.P. Scott, D.R.M. Fritschen, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23, 377–390.35. Wang, S. Fan, J. Wang, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015, 79, 1545–1555. [CrossRef]36. Bleby, T.M. Burgess, S.S.O. Adams, M.A. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 , 31, 645–658.[CrossRef]37. Madurapperuma, W.S. Bleby, T.M. Burgess, S.S.O. Evaluation of sap flow methods to determine water use by cultivated palms. Environ. Exp. Bot. 2009, 66, 372–380. [CrossRef]38. Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigationscheduling. Acta Hortic. 2008, 792, 321–332. [CrossRef]39. Intrigliolo, D.S. Lakso, A.N. Piccioni, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern UnitedStates. Irrig.Sci. 2009, 27, 253–262. [CrossRef]40. Eliades, M. Bruggeman, A. Djuma, H. Lubczynski, M. Tree water dynamics in a semi-arid, Pinus brutiaforest. Water 2018, 10, 1039. [CrossRef]

植物校准计相关的方案

植物校准计相关的资料

植物校准计相关的论坛

  • 【资料】15N土壤、植物标准样品

    1 主题内容与适用范围  本标准样品有土壤和植物材料。本标准适用于校准15N分析的质谱和光谱仪器、检验15N分析方法和各实验室15N分析数据的15N土壤、植物标准样品。 2 15N标准样品的来源及制备 2.1 富集15N土壤样品  取自北京农业大学校园的北京褐土,1983年在微区内施入高丰度15N的液氨,种了一茬水稻。土壤又放置了一年,混匀磨碎,过筛,再充分混匀,装瓶,每瓶30g 。 2.2 富集15N植物样品  水稻茎叶,于田间微区内在后期施入高丰度15N硫铵,待水稻成熟后收割,去掉根和穗子,洗净晾干,切碎,磨成粉,过筛,充分混匀,分装在塑料袋中,每袋2g。 2.3 15N自然丰度植物样品  取自大田的旱稻植株茎叶,经洗净、晾干,切碎,磨成粉末,过筛,充分混匀,分装在塑料袋中,每袋2g。  植物样品和土壤样品封盖后,用钴60γ-射线4.9Mrad照射后,在室温下(10~35℃)保存在暗处。 3 标准样品的细度、均匀度 3.1 细度:植物样品全部通过60目(孔径0.25mm),土壤样品通过100目(孔径0.149mm)筛孔。 3.2 均匀度:随机抽样20袋,经200次测定。富集15N植物样品的丰度为0.691±4.9×10-3,C.V%为0.71;富集15N土壤样品的丰度为0.441±2.9×10-3,C.V%为0.66。结果表明,样品是混合均匀的。 4 标准样品的标准值 协作组对本标准样品进行了多次反复,长期的测定,结果如下: 样品名称 15N原子% N% 15N自然丰度植物样品 0.366±0.001 1.026 富集15N植物样品 0.688±0.003 0.745 富集15N土壤样品 0.441±0.003 0.077   注:N%的参比值,供参考。 5 标准样品的保存和使用方法 5.1 避光、干燥保存,温度不超过30℃。 5.2 使用前先用牛角勺搅动,使再度混匀。 5.3 一般分析用量:土壤至少称取1g,植物样品至少0.2g。

  • 植物根系分析仪检测结果是否准确

    植物根系分析仪检测结果是否准确

    [size=16px]  植物根系分析仪的检测结果准确性取决于多个因素,包括仪器的质量和性能、操作的正确性、样本的准备和处理等。以下是一些影响植物根系分析仪检测结果准确性的关键因素:  仪器质量和性能: 使用高质量的根系分析仪通常会提高结果的准确性。精密仪器通常具有更高的分辨率和稳定性,能够更精确地测量根系的参数。  操作的正确性: 操作人员需要按照仪器的操作手册和相关方法正确地操作仪器。错误的操作可能导致结果的偏差。  样本准备和处理: 样本的准备和处理对于根系分析的准确性至关重要。根系样本应该被适当地清洗、固定和处理,以避免任何外部因素的干扰。  数据分析和解释: 数据的分析和解释也是确保准确结果的重要步骤。使用适当的分析方法和软件来处理和解释数据是关键。  环境因素: 根系分析的环境因素,如温度、湿度和光照条件,也可能影响结果的准确性。这些因素需要在分析中加以考虑。  根系生长阶段: 不同生长阶段的植物根系可能具有不同的形态和特性。因此,在分析时需要考虑植物的生长阶段。  根系分析仪的校准: 定期校准根系分析仪以确保其性能和测量的准确性是重要的。校准可以帮助纠正仪器的误差。  总之,为了确保云唐植物根系分析仪的检测结果准确,需要注意上述因素,并严格按照操作规程执行。此外,可以通过与其他方法或仪器的比较来验证结果的准确性,以确保所得数据的可靠性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309131026366807_8752_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 手持式植物养分速测仪如何检测植物叶面温度

    手持式植物养分速测仪如何检测植物叶面温度

    [size=16px]  手持式植物养分速测仪如何检测植物叶面温度  手持式植物养分速测仪通常不用于测量叶面温度,而是用于测量植物的营养元素含量、叶绿素含量等参数。要测量叶面温度,通常需要使用红外热像仪或红外温度计等专门的仪器。以下是如何使用红外热像仪来测量植物叶面温度的一般步骤:  准备手持式植物养分速测仪:  打开手持式植物养分速测仪,并确保它已经达到稳定的工作状态。  根据仪器的使用说明,进行必要的校准和设置。  准备测量环境:  在测量之前,确保测量环境没有明显的干扰因素,如直射阳光、风、或其他热源。  将手持式植物养分速测仪对准要测量的植物叶面区域。  进行测量:  按下手持式植物养分速测仪上的触发按钮来拍摄或记录叶面的红外热图像。  等待仪器处理图像数据,以获取叶面温度信息。  手持式植物养分速测仪可以直接显示叶面温度,而其他仪器可能需要将数据传输到计算机或移动设备上进行分析。  分析结果:  分析所获得的红外热图像,查看叶面温度的分布情况。  记录或分析所需的温度数据,以了解植物的温度状况。  云唐手持式植物养分速测仪能够测量物体表面的温度,因此可以用于监测植物叶面的温度分布,以帮助农业和植物研究人员更好地理解植物的生长和健康状态。要获得准确的叶面温度数据,确保仪器的使用和环境设置是适当的,并根据仪器的说明进行操作。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309181128595765_5081_6098850_3.jpg!w690x690.jpg[/img][/size]

植物校准计相关的耗材

  • 欧罗拉自动化植物RNA纯化系统试剂盒
    MagPure纯化技术介绍MagPure(磁珠法)纯化技术是专门为自动化核核酸提取设计的。该技术采用超顺磁性粒子为基质, 在其表面包被硅醇基或羧基基团,使得微粒与核酸发生特异性的吸附作用,从而达到纯化核酸的目的。 MagPure技术配合自动化核酸提取工作站,可将核酸分离纯化,从手工变成机械自动化操作,可大大 提高实验的准确度和通量,并减少操作人员接触危险样品的机会。MagPure Plant RNA Kit (自动化植物RNA纯化系统)从50mg植物样品中提取高纯度的总RNAMagPure Plant RNA Kit采用磁珠纯化技术,适用从50mg植物样品中提取高纯度的总RNA。得到的RNA可直接用于RT-PCR、荧光定 量RT-PCR、Nouthern杂交等实验。该产品可成功在VERSA 10,VERSA 1100,VERSA HT等设备上运用。不同的植物叶片样品(50mg)经MagPure Plant RNA Kit提取后,取5%纯化RNA上样于1%琼脂糖凝胶电泳结果)。取纯化的RNA测量结果结果表明,MagPure Plant RNA Kit可处理常规的植物样品,也可以处理多酚类和多糖类的植物样品。可兼容液体处理系统VERSA 10 PCR/NAP 自动化核酸提取-PCR建立工作站VERSA HT 高通量自动化液体处理工作站VERSA 1100 NGLP 下一代测序工作组VERSA 1100 4ch Independent 独立四通道液体处理工作站VERSA 1100 PCR/NAP 自动化核酸提取-PCR建立工作站Aurora在核酸分离纯化领域拥有完整和先进的技术,MagPure试 剂盒为不同样品提供不同粒径或不同官能基团的磁性粒子,以达到 最佳的纯化效果。在满足产品精确性及可重现性的要求,实现高通 量自动化核酸纯化的同时 保证产品绝对的兼容性。
  • MP 植物样本RNA提取 试剂盒
    植物与我们的生活息息相关,五谷杂粮满足每日饮食所需,棉麻织物让我们远离严寒。而从植物组织中进行高质量的RNA提取是分子生物学实验的必要前提,如cDNA文库的构建、荧光定量PCR检测、Northern杂交、原位杂交等。从植物组织中提取纯度高、完整性好的RNA是顺利进行上述研究的关键所在。【植物样本RNA提取棘手问题】许多植物组织特别是植物的果实(例如苹果、樱桃、李子、葡萄等)和树木类植物中富含酚类化合物。多酚是植物细胞中的一类次级代谢物,因其具有多个酚基团而得名,种类繁多,结构各异,含量仅次于纤维素【1】。在植物材料匀浆时,多酚易被氧化形成醌类物质与RNA不可逆的结合,导致提取的RNA纯度降低,影响后续的分子实验进行【2】。多糖的污染是提取植物RNA时常遇到的另一个棘手的问题。植物组织中往往富含多糖,而多糖的许多理化性质与RNA很相似,因此很难将它们分开。在去除多糖的同时RNA也易被裹携走,造成RNA产量的减少;而在沉淀RNA时,会产生多糖的凝胶状沉淀,这种含有多糖的RNA沉淀难溶于水,或溶解后产生粘稠状的溶液【3】。由于多糖可以抑制许多酶的活性,因此污染了多糖的RNA样品无法用于进一步的分子生物学研究【4】。【FastRNATM Win Kit for Plant】如何着手解决以上问题呢?MP Biomedicals推出了一款能从植物细胞和组织中分离和纯化高质量总RNA的提取试剂盒——FastRNATM Win Kit for Plant。本款试剂盒采用快速、简便的硅胶柱膜吸附纯化方式,20~30分钟内即可轻松完成提取;内含裂解介质管Z,配合使用FastPrep® 仪器能够高效裂解任何植物组织。两种裂解缓冲液,可轻松解决上述多酚和多糖干扰RNA提取的问题。裂解缓冲液中包含的载体材料(mineral carrier material)可通过结合来达到去除DNA的目的,无需额外的DNA酶消化处理步骤。【轻松解决样本污染烦恼】1.可轻松快速地从任何植物样品中分离总RNA彻底且可重复的样品裂解,然后进行有效的结合-洗涤-洗脱纯化过程。2.可获得高纯度总RNA,获得更好的RT-PCR结果通过载体材料(mineral carrier material)可有效去除基因组DNA污染。无需DNase消化处理。3.可以同时分离蛋白质4.两种裂解缓冲液:确保完全去除PCR抑制剂Lysis Solution PS:可特别针对多糖含量高的植物样品。Lysis Solution PH:优化针对酚含量高的植物样本。5.无有害试剂成分6.搭配仪器使用,提升实验效率针对绝大多数植物样本,搭配使用FastPrep® 仪器,可在5min中内完成最高多达48个样本的处理。【一目了然的操作流程】【新品订购】相关文献【1】宋立江, 狄莹, 石碧. 植物多酚研究与利用的意义及发展趋势[J]. 化学进展, 2000, 12(2):161.【2】刘芳, 官春云. 富含多酚类植物RNA提取的研究进展[J].作物研究, 2015(1).【3】李宏,王新力.植物组织RNA提取的难点及对策[J].生物技术通报,1999(1),1:36-39【4】Fang G , Hammar S , Grumet R . A quick andinexpensive
  • RHS植物比色卡
    RHS植物比色卡名称:植物比色卡 型号:RHS 产地:英国用途: RHS标准比色卡是植物颜色鉴定的参考标准。该比色卡对于重视精确区分植物颜色的园艺工作者来说是必备的。不仅仅是重视颜色的园艺工作者,该比色卡对于食品制造商、化学工程公司和面料设计师也都有很大的作用,因为它逐渐发展成了符合自然本身颜色的比色卡,成为了一个非常有用的工具。2015年第六版在2007年已有的884种颜色上又增添了36种颜色,920种颜色分布在230张卡上,组成了1套4个易学易用的扇形,每个色标都有一个中央舷窗,在对比颜色时,可以放在下面。比色卡表面的光滑涂层增强了其抗划痕性,该比色卡还提供了六种语言(英语、法语、荷兰语、法语、俄语及日语)的使用说明。特点:比色卡是专门针对大自然存在的颜色而设计,能够准确地描述任一颜色;目前比色卡具有的颜色数是920种颜色;比色卡分为四个容易使用的颜色扇面,每个颜色片都有一个小洞,能够覆盖的颜色之上观察其是否匹配。主要应用:园艺领域:精确对比植物的颜色;食物生产领域:标准化食物颜色;化学工业领域:标准化化学品颜色。产地:英国
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制