滴定池

仪器信息网滴定池专题为您提供2024年最新滴定池价格报价、厂家品牌的相关信息, 包括滴定池参数、型号等,不管是国产,还是进口品牌的滴定池您都可以在这里找到。 除此之外,仪器信息网还免费为您整合滴定池相关的耗材配件、试剂标物,还有滴定池相关的最新资讯、资料,以及滴定池相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

滴定池相关的厂商

  • 主 要 业 务长期从事传感器、分析仪器、数据采集与控制系统的研制、开发与集成,承接各种委托任务与产品服务;经营有关的仪器与设备。一 传感器与变送器1光度(比色)滴定传感器, 2 压电式水势传感器与变送器 3 FJA-10型盐分传感器 4 一体化压力传感变送器5 pH传感器与变送器 6 电导传感器与变送器 7 溶氧传感器与变送器 8 全固态参比电极 9光电液位传感器 二 测试仪器1 MIA-6(FJA-1)型常规分析仪器工作站 2 MIA-3型微机化多功能离子分析器 3 FJA-2型微机控制自动滴定系统 4 FJA-04型自动滴定仪 5 FJA-3离子分析器 6 FJA-05型硫醇硫测定仪 7pHG-2型数字工业酸度计 8 pHS-3C精密酸度计 9 FJA-04型在线pH变送器    10 氧化还原电位(Eh)去极化法测定仪 11 电导率仪 12 微量体积测定仪 13 电化学传感器与PC机接口 15 DAB-2数字自动滴定管(可与PC机联用)三 设备1 MWD-2微波通用消解装置 2 光电自动加液器 3 微型磁力搅拌器 四 承接委托任务1 多通道温度数据采集系统 2 多通道电化学数据采集系统 3 多通道水、盐动态数据采集系统 4 农田湿度等参数的测算与灌溉控制系统 5 水质监测与控制系统
    留言咨询
  • 400-860-5168转6105
    北京同信天博科技发展有限公司,创建于2009年。是中国本土专注于研发生产粮食质量安全检测设备的服务商,业务涵盖样品处理、智能分析、在线监测和实验室技术服务四大产业群组,为全国近百家检测机构提供专业粮油检测解决方案。公司目前形成了以全自动脂肪酸值定仪为代表的粮油检测产品群。包含低温连续锤式旋风磨、自动滴定仪、智能酸价滴定仪、脂肪酸值快检设备等多元化产品。其中,多通道全自动脂肪酸值滴定仪,以其一体化的创新技术一经问世获得了广泛认可,短时间内覆盖超90%省级粮油质检中心。同信天博以科技助力中国粮食质量安全建设,为用户提供专业解决方案。 公司始终坚持“科技创建品牌,品牌服务用户”的宗旨,提高自主创新能力,为中国的监测事业贡献自己的力量。
    留言咨询
  • 400-860-5168转3310
    哈纳仪器(中国)服务中心是意大利哈纳品牌在国内的领先综合服务平台.以销售和技术保障为主的B2C购物平台(B2C,Business to Customer).品牌直销购物,享受100%%正品保障,专业技术支持,数百万种商品热销!正品行货,超值优惠,特价促销中.... 农业 哈纳仪器提供种植者各种产品,增加植物/作物产量和最大限度地提高植物生长。你会发现哈纳的产品是非常容易使用,经济地协助您在测量临界参数值和电子商务等,是必不可少的正常生长的植物和蔬菜 水产养殖与水族箱哈纳仪器提供水族爱好者和水族养殖者,各种测试,水,化学试剂,光度计,监测和控制措施,矿化度,磷酸盐,磷,溶解氧,氧化还原电位,碱度,和更多。 水产养殖与水族仪表 啤酒分析 哈纳仪器提供了酿酒大师各种检测设备啤酒分析。哈纳知道的重要性,啤酒的质量和提供的酸度计,色度计,温度计的啤酒产量最大化和一致性。啤酒分析仪器 锅炉和冷却塔哈纳仪器知道定期检测锅炉和冷却水是至关重要的优化处理程序和排污计划。测试仪和光度计措施电导率或矿化度,酸度、氧化还原电位。锅炉和冷却塔仪表 教育类 哈纳仪器提供的教育市场一系列检测仪器和试剂盒,用于教育和环境科学的学生。哈纳的教育部都有教育工作者需要测量的重要参数,在一个合理的价格。 教育仪器环境哈纳仪器公司提供各种环保局批准的试验环境试验设备,现场采样,并现场实验室运作与管理。 环境仪器 食品和乳制品哈纳仪器有协助食品制造商和乳制品农场高质量检测设备,符合强制性食品测试程序。哈纳的食品和乳制品是全计,测试仪,温度计和滴定系统需要由质量控制人员。食品、奶制品仪器仪表 水培哈纳仪器提供最新的测试设备,无土栽培。哈纳的水部分测试,控制器,运行控制和卫生系统需要越来越多的水。 仪器仪表 水培工业哈纳仪器提供工业市场有大量各种各样的面板和安装在墙上的控制器,发射机,分析仪,滴定系统和泵的控制,监测和检测。 工业仪表 门诊化验室哈纳仪器实验室设备的部分提供了最新的台式和便携式酸度计,电导率仪,电极,溶解氧米,浊度计,温度计,光度计和滴定仪为所有规模的实验室。 实验室仪器 电镀哈纳仪器,电镀部分提供的面板和安装在墙上的控制器,发射机,分析仪,酸度计,化学需氧量计和浊度米需要测试,监测和控制在电镀业。 电镀仪器游泳池及水疗中心 哈纳仪器提供的游泳池和水疗中心承办,棕榈油和业主的各种水检测设备。哈纳提供了测试,光度计,化学测试包,控制器,显示器和自由和总氯分析仪。游泳池及水疗仪器 印刷与图形哈纳仪器提供印刷和图形行业的最新测试设备的测量值, 印刷仪器水空调哈纳仪器提供水处理行业,检测设备,哈纳提供了显示器和控制器测试酸度,碱度和氧化还原电位。 水调节仪表 水处理哈纳仪器提供水处理专业实验室产品,过程仪表,光度计和自由和总氯分析仪的水分析。水处理仪器仪表 酒分析仪器仪表.
    留言咨询

滴定池相关的仪器

  • 全自动电位滴定仪主要特点:采用瑞士万通专利的多思TM加液单元 获得专利设计的多思TM加液单元可以直接安装在试剂瓶上部,这意味着加液单元无需额外的工作台空间。基于合适的接口适配器,加液单元可直接安装在任何规格试剂瓶上。多思TM系统采用了新的电子和微机械技术。加液单元的更换只需非常短的时间即可完成。透明外壳的设计可以清晰的看到可能存在于滴定管内的气泡,以便及时排除,同时还可以随时观察驱动阀的位置。加液单元的冲洗和准备是完全自动进行的,无需手工拆卸来进行清洗。 905支持DET 动态滴定,MET 等量滴定,SET 设定滴定 905型可编辑方法支持KF容量法卡氏水份滴定和STAT恒电位滴定 魔术触摸屏 – 一键式快速启动方法 仪器可通过电脑使用PC Control软件控制 智能连接电缆 – 可移动的测量输入电缆,传送数字信息 智能电极 –可自动识别的智能电极 GLP – 认证的电极测试 采用智能加液单元 电位滴定,卡氏水份滴定和STAT滴定多种功能 样品处理器控制 可通过tiamoTM软件建立数据库服务器 通过tiamoTM软件实现平行滴定 通过Lab link 实现局域网和互联网的连接 独特的多思TM(Dosino)加液单元可轻松实现灵快量化TM(LiquidHandling)技术 全自动电位滴定仪技术参数:可内置安放2个接807加液单元的800多思TM加液器 支持多达4个801磁力搅拌器或4个可接802杆式搅拌器的804滴定台或803KF滴定台 4个MSB(瑞士万通串行端口标准)接口 可通过USB连接1个样品处理器或多种外部设备 具有辅助测量模块连接(867pH模块或856传导模块) 具有用于存储方法,数据,密码卡(用户认证),备份的PCMCIA卡接口 具有储存大量用户方法的闪存卡 Pt 1000 或 NTC温度探头 差分放大器(可选) 可选实时滴定曲线显示-触摸屏(90mm x 120mm彩色液晶屏)或PC显示器 分辨率:0.001pH,0.1mV,0.1℃ 测量间隔:100ms 支持使用离子选择性电极测量并计算浓度 支持自动确认酸碱度计算 符合GMP/GLP以及FDA法规的认证 无线蓝牙连接打印机和天平 pH,U/mV,T/℃测量接口与第1组完全电气隔离 Ipol & Upol – 集成式程序极化器 滴定曲线评估:固定等当点,pK值(HNP),最小/最大,折点(光度/电导) 用户自由编程 方法和样品数据储存,结果储存,数据库 多语种对话界面 符合FDA 21 CFR Part 11要求 智能加液单元 智能电极 GLP认证的电极检测 具有检测限检查功能 保护进入许可的密码设置,电子签名备注:此产品的价格区间是单机版,具体产品配置清单和产品报价,烦请联系瑞士万通中国当地销售人员,谢谢。
    留言咨询
  • 自动滴定仪 400-860-5168转0165
    仪器简介:自动滴定仪是作为zeta电位及粒度分析仪的选件,配合流动型样品池使用,可自动进行酸、碱、盐离子和表面活性剂滴定以及Zeta电位与粒度测量,免去人工配制不同的pH值、离子浓度或表面活性剂浓度的麻烦,降低实验工作强度的同时缩短了测量时间。应用1.通过酸、碱和试剂的滴定来测定等电点;2.评估盐浓度对zeta电位的影响;3.优化表面活性剂的浓度,减少表面活性剂的消耗;4.优化体系的分散条件;技术参数:1.pH值范围:2~122.样品池(选件):流动型样品池3.泵管:1 mm (0.04”) Teflon,PEEK,和EPDM.4.配置包括:pH探头和4个100mL的瓶子主要特点:独立四泵驱动,可在线进行酸、碱、盐和表面活性剂滴定和测量;
    留言咨询
  • 糖类产品的滴定池加热装置 ADP-344 主要特点:适用巧克力,牛奶糖,糖果,口香糖和各种糖类样品水分测定。容量法水分测定仪-糖类产品滴定池加热装置 ADP-344 技术参数:加热方式: 测定杯周围加热。加热温度范围: 常温~60°C。温度控制: ±3°C。
    留言咨询

滴定池相关的资讯

  • 滴定分析“新技术”:光谱滴定概述及进展
    摘要:光谱滴定方法作为滴定领域的新技术,是替代颜色滴定(感官滴定、人工滴定)的新一代革新技术。在可见光范围内,采用全波长同步监控+色空间算法+曲线算法技术,建立了试剂量与单一计量参数的在线二维滴定曲线坐标,从而使颜色滴定方法提升为自动化仪器分析方法。与电位方法、温度方法相比,应用面广、不干扰被测定反应、测量无延迟、无接触性传感器、不受温度影响、反应灵敏、沿用颜色测量方法原理等诸多优点,未来将在滴定分析技术中占主导地位。表1.四种滴定技术比对表滴定技术发明人时间距今优缺点滴定分析方法(感官滴定方法)法国化学家,Joseph Louis Gay-Lussac19世纪上半叶约150年现况:建立了深厚的理论、标准体系。优点:简单,至今仍是滴定分析的主流方法。缺点:主观方法,误差大,无法量值溯源。前景:逐步被淘汰。电位滴定德国化学家,Rorber Behrend1893127年现况:历史久,研究充分。优点:测量精确,图形化操作,可量值溯源。缺点:属间接测量,操作条件多、需要根据测量对象适配器材、要求高、受温度影响大、干扰化学反应、信号延迟。前景:应用受限,市场有限。温度滴定P.迪图瓦和E.格罗贝特192298年现况:目前通常作为电位滴定仪的附件。优点:反应灵敏,不干扰反应过程,可量值溯源。缺点:属间接测量,应用于简单反应体系。前景:应用面狭小,市场很有限。光谱滴定中国20183年现况:新技术,理论不完善,仪器未商品化。优点:属直接测量技术,高准确度、高可靠性、不受温度影响、不干扰化学反应、终点明显,可量值溯源,操作简单,应用面广。缺点:不能分析混浊、固体和半固体及终点无色变的化学反应溶液,应用尚不普及。前景:逐步替代感官滴定方法,成为滴定分析的主导技术,市场广阔。滴定分析法作为化学分析经典方法,是各领域的通用分析方法,目前有几千种颜色分析方法应用在药品、食品、农产品、土壤、化工、石油、冶金、机械、试剂、环保、生物、医疗、… 等各种行业,只要有化学物质分析的工作,就离不开滴定分析技术。高精度的滴定终点判别和自动化判别技术,直接决定了光谱滴定技术的高准确度和可靠性。光谱滴定的用途:1、替代原有的光度滴定分析方法;2、替代广泛应用的感官滴定方法;3、建立系列新的光谱滴定检测方法和标准;4、偶氮、稀土、苯基荧光酮等显色剂的研究;5、分子开关或分子机器的光化学性能研究;6、光辐射化学研究;7、应用于化学分子形态;8、生物酶活性研究;光谱滴定方法为近几年新研发的技术,尚未推广,科普宣传、仪器制造、方法原理、应用案例等方面属于初创状态,仅有原理样机和《化学光谱滴定技术》著作面世。研究人员和投资者不会立即看到技术体系的应用和效益,但目前的工作是实现后期专利技术独占的前期工作,是实现大规模替代感官滴定的理论、方法、标准、仪器提供关键的前瞻性基础。其经济价值方面,与电位滴定仪的中国十亿市值市场、世界70亿市值(瑞士万通,2015)相比,该技术属滴定行业内国内外首创,目前没有任何型号的商品机问世,故无法对其市场前景做出明确评价。参考滴定分析仪器的市场,光谱滴定技术的应用领域远远大于电位分析技术。一旦仪器商品化,研发机构将在该投入上取得知识产权保护和大于电位滴定仪的长期的效益。目前亟待解决与存在的问题建议:采取联合申请课题,取得科技部、基金、协会、企业的政策和资金支持,共同进行理论体系、测量原理、商品机型仪器生产、应用技术研究与方法推广、国际专利申报等方面的研究,尽快保持我国现有的国际领先地位。本资料简单介绍光谱滴定原理、算法、技术应用和案例分析,供制造商、技术研究者、合作者参考。滴定分析法发展历程滴定分析法(titrametric analysis)的研究历史可追溯到18世纪晚期。19世纪上半叶,法国化学家Joseph Louis Gay-Lussac命名了滴定分析方法,因此被认为是滴定分析法的发明者。如今,滴定法成为最重要的化学分析技术之一,应用普遍而频繁。其方法采用人工操作、眼睛观看颜色、大脑对颜色变化做出判断、语言形容滴定过程的额颜色变化,属于主观判断的感官分析方法,简单、应用广、速度快、成本低,也存在受色评价环境影响大、语言描述模糊、眼睛感受的个体差异大、手工控制滴定准确度差等缺点,这种建立在主观观察基础上的方法已经不适应现代检测技术的需求。只是由于历史过于悠久,其建立海量检测方法、技术标准以及应用领域的习惯,致使其还在广泛应用。化学反应过程的颜色变化,是化学结构变化的可见光表现,颜色变化代表反应过程的进程,是结构对光谱吸收的性质,所以测量的颜色变化可以准确表征反应中物质结构的变化,这也是与感官滴定方法一脉相承。现代研究证明,颜色的最精确的测量方式是分光式测量方法,颜色可以用CIE 1976(L*a*b*)彩色均匀空间的三维坐标位置标识,每个颜色都有其唯一指标位置,颜色的变化可以在CIE 1976(L*a*b*)彩色均匀空间的三维坐标中描述出变化轨迹,从而将主观的颜色变化描述转变为客观测量数据,进而实现化学分析过程的光谱滴定测量技术。光谱滴定方法的基础是色测量的分光式测量方法,所以,从原理上它就具有高准确度、高可靠性、可量值溯源的优点。计入相关变量因子算法的滴定曲线的凸变峰型非常明显清晰。具有准确、可靠、明显、自动等诸多优点。缺点与光分析方法相似,计算方法复杂、数据量庞大,严重依赖于数据处理系统,这在计算技术高速发展的今天已经不是问题了。而其替代逐步替代感官滴定方法的发展趋势,将成为滴定分析的主导技术,技术应用和仪器市场及其广阔。一、滴定原理与分类目前的滴定分析(titrametric analysis),按测量原理主要分为可见光颜色滴定、电位滴定、温度滴定等三种滴定方法,光谱滴定属于可见光颜色滴定的仪器分析方法,可以替代可见光颜色滴定的大部分方法。1、可见光颜色滴定法颜色测量包括光源颜色的测量与物体色的测量两大类,滴定分析领域关注反应液的颜色变化,属于非荧光物体测量。化学滴定分析反应中的可见光颜色测量属于非荧光物体测色,为感官颜色滴定法和传统仪器颜色滴定法两大类。其中,仪器颜色滴定法包括光密度法、紫外光度滴定、可见光光-电积分法和分光光度滴定(光电滴定)。仪器颜色滴定法测量反应液体颜色是测定液体在测量时的光谱光度特性反应液体光谱反射比P(λ)或者反应液体的光谱透射比τ(λ)等,计算出色刺激函数φ(λ)之后,根据色度学的三个基本方程求出被测颜色的CIE三刺激值X、Y、Z(标准照明体Y= 100)。 1.1 感官颜色滴定法其实质是一种目视光度测定法,原理是利用加色混合定律,将各个分量的未知色加在一起,以描述所得的未知色。是依靠反应过程中的颜色的变化,用人眼作为感受器、大脑判断颜色变化程度,在被测量溶液中加入指示剂或者依靠反应过程中的颜色感官颜色滴定法直观、简便、快速等优点,是滴定实验中最常用的方法之一,是一种完全主观评价方法,同时也是最简单的一种方法。眼睛是一种光学系统,能够在视网膜上产生图像。它由包括角膜、水状体、虹膜状体以及玻璃体等实体组成,使眼睛能够针对以105系数变化的照明水平简单而快速地做出反应。眼睛能够感知的最小照度为10-12Lx(相当于夜空中黯淡的星光)。为了能够感知到光,人眼中包含了锥状细胞和杆状细胞两种感光器:锥状细胞感受到各种颜色(“明视觉”),对波长555 nm的黄绿光谱区域,其灵敏度最高;杆状细胞使我们看到的是黑白的画面(“夜间视觉”),在波长507 nm的绿光谱区域,其灵敏度最高。人眼对光谱灵敏度曲线见图1。图1.人眼对光谱灵敏度曲线其弊端在于观察变色阈值是借助人眼,经验和心理、生理因素的个体差异引起较大的判断误差,无法溯源,受环境条件影响大,可变因素太多,且无法进行定量描述,从而影响到评估的准确性和可靠性。虽然感官颜色滴定法是应用面最广的分析方法,但其主观测量结果的缺陷致使其处于被逐步淘汰的趋势。1.2、可见光-光密度检测分析法 光密度测量是测量反射光量和入射光量的大小,光密度计提供的光之间的差别是光的吸收量,也即被测液体表面层的吸收光量大小,吸收特性的度量,只表示黑或灰的程度。该方法只要应用在印刷行业,“彩色密度”是指测量时,通过红、绿、蓝三种滤色片分别来测量黄、品、青油墨的密度。它直观地反映了C、M、Y、K四色印刷的密度、网点百分比、油墨叠印率等,被广泛用于印刷行业的颜色和墨层厚度控制当中。 1.3、可见光光-电积分法 光电积分法是20世纪60年代仪器测色中采用的常见方法。是测量整个测量波长区间内,通过积分测量测得样品的三刺激值X、Y、Z,再由此计算出样品的色品坐标等参数。通常用滤光片把探测器的相对光谱灵敏度S(λ)修正成CIE的光谱三刺激值x(λ)、y(λ)、z(λ)。用这样的三个光探测器接收光刺激时,就能用一次积分测量出样品的三刺激值X、Y、Z。滤光片必须需满足卢瑟条件,以精确匹配光探测器。卢瑟条件如下:此类型仪器的测色准确度是与仪器符合卢瑟条件的程度有直接关系的,要做到完全符合上述条件是很困难的。在实际的滤色修正中,由于色玻璃的品种有限,仪器不可能完全符合卢瑟条件,只能近似符合应用部分滤光片法可使x(λ)和z(λ)曲线的匹配积分误差小于2%,y(λ)曲线的匹配积分误差小于0.5%。光电积分式仪器不能精确测量出被透射液体的三刺激值和色品坐标,但能准确测出被透射液体的色差,因而又被称为色差仪。所以,色差仪原理也可以进行颜色滴定分析,受其依据的原理限制,误差大、应用范围有限。 1.4、可见光-分光光度法 分光光度滴定(spectrophotometric titration),又称光电滴定(photoelectric titration)。通过测量滴定过程中吸光度又称分光光度滴定法。它是通过样品液体的透射光能量与同样条件下标准样品透射的光能量进行比较,得到样品液体在每个波长下的光谱吸收率,然后利用CIE提供的标准观察者和标准光源公式计算,从而得到三刺激值X、Y、Z,再由X、Y、Z按CIEYxy,CIELab等公式计算色品坐标x.y,CIELAB色度参数等。该方法以待测组分、滴定剂、反应产物在滴定过程中吸光度的变化确定滴定终点的分析方法。它能在底色较深的溶液和无色溶液中滴定,检测微弱吸光度变化、可准确确定滴定终点。该方法通过测量探测样品的光谱成分确定其颜色参数,不仅可以给出X、Y、Z的绝对值和色差值△E,还可以给出物体的分光透射率值和分光透射率曲线。采用此类仪器可实现高准确度的色测量,可对光电积分测色进行定标,建立色度标准等,故分光式仪器是颜色测量中的权威仪器。1.4.1光度滴定法光度滴定(photometric titration) 是在滴定过程中,用光度计记录特定波长的吸光度的变化(非颜色变化)。要求滴定过程中,溶液吸光度Abs的变化遵循朗伯-比尔定律。滴定时,每加入一定量的滴定剂,都同步在相同波长下记录其吸光度。然后以吸光度A为纵坐标,标准溶液的体积V为横坐标,绘出光度滴定曲线,从两条切线的交点可求得滴定终点。光度滴定方法要求被滴定溶液的吸光度的变化必须遵循朗伯-比尔定律。光度滴定法对于某些纯净液体和波长吸收特征性强的反应,非常方便,适用于滴定有色溶液、略微混浊的溶液、微量物质,有较高的灵敏度和准确度。由于采用单波长检测,不能适合反应前后由于结构改变导致的特征吸收波长偏移,而且当化学反应出现多次多个吸收波长时,无法获得多滴定终点的光度信号,可靠性和适用性差。1.4.2紫外光度滴定(ultraviolet photometric titration)利用溶液紫外光吸收的变化观察终点的一种光度滴定。例如,被测物是无色的,伴随滴定的进行,其紫外光吸收在改变。1.4.3浊度滴定(turbidimetric titration )又称比浊滴定法。利用沉淀的生成或消失,溶液浊度发生变化进行的滴定。用通常的光度滴定装置可进行滴定,由于沉淀粒子吸收光、沉淀的反应滴定。1.4.4可见光光谱滴定技术新一代可见光光谱滴定法技术(Visible Spectral Titration Technology, VSTT)是在可见光-分光光度法的基础上发展的。它是测量反应液体的多个设定波长的光谱透射比τ(λ),计算出光谱滴定曲线。在曲线上的凸变峰对应的体积值均为颜色突变点。该颜色突变点视为物质结构改变点,对应的加入试剂体积数为滴定终点的体积数。该方法的基础是色测量的分光式测量方法,所以,从原理上它就具有高准确度、高可靠性的优点。而采用现代数据处理技术剔除高速测量产生的噪音干扰,分离出的信号计入相关变量因子的算法,使滴定曲线的凸变峰型号非常明显清晰。具有准确、可靠、明显、自动等诸多优点。缺点与光分析方法相似,不能分析混浊、固体和半固体、终点无色变的化学反应溶液及其过程,而且计算方法复杂、数据量庞大,严重依赖于数据处理系统,这个缺点仅相对于其他方法相比,对于现代计算技术的发展根本不是问题。光谱滴定方法是2015年搭建成原理验证机、2018年提出光谱滴定的概念。依据该方法原理研发的设备和方法应用业内尚未普及,出版的文献著作仅有《化学光谱滴定技术》(王飞,著)。依据其原理和应用,光谱滴定方法可以替代感官颜色滴定法、可见光光-电积分法、单波长可见光分光光度法,与电位滴定方法、温度滴定方法一起成为滴定分析领域的3种仪器分析方法,相互补充。2、电化学分析法电化学分析法(electrochemical analysis)是以,测量原电池的电动势为基础,根据电动势与溶液中某种离子的活度(或浓度)之间的定量关系(Nernst 方程式)来测定待测物质活度或浓度的一种电化学分析法。是滴定领域中出现最早、应用最广的仪器测量技术。它是以待测试液作为化学电池的电解质溶液,比较其中一只电极电位随试液中待测离子的活度或浓度的变化而变化,与另外另一支是在一定温度下电极电位基本稳定不变之间的电动势来确定待测物质的念量。 1893 年德国学者 Rorbert Behrend 首次使用在滴定实验中应用电位分析方法做为判定终点方法。20 世纪中期自动电位滴定法在化学分析中开始流行,万通公司于 1949 年推出第一台用于酸度滴定的自动电位滴定仪 Titriskop。1957 年首创第一支活塞滴定管取代玻璃滴定管,1961 年诞生能够自动记录滴定曲线的自动电位滴定仪 Potentiograph。1971 年出现联用计算机的高性能电位滴定装置,1978 年,微处理技术与动态滴定技术结合,缩短分析时间的同时增强滴定精度。本世纪自动电位滴定仪的生产商较为著名的还有美国布鲁克海文公司、瑞士梅特勒-托利公司、英国马尔文公司、上海仪电科学仪器、上海雷磁科技公司、江苏新高科等。电位滴定法能有效减少人眼判断产生的主观误差,不需样品指示剂,无关溶液颜色和混浊度。是当前世界上最常用的自动化滴定方法。但其缺点在于电极使用不便、无法高温测定和滴定终点与颜色标准不一致。同时无法测定无离子参与、低浓度溶液、滴定产物稳定性小的单组分、滴定产物稳定性接近的多组分溶液浓度,严重影响的其使用范围。电分析法包括:电解法(electrolytic analysis method):电重量法(electtogravimetry):库伦法法(coulometric)库仑滴定分析法(coulometric tiyration):测定电解过程中所消耗的电量,按法拉第定律求出待测物质含量的分析方法称作库仑分析法。库仑分析法还可分为控制电位库仑分析法和恒电流库仑滴定法。电导法(conductometry) :电导分析法(conductometric analysis) :电导滴定法(conductometric titration):电位法(potentiometry) :直接电位法(dirext potentiometry):通过测量电池电动势来确定指示电极的电位,然后根据Nernst方程由所测得的电极电位值计算出被测物质的含量。电位滴定法(potentiometric titration):在滴定过程中通过测量电位变化以确定滴定终点的方法。和直接电位法相比,电位滴定法不需要准确的测量电极电位值,因此,温度、液体接界电位的影响并不重要,其准确度优于直接电位法。与感官颜色滴定法相比,对于待测溶液有颜色或浑浊时,终点的指示就比较困难,或者根本找不到合适的指示剂。电位滴定法是靠电极电位的突跃来指示滴定终点。在滴定到达终点前后,滴液中的待测离子浓度往往连续变化n个数量级,在等当点附近发生电位的突跃。被测成分的含量仍然通过消耗滴定剂的量来计算。因此测量工作电池电动势的变化,可确定滴定终点。电位滴定法无主观误差,是当前世界上最常用的自动化滴定方法。缺点在于必须针对不同化学反应类型选用特定电极、电极表面胶体与溶液交换接触交换电荷的接触式测量致使对含量低的样品测定产生较大影响、受温度影响大且不能高温测量、信号延迟、滴定终点与颜色滴定终点难以一致。伏安分析法(voltammetry):利用电解法过程中测得的电流-电压关系曲线(伏安曲线)进行分析的方法称作伏安分析法。极谱分析法(polarography):是用滴汞电极的伏安分析法称作极谱分析法。溶出法(stripping method):电流滴定法(amperometric titration):3、温度滴定法温度滴定法是非接触式传感探测技术。是一种量热分析技术,即用一种反应物滴定另一种反应物,随着加入滴定剂的数量的变化,测量反应体系温度的变化。滴定一般在尽可能接近绝热的条件下进行,被滴定物可以是液体或悬浮的固体;滴定剂可以是液体或气体。温度变化是由滴定剂与被滴定物间的化学作用或物理作用(例如一种有机分子吸附于固体表面)引起的。1922年P.迪图瓦和E.格罗贝特建立热滴定法,用于容量分析。1924年P.M.迪安和O.O.瓦茨最早使用测温滴定这一术语;以后又有人采用热滴定、焓滴定、测温焓滴定、量热滴定和测温滴定等术语,至今仍未统一。70年代以来,由于与滴定量热计相关的一些技术(如恒温浴、恒速滴定装置、反应容器、温度传感电路以及数据分析手段等)获得迅速发展,连续滴定法结果的精度已可与常用溶液量热计比美,而且能够滴定少于毫克级的试样。因此热滴定不仅可用于分析目的,而且已成为一种精密量热技术。滴定量热法特别适用于下述目的:在有连串反应或并行反应存在的情况下,测定焓变ΔH;用于包含微弱相互作用物种的反应,求吉布斯函数改变ΔG;鉴别络合反应中存在的物种等。还用于测定混合热、物质在两相中的分配系数和吸附容量等,并可用于生物化学、微生物学和环境化学等方面。实验数据以热谱图形式表示,它提供了有关反应中物质的量(滴定终点)和反应物质的特性(焓变)的数据。对图进行分析,可以得知反应容器中发生的反应的类型和数目,以及溶液中存在的各物种的浓度等信息。这部分内容称为热滴定,同时还可以确定反应的化学计量关系,计算反应的热力学量,如平衡常数K(ΔG°)、标准状态下的焓变ΔH°和熵变ΔS°,这部分内容称为滴定量热法。测温滴定法以热效应为基础,与溶液的许多性质(如粘度、光学透明度、介电常数、溶剂强度、以及离子强度等)无关,因此可以用于气相、液相、非水溶液、有色溶液、胶体溶液和粘稠浆状等体系。温度滴定法的特殊优点是不干扰滴定反应,如离子强度或溶剂等,则在很大程度上与它们无关。同时可以操作有色溶液,胶体溶液或浆液。同电化学方法中的电极比较,作为测量器件的温度传感器是惰性的,并且它不伪示试样成分参与反应的结果。但无法应用于同时放热和吸热复杂化学反应过程,应用受限。温度滴定方法利用滴定反应的热效应测定滴定度容量,弥补了电位滴定的缺陷。最早的温度滴定方法应用报道在 1913 年,作者是 Bell 和 Cowell。1969 年,L.S.Bark 等在著作中介绍了温度滴定方法。1973 年E.VanDalen 应用拜耳法进行氢氧根和氧化铝的滴定。自 20 世纪 70年代以来,自动电位滴定方法占据了主导地位,而温度滴定在工业过程和质量控制等领域温度滴定技术一直未得到充分利用。90 年代,温度滴定较大的发展,在工业过程和质量控制等领域温度滴定技术得到充分利用。温度滴定技术的优势是非接触式传感探测,不接触被测量液体、不需要更换电极,测量与离子强度或溶剂无关,能用于胶体溶液或浆液的浓度滴定。但温度滴定仪无法应用于放热和吸热两种复杂反应过程均存在的化学反应,大大限制其应用领域。经典颜色滴定、温度滴定、电位滴定分析技术,已远远不能满足前沿科学研究对化学分析准确度、便捷性和可靠性要求。因此,发展采用可见光连续光谱测量的技术技术手段,弥补已有电位分析、温度分析的不足,通过对呈色化学反应进行连续光谱分析,实现被测定物质化学反应过程中形态变化的用光信号进行滴定的方法由可能成为化学研究、各行业检验检测需求提供解决问题的新技术手段。二、滴定技术的发展化学研究者和仪器制造厂商也积极进行研究,试图客观的进行化学分析测定。上世纪 30 年代,Muller 等率先在滴定分析中使用光度计设备,最早的实用化光度滴定设备是瑞士万通公司于 60 年代研制的数字滴定管和数字化滴定仪,70 年代已有将滴定仪和计算机控制相结合的研究出现。随着机械加工和光学探测器的发展,光度滴定装置引入了 LED 光源、光电二极管、光电倍增管、光谱仪等光电探测设备。ManoelJ.A.Lima 等使用自制的 LED 光度计搭建多流分析全自动光学滴定设备,用于测定果汁、醋、葡萄酒酸度。中国储备粮管理总公司成都粮食储藏科学研究所研发了测定粮食油脂酸价的仪器。2008 年,姜能座使用便携式光纤光谱仪用最大吸光度为滴定终点,得到了多个波长的光度滴定,实现了最大波长的寻找,但无法应对多波长变色(出现 2 个以上的波长)。由于采用单波长吸收峰分析滴定过程的技术缺陷无法满足化学反应的全光谱变化“蓝移”和“红移”需求,极大限制了光度滴定仪器的应用。此外,近年来,将图像技术应用于滴定技术的研究也进行了研究。使用 CCD 或 CMOS 设备获取溶液的图像信息,通过图像特定区域的彩色信息 RGB 值和滴定剂消耗体积的映射关系判断滴定终点。Alexander Y.Nazarenko 使用 USB 摄像头滴定测量废水的硬度。王晓丽开发摄像头滴定仪。朱自兰基于视觉特性的图像处理技术将24bit 彩色转换成 8bit 的伪彩色进行量化。图像滴定方法具有工作稳定、实验易于跟踪,但是对混浊溶液的滴定终点判断较差,无法数字化溯源、不同图像处理技术差异显著,严重影响系统一致性和测量精确度要求。滴定技术发展简史见图2,滴定分析仪器的发展见图3。.图2.滴定技术发展简史图3.滴定分析仪器的发展光谱滴定仪在滴定领域的优点:没有与溶液接触的电极而不干扰测定,颜色变化只与被测物结构变化有关,颜色变化曲线与物质结构变化致光谱变化相对应,CIELAB滴定曲线清晰、终点突变显著技术,路线新颖,测量结果稳定,测量精度高,量值可溯源,沿用颜色突变原理而与传统方法/标准吻和,可以广泛应用在化学分析的诸多领域,将取代手工滴定为自动滴定。在可见光光谱滴定的基础上,可以开发出紫外光谱滴定技术、红外光谱滴定技术、可见光光谱物质形态结构分析技术等等。其缺点是由于目前技术刚成型,尚缺乏深度的研究,局限于测量可见光谱范围内有颜色变化的化学反应。该技术在以下方面尚待深入研究:广泛应用的技术应用、光谱曲线与化学结构关系、光谱滴定的国际/国家/行业/团体/企业的标准/方法/文献、新数学模型、专用仪器开发。化学光谱滴定技术通过化学反应形态光谱分析关键技术的研发与应用,为研究化学反应物质结构形态变化、揭示形态与光谱信号产生的机理提供一种新的可见光全光谱分析技术。未来的市场需求量极大,有极大的实用价值与新领域的开发前景。三、新技术——光谱滴定技术化学反应光谱滴定检测技术(Chemical Reaction Spectrometric Titration Detection Technology,STCRM)是在化学反应中,基于化学基团形态结构的变化对光谱中某波长的吸收,引起初始光谱变化,从光谱变化信号的过程分析滴定过程和物质结构变化。本文所指的光谱滴定技术是可见光光谱滴定技术(Visible Spectral Titration Technology, VSTT),从光谱变化特征推断化学反应进程。在380 nm~780 nm范围内,采用CIELAB色空间技术对光谱变化即时测量、处理,与化学反应进程同步。这是利用化学反应过程发生的光谱变化表征物质结构的一种新技术。光谱滴定技术是2018年中国人在世界上首次公开的原创新技术。光谱滴定技术是在可见光可见光-分光光度法的基础上:1、引入CIALAB彩色均匀空间算法,将溶液的颜色变化采用色空间的色度值进行标识;2、与体积等因子关联,研发了突变峰曲线算法,使滴定终点清晰明了; 3、特殊的光学通道,配合混合技术,将扰流降低的同时达到反应充分的目的;光谱滴定技术在滴定领域的优点:没有与溶液接触的电极而不干扰测定,颜色变化只与被测物结构变化有关,颜色变化曲线与物质结构变化致光谱变化相对应,CIELAB滴定曲线清晰、终点突变显著技术,路线新颖,测量结果稳定,测量精度高,量值可溯源,沿用颜色突变原理而与传统方法/标准吻和,可以广泛应用在化学分析的诸多领域,将取代手工滴定为自动滴定。从历史的发展看,光谱滴定技术可以完全替代感官滴定和光度滴定,从而与电位滴定技术和温度滴定技术共享未来滴定领域。从目前的研究进展看。目前,光谱滴定分析技术在世界上处于初始理论、原理机探讨研究阶段,未查到系统研究化学光谱检测技术的文献和实际应用的光谱滴定分析仪器,没有从可见光光谱的角度提出新的研发路线。2012 年起,中国工程师在这方面率先开展了探索研究,以酚酞为指示剂、氢氧化钠溶液滴定邻苯二甲酸氢钾配置氢氧化钠标准溶液为例,验证了光谱滴定技术的可行性。2015年搭建了原理验证机,确定了光谱滴定技术的技术路线。2016年申请了《化学分析用氢氧化钠标准溶液配制的CIE 1976 L*a*b*色空间法》(201610090734.2)等十余个相关专利。2019年出版了《化学光谱滴定技术》(中国标准出版社)著作。3.1 光谱滴定原理CIELAB(为国际照明委员会,International Commission on illumination,法语:Commission Internationale de l´Eclairage,简称为CIE)在1976年年会上批准的一个非照明的彩色均匀空间计算体系L*a*b*彩色均匀空间(其中L*是CIELAB色度值的明度,a*是CIELAB色度值的红-绿色品指数,b*是CIELAB色度值的黄-蓝色品指数)。L*a*b*彩色均匀空间的色度值参数在化学滴定分析中的映射模型,是CIE非照明标准方法在化学滴定领域的应用。3.1.1 可见光光谱中每一种色光不能再分解出其他色光,称它为单色光。由单色光混合而成的光叫复色光。在光照到物体上时,一部分光被物体反射,一部分光被物体吸收。透过的光决定透明物体的颜色,反射的光决定不透明物体的颜色。不同物体,对不同颜色的反射、吸收和透过的情况不同,因此呈现不同的色彩。比如一个红色的光照在一个绿色的物体上,那个物体显示的是黑色。因为绿色的物体只能反射绿色的光,而不能反射红色的光,所以把红色光吸收了,就只能看到黑色了。2)光的吸收定律的适用范围布给-朗伯定律广泛成立,而朗伯-比尔定律则在许多情形下不成立。朗伯比尔定律必须满足下列全部条件:入射光为平行单色光且垂直照射、吸光物质为均匀非散射体系、吸光质点之间无相互作用、辐射与物质之间的作用仅限于光吸收(无荧光和光化学现象发生)、吸光度在0.2~0.8之间、适用于浓度小于0.01 mol/L的稀溶液。实际上的化学反应条件,不可能全部满足以上条件,这种情况叫偏离光吸收定律。偏离光吸收定律是指吸光度对溶液浓度作图所得的直线的截距不为零或吸光度与浓度关系是非线性的现象造成偏离光吸收定律的原因有:1、单色光不单纯:入射光为一很窄波段的谱带,其光谱带宽度大于吸收光谱带时,则投射在试样上的光就有非吸收影响;2、溶液性质引起的偏离:浓度高时,吸光粒子间的平均距离减小,受粒子间电荷分布相互作用的影响,他们的摩尔吸收系数发生改变;3、溶质和溶剂的性质:由于溶质和溶剂的作用,生色团和助色团也发生相应的变化,使吸收光谱的波长向长波长方向移动或向短波长方向移动,即所谓的红移和蓝移;4、介质不均匀性:被测试液不均匀,是胶体溶液、乳浊液或悬浮液,则入射光通过溶液后,除了一部分被试液吸收,还会有反射、散射使光损失,导致透光率减小,使透射比减小,使实际测量吸光度增大,使标准曲线偏离直线向吸光度轴弯曲;5、溶质的变化:化学反应的解离、缔合、生成络合物或溶剂化等,致使吸光度与浓度的比例关系便发生变化;6、化学反应的呈色影响:溶液中有色质基团的聚合与缔合,形成新的化合物或互变异构等化学变化以及某些有色物质在光照下的化学分解、自自身的氧化还原、干扰离子和显色剂的作用等。所以,单波长的光度滴定方法使用范围是十分有限的。3)光谱滴定原理在化学光谱滴定中,溶液中试剂因子的变化引起被测物结构的改变,这种改变伴随着其吸收光谱某些波长的变化(颜色变化),该变化点为滴定终点。测量吸收光谱的改变,可以推算其结构的变化条件。具体技术路线是:用突变峰同步对应的体积量为反应物质加入量,采用连续同步测量技术,测量可见光光谱的吸光度、试剂加入体积、CIE 1976(L*a*b*)均匀彩色空间的参数值。该技术用于分析物质结构,用于滴定领域的光谱滴定技术,为化学分析引入了新的测量分析技术。研究者提出了以下6个光谱滴定的定理:⒈ 光谱-结构变化定理:化学反应中可见吸收光谱的改变,一定是参与反应中呈色物质中的至少一种物质结构或者浓度发生了变化。⒉ 光谱-结构不变化定理:化学反应中,物质的结构和浓度的变化不一定引起可见吸收光谱的改变。⒊ 突变峰-结构定理:化学光谱滴定的坐标曲线参数的突变峰只与结构有关,与呈色物质的浓度无关。⒋ 色空间曲线-结构定理:呈色物质结构或浓度的改变与CIELAB彩色均匀空间直角坐标系的参数曲线变化对应。⒌ 曲率测定定理:CIELAB彩色均匀空间直角坐标系的参数曲线的曲率发生变化,一定对应着被测量溶液中的2种以上物质发生了浓度或者结构上的变化。⒍ 光谱-化学光谱分析的颜色定理:CIELAB彩色均匀空间测量的参数是溶液中全部呈色物质混合的可见吸收光谱呈现的颜色参数。3.2 光谱滴定计算依据与公式3.2.1 CIE 1976(L*a*b*)均匀彩色空间的参数值计算CIE 1976(L*a*b*)色度值,由光谱滴定仪的数据处理软件读取的吸光度值后,按公式计算出样品在CIE 1964标准色度系统的三刺激值X、Y、Z,再按照公式计算CIE 1976(L*a*b*)色空间的心理明度L*、心理彩度坐标a*和心理彩度坐标b*。3.2.2 光谱滴定参数计算程序化学反应光谱CIELAB色空间的参数值与物质量关系计算方法,吸光度与CIELAB彩色空间参数值算法示意图见图4。计算步骤包括:对化学反应溶液在可见光波长范围内测量加入的不同反应物体积V值对应的一组波长的吸光度值,计算出CIELAB色空间的参数值,建立平面直角坐标系,该平面直角坐标系中的曲线即为化学反应参数与反应物体积V代表的物质特征量的坐标曲线;3.3光谱滴定仪的基本结构3.3.1 基本结构图 光谱滴定仪的光路结构示意图见图5、光谱滴定仪系统工作原理见图6、光谱滴定仪结构示意图见图7、光谱滴定仪设计示意图见图8、光谱采集中的背景噪声去除路线图见图9。图5.化学光谱滴定仪光路结构示意图图6.光谱滴定仪系统工作原理光谱滴定仪(可见光光谱化学滴定分析仪,Visible Spectrochemical Titration Analytical Instrument,简称VSTAI)由以下系统/装置组成:光路系统、试剂流量控制装置、搅拌装置、反应容器、控制系统。光谱仪性参数见表1。表1.光谱滴定仪性能参数表3.3.2 独有技术与所有权光谱滴定技术部分知识产权见表2。表2.专利申请与PCT统计表(部分)技术与仪器主要创新点1、首次研发化学光谱滴定技术,并将其首次应用于呈色化学滴定过程,实现了被测定物质量的光谱滴定自动化测定。2、首次研制光谱滴定仪,为精确化学反应溶液中分子、离子、官能团的反应过程提供了仪器测量基础。3、首次应用光谱滴定仪结合色空间光谱同步测量技术,发明了化学滴定终点的色空间光谱突变曲线计算方法,实现了可见光光谱滴定技术的自动化。实现了多参数精确测量化学反应过程中物质变化的过程,为化学分析的精确研究提供了一种新仪器、新技术、新方法。图10.光谱滴定仪(原理验证机Ⅱ型)3.4 不同滴定方法的优缺点图11.光谱滴定方法与其它方法的优缺点比较3.5 光谱滴定应用案例3.5.1理论、技术及预实验对研究方案的可行性保障光谱滴定分析仪的研制分为四个部分:一是温控防扰动搅拌测量分离式靴型反应器的设计加工。该反应器的合理设计是确保待测溶液光谱信号的稳定获取以及光程值高精度测量的关键保障,其加工、装校和缺陷影响的补偿,是仪器研发的技术核心,重中之重;第二是仪器光学元件和机械件的集成;第三是利用多维光谱彩色空间映射模型渐进式滴定终点可控方法,构建化学反应滴定模型;第四是将研制的光机电模块化组件配合化学滴定,要求协同高效工作。第一、二部分的工作涉及硬件较多,关系到是否能研制出达到设计要求的测量装置;第三部分是算法模型,决定拟研制的仪器能否真正实现反馈式自动滴定,达到准确实时的测量要求;第四部分涉及拟研制的仪器能否真正用于化学分析的高精度光谱滴定,具有实际应用及推广价值。只有将以上问题全部解决,才能研制出参数符合要求且具有广阔实际应用前景的仪器。1)、分离式反应器关键元器件加工及缺陷补偿的可行性。在前期研究中,设计加工了反应器样品模型,用独特的粘合方法将平行光学透镜粘合固定,制作了光程10 mm的反应器样品。将其应用于实际的化学反应《SN/T 4675.25-2016 出口葡萄酒颜色的测定 CIE 1976(L*a*b*)色空间法》测试中,结果表明其加工误差造成的测量值误差L*值<0.1、a*值<0.01和b*值<0.01,符合标准要求。在后继仪器研制中,有信心沿用已有的质量控制体系,对分离式靴型反应器的加工方式采用工业标准化的浇筑模具成型和激光焊接/化学粘结,成品会优于标准化要求。同时,将研发光程测量仪器及相关操作程序,可以更好的完成靴型反应器的质量控制。2)、光谱滴定分析仪光机电模块集成的可行性。前期的实验研究中已尝试将试剂控制装置、分离式反应器、光路与光源及测量元件、主控电路板及搅拌控制装置固定在仪器底座上,方法验证采用氢氧化钠滴定邻苯二甲酸氢钾、酚酞为指示剂测量氢氧化钠溶液的浓度(《GB/T 601-2016 化学试剂标准滴定溶液的制备》中“4.1 氢氧化钠标准滴定溶液”),四平行标定结果相对极差不大于相对重复性临界极差[CR0.95(4)r=0.15%],两人共八平行标定结果相对极差不大于相对重复性临界极差[CR0.95(8)r=0.18%],与标准方法进行比对(t检验)符合性。案例1:待标定的氢氧化钠溶液的滴定表3. 光谱滴定法滴定氢氧化钠标准滴定溶液的体积数序号滴定时消耗的体积数ml20℃标准温度消耗的体积数ml空白0.04320.043241————————235.601435.6334336.417336.4105435.327235.3590535.867335.8896636.267736.3003735.990236.0226835.792535.8247935.840735.87301036.098336.13081135.998636.03101236.417336.4105人工标定0.1 mol/L的氢氧化钠溶液时的温度为23℃,换算为20℃标准温度系数为-0.6 L。标定数据见表1。表1. 0.1 mol/L的标定数据序号滴定时消耗的体积数ml20℃标准温度消耗的体积数ml邻苯二甲酸氢钾的摩尔质量氢氧化钠溶液浓度mol/L00.050.05003————————135.4035.421240.75020.10386235.9035.921540.75810.10349335.8035.821480.75670.10358435.8035.821480.75640.10354535.4035.421240.75020.10386635.8035.821480.75440.10327735.5035.521300.75030.10358835.9035.921540.75750.10340平均值0.1036单人四平行标定结果:相对重复性临界极差[CR0.95(4)r0.140.201、光谱滴定方法与标准物质、人工滴定结果分析实际测量数据与结果见表3-1、浓度差值见图1。表3-1.理论计算与光谱滴定方法标定0.1 mol/L氢氧化钠溶液序号邻苯二甲酸氢钾(g)理论光谱滴定理论与光谱滴定测定值的浓度差值(mol/L)消耗的体积(mL)浓度(mol/L)消耗的体积(mL)浓度(mol/L)10.7527————0.1036————————————20.752235.657135.63340.10349-0.0000830.755036.275636.41050.10166-0.0019140.741935.982635.35900.10287-0.0007050.755435.2490 35.88960.10319-0.0003860.749536.585736.30030.10122-0.0023570.751635.922136.02260.10229-0.0012880.748735.963335.82470.10246-0.0011190.755835.536435.87300.10329-0.00028100.756736.087936.13080.10268-0.00089110.753536.183836.03100.10253-0.00104120.754036.386436.41050.10152-0.00205平均值0.10250.0011标准偏差(S)0.000748相对标准偏差(RSD%)0.7298图1.光谱滴定法标定氢氧化钠标准溶液(0.1 mol/L)在不同的技术验证过程中,有符合性很好的案例,也有偏离的案例。分析其原因,自主搭建的原理验证机的稳定性不是很好应该是主要原因,如果该用一致性好、稳定性优于手工搭建的的商品化机型,可以解决该问题。后续的研究工作中将继续沿用此集成方案,但由于标准化机型要求的引入,滴定精度增大,制造的技术难度将会相应提高。2、光谱映射模型结合滴定终点可控方法构建化学反应滴定模型的可行性。化学反应速度快、结构变化复杂,需要处理的数据量大、逻辑关系复杂,而仪器本身光电结构件多且运动轨迹复杂。因此系统控制软件需要实现毫秒测量周期。项目组前期开展的工作采用C++语言,将光谱彩色空间映射模型结合快速渐进式精细化滴定终点可控方法和运动功能部件建立了耦合模型,实现了即时、高速、高精度的亚秒级初步测量。后期的工作要求同步显示降噪后数据图谱,拟增加多个设定周期内降噪、计算、滴定结束的降噪和计算,可达到同步要求。3、将研制的光机电模块化组件配合化学滴定要求协同高效工作的可行性。不同溶液化学反应光谱彩色空间映射模型的轨迹不尽相同。前期已完成的初步映射模型通过实验数据验证了其对简单颜色变化的适应性。通过分析化学反应颜色变化类型,发现一些反应其颜色峰值变化7次以上才能达到滴定终点。从测量原理上分析,非滴定终点的峰值控制可通过调节光机电模块化组件参数实现,需要在不同化学反应测试中寻找变化参数,有了前期工作基础,仪器协同工作最优参数的确定在技术上可以实现。3.5.2科研能力对研究方案的技术保障1)CIE LAB彩色均匀空间技术研究2012年起,项目团队在化学反应中颜色变化与滴定终点的研究中尝试引入了CIE LAB彩色均匀空间技术研究。a. 初步完成了光谱滴定方法的原理测试。包括光信号发生及传输装置、信号转换处理装置、反应池,以及初步探索的CIELAB彩色均匀空间的色度值测量数据算法、测量数据人工智能识别算法、试剂加入量与关联衍生参数的色度滴定曲线算法、光谱突变峰辨识技术的滴定终点反馈控制技术等新的尝试。b. 进行了原理验证测量分析探索。在数据原位读取、足够短的测量间隔、可见光谱多波长同步测量、对被测量体系不产生影响、测量结果与反应条件可以关联、测量结果数字化、量值可溯源等诸多优点,进一步研究发现,测量数据可以精确的标识物质结构变化过程,纠正传统测量分析数据。用光谱滴定技术建立了酚酞在不同pH环境下的CIELAB色空间曲线。4 预期成果4.1 化学反应的颜色变化作为化学反应进程的标识。4.2 化学反应临界点4.3 新技术。在滴定领域替代颜色反应监测和光度反应,与电位、温度互为补充,成为先点仪器分析的。。。5应用领域5.1 在食品中的应用5.2 在农产品的应用5.3在石油化工的应用5.4 在医药的应用5.5 在矿产冶炼的应用5.6 在应用领域的应用6、生产与市场该技术尚未投入市场。产品定位为国内外的粮食、油脂、化工、医药、冶金、颜料、石化、食品等行业,潜在用户仅CNAS(中国合格评定国家认可委员会)注册实验室就有几万家,国外也有相同需求。由于此技术属于化学湿法分析领域的新技术领域,目前没有竞争对手。目前,光谱滴定技术的应用仪器是检测领域的空白,基于光谱滴定的理论、参数计算方法、应用方法、原理验证和商品化仪器均是我们率先开发填补空白的。根据“中国知网”的文献检索,目前仅有零散的光度技术研发,尚未发现光度系列研究成果和产品。我们开发的光谱自动滴定产品克服了感官滴定、电位滴定、光度滴定的缺点,每一步试剂的加入和引起的颜色变化都可以在显示屏上的坐标上精确的表示并画出颜色变化轨迹,颜色数字化标识,滴定精度提高至少10倍,摆脱了人眼作为传感器的弊端,环境光对测定光程无干扰,被测物含量自动计算。整个过程可追溯与复现,是一项颜色分析领域的更新换代技术,也是首次将颜色反应进行量值表示和数字化溯源的产品。由于该技术是我公司首创,是替代感官颜色滴定分析的唯一,目前还没有直接或潜在的竞争对手。但在应用市场上,与电位滴定技术及其产品在滴定分析应用领域有交叉。经过技术和产品的深入研发和应用推广,预计在5年左右,将与电位分析技术有激烈的冲突,重新划分滴定领域技术的占有率。根据标准应用范围,感官滴定标准占分析方法的约50%~60%,电位滴定方法占20%左右,是电位滴定方法的2倍~3倍。根据电位滴定的市场调研(2015),中国市场容量在10亿、世界在70亿。估算光谱滴定技术的市场容量,中国市场容量不低于20亿(估算电位滴定仪的市场容量在3000台/年~5000台/年)、世界140亿左右。瑞士万通、梅特勒等电位滴定仪的价格在25万/台~70万/台不等,光谱滴定仪的功能远超电位滴定仪、市场定价与此相当,估算光谱滴定仪的市场容量在6000台/年~10000台/年。2018年提出了“光谱滴定”概念并确定了概念的内涵,搭建了原理验证仪器,研究了光谱滴定的理论依据,撰写了化学史上第一部《化学光谱滴定技术》著作,对光谱滴定原理、微量试剂控制、反应容器结构、CIELAB彩色均匀空间的色度值映射算法光谱突变峰辨识技术的滴定终点反馈控制技术等方面开展了理论研究和初步试验验证。首次获得了实时动态光谱与试剂量、全谱吸光度、颜色变化之间的耦合关系,突破了化学反应光谱测量技术瓶颈,达到了预期效果,已初步具备将化学光谱滴定技术仪器化的条件。结束语面对化学分析滴定领域每年上几十亿的需求,1893年电位滴定技术解决了电位变化测定,1913年温度滴定技术解决了能量转换量化,1960年的光度滴定可以看成是光谱滴定技术的简化应用,2018年诞生的光谱滴定技术作为新技术的典型,将是下一个滴定技术的研究发展热点。任何一项新技术的发展,都经历过雏形——初始——发展——加速——普及这几个阶段,这个阶段有的技术需要上百年的时间。光谱滴定技术,打破了滴定领域历经30年~40年没有原创革新性技术出现的沉默阶段,用光物理量去分析物质结构变化过程、完成检测领域的滴定应用,将会出现:新的理论:光谱—化学形态理论新的应用技术:食品、化工、环境、医药、地质、粮食、农产品等分析方法新的检测分析仪器:光谱滴定分析仪、物质形态在线分析仪器新的标准方法:新国标、新行标、新团体标准、新国际标准新的专利与专有技术:国内专利、PCT、巴黎协议、国外专利新的产业热点:光谱滴定技术仪器生产、元器件研发、整机与专有商业技术光谱滴定技术的出现,国内外同行相互积极支持配合,研制在化学滴定分析中将光谱信号测量方法用于化学反应中物质含量、形态环境关联变量的实时动态测定仪器,即“光谱滴定仪”和相应的应用技术。将光谱时变信号与滴定过程中试剂注入量精准对应,实时动态记录呈色物质结构在不同环境变量中由量变到质变的进程。研究成果将为化学分析技术提供新的光谱分析测量手段,填补国内外滴定领域中光谱滴定分析的理论和仪器装置的空白。发挥各自的优势,尽快将该项技术应用到具体应用中去。作者:秦皇岛海关技术中心 王飞
  • 电位滴定仪的原理和使用,禾工电位滴定仪的优点和特点
    电位滴定仪原理:电位滴定法是一种用电极电位的突跃来确定终点的滴定方法。在滴定过程中,滴定容器内浸入一对适当的指示电极和参比电极,随着滴定剂的加入,待测离子浓度发生改变,指示电极的电位也发生变化,在化学计量点附近可以观察到电位的突变(电位突变),因而根据电极电位突跃可以确定终点的到达,这就是电位滴定法的原理。 电位滴定仪的结构组成:电位滴定的装置1.电位计2.滴定装置3.工作电池4.磁力搅拌器 一阶微分图 二阶微分图滴定终点判断的方法手工滴定(指示剂的颜色变化)自动电位滴定(电极的信号响应代替人眼对指示剂颜色变化的判断 自动电位滴定的优点: 1.滴定速度更快速, 准确 2.提高结果的重现性 3.减少人为错误 4.自动化进行复杂的滴定程序 5.没有合适指示剂或者有色或浑浊的溶液都可以进行测试 CT-1plus全自动电位滴定仪主要优点和特点:1、自动颜色判定,机器人视觉原理精确颜色判断,大大提高滴定准确度,大大降低了操作人员的误差。2、自主知识产权的计量管活塞,使得滴定控制更精确。3、测试报告符合GLP/GMP规范,U盘存储防伪pdf实验报告。4、测试方法和测试记录条数无限制。 电位滴定种类:1、pH滴定(酸碱滴定) 指示电极:pH玻璃电极 参比电极:饱和甘汞电极2、氧化还原滴定 指示电极:铂电极 参比电极:饱和甘汞电极3、沉淀滴定 指示电极:不同的沉淀反应采用不同的指示电极,如测卤素时使用银电极 参比电极:双盐桥甘汞电极4、络合滴定 指示电极:Hg/Hg-EDTA电极 参比电极:饱和甘汞电极 参比电极:参比电极是电极电位恒定且重现性良好的电极。标准氢电极的电位为零,是参比电极中的一级电极。但由于氢电极制作麻烦,使用不便,故实际工作中少用。分析测试工作中使用的参比电极主要是甘汞电极和银-氯化银参比电极。 电位滴定仪应用行业:石化行业:总酸值TAN和总碱值TBN、皂化值、碘值、溴价和溴指数、硫醇硫含量及含盐量的检测。水质分析中还要检测钙离子、氯离子、氟离子、碳酸根离子等的检测。原油中的盐含量测定;石油产品酸值的测定;三聚磷酸钠中氯化钠含量测定;卷烟纸中碳酸钙含量测定。 医药行业:沉淀滴定:丁溴东莨菪碱、苯巴比妥(银电极);酸碱滴定(非水滴定):门冬氨酸、己酮可可碱、马来酸伊索拉定、双氯芬酸钠等;酸碱滴定(水相滴定):五氟利多、牛磺酸、甘油磷酸钠等;氧化还原滴定:维生素C、青霉素钠、聚维酮碘; 食品行业:酸碱滴定:乳化剂中的酸值、植物油中的酸值、酱油中总酸、淀粉酸度等;氧化还原滴定:糖中的二氧化硫、糖品中亚硫酸盐、植物油中过氧化值;络合滴定:牛奶中钙含量;沉淀滴定:酱油中食盐(以氯化钠计)的含量; 化妆品行业:硼酸及其硼酸盐含量;卤酸盐含量;酯值或含酯量的测定;羰基化合物的测定;
  • 滴定器的历练之路
    滴定管是滴定分析法用的经典玻璃量器,需要精确测出滴定液的体积,因此常常是一根又细又长、布满刻度的玻璃管,这种结构也导致其灌液、控速、读数等比较麻烦,也存在较多人为干扰导致的误差。移液器、瓶口分配器等的诞生,代替了量筒和刻度移液管等玻璃量具,为实验操作带来了很大的便利性,其原理是活塞在一套筒内移动一定距离,所经过的这段圆柱体就是移液体积,通过设置和控制这距离,就可达到“要多少出多少”的效果。滴定器的原理就是反着来,要达到“出多少算多少”的效果,只要测算出活塞移动的距离,就可以换算出滴定液的体积。但实际情况是,相对于移液设备的品类、品牌的百花齐放、丰富多样,滴定器显得冷清很多。一个核心原因是滴定管的精度要求很高,比量筒和刻度移液管的精度高一倍左右,这就对套筒、活塞和距离传导结构有了更高的精度要求。首先,套筒需要是一个几乎完美的圆筒。我们把套筒无限横切,可以得到无数个圆片,而几乎完美的圆筒,需要达到三个一致:一是每个圆片都是圆形,不能有椭圆形、水滴形等其他形状;二是圆片必须直径一致,否则套筒会忽胖忽瘦;三是所有圆片的圆心必须同轴,否则套筒会歪歪扭扭。赫施曼从半个世纪前就开始生产玻璃量具,已有毛细管、移液管、滴定管、容量瓶、量筒等一系列玻璃计量产品,丰富的生产经验和深厚的技术沉淀,使其能够稳定生产出符合滴定器要求的玻璃套筒。其次,活塞要和套筒尺寸贴合。活塞一方面要贴得够紧,不得漏液,另一方面还要运行顺滑,不能卡顿。这除了对活塞的加工精度要求较高外,还要求活塞材质要有弹性、够顺滑,另外还要耐各种滴定液的长期腐蚀(比如赫施曼滴定器采用的PTFE和ECTFE的复合材质)。再次,活塞移动距离的计量和控制要足够精准,也就是连接活塞和计量装置的齿条/螺杆,要间距均匀一致,还要够硬、够顺滑,赫施曼采用的是精密加工的不锈钢齿条/螺杆。以上三点,每一点都是滴定器精度提升的必要条件,三者同时具备,才能得到一个符合滴定管精度要求的滴定器。赫施曼有光能滴定器(手动滴定器)和opus电子滴定器两款滴定器产品。光能滴定自带太阳能板,无需电池,常规室内光就够。加液方式为从底部瓶中直接抽取。利用转动滚轮来控制滴定速度,转得越快滴得越快。读数不看凹液面,直接读取屏幕上的数字即可,无视线误差,快捷、准确,读数完毕可按键进行清零,直接进行下一个样品的滴定。opus电子滴定器可通过触屏来进行读数和控制,滴定速度多档可调。可自动灌液,可持续滴定,也可以半滴滴定(每次出液约20uL),此外还有预滴定功能(可设定添加一定体积的滴定液,然后再继续进行常规滴定,数值累加)。这两种滴定器均为屏幕直接读数,也可连接电脑输出数据,支持各类常规试剂瓶(包括10L甚至更大体积)。针对性解决了常规滴定管的灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。

滴定池相关的方案

滴定池相关的资料

滴定池相关的论坛

  • 赤砂糖还原糖滴定颜色太深

    赤砂糖的还原糖滴定试验标定的时候终点是蓝变紫,复检滴定赤砂糖样液,滴定的时候一开始是黑绿色的,通过加量滴定才会有紫色沉淀,这时已经滴定过量了完全无法判断滴定终点,怎么办?求各位前辈指教。

  • 电位滴定知识

    全自动电位滴定仪使用注意事项一、滴定喷嘴会和滴定液产生扩散吗?有什么影响呢?A) 如果喷嘴没有浸入滴定池的被测液内时,不会有扩散的现象。B) 如果喷嘴浸入滴定池的被测液内时,滴定液与被测液之间会产生扩散现象。C) 扩散的程度,滴定液与被测液的浓度差越大越容易产生扩散现象。但是,若喷嘴先端的毛细管部分因扩散所产生的液体存在时,该液体会抑制两者之间的扩散。D) 常规的酸碱滴定,或氧化还原滴定,其滴定液与被测液的浓度都很低,且滴定时间也短时,其所产生的扩散几乎不会影响滴定的结果数据。二、自动电位滴定仪的测量精度?自动注入器的精度与滴定液-被滴定的关系,将会影响测量的精度。A) 自动滴定注入器的精度;把吐出滴定液的喷嘴浸入被滴定液内的状态下滴定时,其精度为0.005~0.02mL左右。若把喷嘴不浸入被滴定液内时,其一滴约为0.01~0.05mL左右。所以说,滴定一滴(0.05mL)假设滴入与不滴入,其测量精度如如下;(1) 滴定量为10mL时,其精度为±0.5%,(2) 滴定量为1mL时,其精度为±5%。B) 滴定液-被滴定液的关系;有许多组合的关系,以下仅对酸碱滴定为例进行说明;(1) 若是使用如盐酸与苛性碱般的强酸与强碱水溶液的滴定时,因其反应速度极快,且其当量点也甚明确,故几乎无误差产生。(2) 另一方面,如石油的中和值测量法的酸价滴定时,因其为非水滴定的酸碱滴定,故其反应速度甚慢,且当量也不明确。所以其测值的重现性比水溶液滴定的测值来的差。三、应该采取多少的样品才够呢?采取的样品量,能使滴定后的总量达到5~10mL为目标值。四、何谓电位差?把导电性的固体浸在溶液内,则其固体与地线之间会产生电位。此电位因固体与溶液的各别形状的不同而异。若此固体为电极时,我们将可取得单极电极的电位。另外,氯化汞与氯化银之间的电位极为稳定,且其时常的重现性极佳。所以测量氯化汞,与氯化银或硫酸汞等为基准电极(称为比较电极)和其他电极(指示电极)的电位值称为电位差。

滴定池相关的耗材

  • 微水滴定池
    微水滴定池,又称:水分滴定池,微水池等。与WA-1C型水分测定仪配套使用,用于库仑法(电量法)测定样品中的微量水分。
  • 京都电子KEM 自动滴定仪-密封式滴定池 SCU-118
    自动滴定仪-密封式滴定池(SCU-118)Sealed cell unit适用于需要密封滴定的样品。结构包含滴定杯,电极固定装置。可将氮气送至滴定池内,减少干扰,进行滴定。滴定池容量: 200mL。样品需求量: 50mL以上。京都电子(KEM)中国分公司 客服热线: 400-820-2557
  • 微库仑滴定池 硫池 氯池
    微库仑滴定池与微库仑综合分析仪配套使用。用于检测石油化工产品中总硫、总氯的含量。根据检测对象的不同分三种型号:1、硫滴定池:简称硫池(S池),用于检测样品中总硫的含量;2、氯滴定池:简称氯池(Cl池),用于检测样品中总氯的含量;3、氮滴定池:简称氮池(N池),用于检测样品中总氮的含量,该方法目前已很少使用,替代方法是化学发光氮测定法,典型仪器:TN-3000型(化学发光)氮测定仪。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制