粒子碰撞仪

仪器信息网粒子碰撞仪专题为您提供2024年最新粒子碰撞仪价格报价、厂家品牌的相关信息, 包括粒子碰撞仪参数、型号等,不管是国产,还是进口品牌的粒子碰撞仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粒子碰撞仪相关的耗材配件、试剂标物,还有粒子碰撞仪相关的最新资讯、资料,以及粒子碰撞仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

粒子碰撞仪相关的厂商

  • 400-860-5168转4180
    上海续波光电技术有限公司是一家专业从事高性能薄膜沉积及处理设备、光电材料及软件、金刚石合成及应用、激光等离子体仿真和诊断等产品及服务进口的技术贸易服务型公司。公司至今已与法国、德国、英国、瑞士、意大利、美国、加拿大、日本、俄罗斯等国家的多家企业建立了战略合作关系,并服务于国内从事微电子、半导体、光学、纳米技术等领域的研究所和大学。公司从事领域及产品主要包括:加速器质谱仪:第三代14C加速器质谱仪系统(AMS),包括全套可兼容第三代石墨化系统AGE3、气动压样装置PSP、铁制分配器FED、管密封装置TSE、气体电离探测器GID、气体接口系统GIS、碳酸盐处理系统CHS2、同位素比质谱仪IRMS。薄膜制备及处理:磁控溅射仪(magnetron sputtering system)、电子束蒸镀设备(E-beam Evaporation system)、离子束溅射沉积(IBS system)、化学束外延镀膜(CBE/GSMBE)、分子束外延设备(MBE)、离子减薄仪(Ion Milling)、超高真空多功能镀膜设备、高精密光学镀膜设备(Optical Coating system)、刻蚀机(RIE, RIEB)、超导约瑟夫森结制备(Josephson Junction, Qubits)、DLC类金刚石镀膜设备。金刚石制备及应用:纳米晶金刚石制备设备、热丝化学气相沉积(HFCVD)、CVD单晶金刚石合成设备、CVD光学级金刚石窗口合成、微波等离子化学气相沉积(MPCVD)、工具级金刚石涂层制备(tool coating)、金刚石单晶/多晶掺杂(single crystal diamond and doping)、CVD金刚石单晶及其应用、高温高压金刚石单晶(HPHT diamond)、金刚石抛光设备(diamond polishing)、激光切割设备(laser cutting)、钻石净度及切工评定仪器;高能密度物理:辐射流体力学模拟、原子光谱分析软件、多维碰撞辐射软件、三维热辐射CAD软件、状态方程和不透明度、原子物理数据库;微波干涉仪、金刚石靶丸、超高功率输出窗口;激光等离子体气体/固体靶、粒子加速器源、激光等离子体加速器及应用(无损测试)激光器与设计:固体激光器设计软件(Solid-state Laser)、光纤激光器设计软件(Fiber laser)、半导体激光器设计软件(Semiconductor laser)、激光镜面镀膜设备(Lasers coating system)、高功率激光输出窗口(High power output window)、高功率激光热沉片(Heat Sink)、高功率钻石激光器(Diamond Laser)、金刚石窗口镀增透膜(AR coating service);磁场分布测量:微霍尔阵列磁场相机(1D/3D)、大面积磁场分布测量解决方案、永磁转子表磁测量解决方案,多功能表磁测试平台
    留言咨询
  • 金鼎赛斯 全称湖南金鼎赛斯电子仪器科技有限公司 官网:http://www.jdss28.com/ 联系方式:刘小姐13725574173主营:振动台,消声室,汽车充电桩,恒温恒湿试验箱 冷热冲击试验箱 工业烤箱 湖南金鼎赛斯电子仪器科技有限公司座落于风景秀丽的湖南省益阳市桃江县经济开发区桃盛路.是振动冲击,消声消音,电动汽车充电桩行业的领军企业。是专业研发,生产,安装:振动台,冲击碰撞台,消声室,消音室,汽车充电器,交流充电桩,直流充电桩,移动式充电桩,电池电子检测仪器(振动试验机,高低温箱,大型冷库,电池充放电测试机)的生产厂家.公司组织机构完整,售后服务完善,在全国各地都设有办事机构和售后服务点。湖南金鼎赛斯电子仪器科技有限公司,是长沙理工大学在湖南桃江建立的产学研基地和振动,冲击,碰撞,高低温试验箱,液压控制技术研究所,专业从事以电动振动试验机,冲击碰撞试验机,恒温恒湿箱,伺服控制系统为驱动的大型力学环境试验装备、仿真试验装备的研发、生产及技术服务的高科技实体。湖南金鼎赛斯电子仪器科技有限公司的成立,实现了研究所从单一的研发团队向:集公司、大学和研究所产、学、研为一体的高科技企业的转变。公司在原研究所研发团队的基础上,扩充了一批具有丰富经验的工程技术人员,完善了市场营销队伍,建立了完善的生产与技术服务队伍。总部设立在湖南桃江经开区,研发团队设在长沙理工大学,研究所由数位具有10年以上从事非标产品研发经验的博士,研究员组成。公司主要销售振动台、高低温试验箱、机械冲击冲击台、碰撞试验机,加载试验台、疲劳试验台等产品,同时研发各种非标类道路模拟、海航模拟、飞行模拟试验台。 湖南金鼎赛斯电子仪器生产振动控制仪,振动控制器。大型,大台面振动台,机械冲击试验机,瞬断仪,高低温箱,三综合环境测试箱。推力有:2吨、5吨,7吨,10吨,16吨,35吨,20吨,45吨,85吨振动台,台面有:1米X1米,2米X2米,5米X6米
    留言咨询
  • 东莞艾思荔检测仪器有限公司成立于1988年,多年以来一直主力经营可靠性试验设备,并致力于技术研究与品质改善;配套提供专业意见、完善的产品、快速的售后服务。  公司位于东莞市中心,地理位置优越、交通及其便捷。数年来公司坚持致力于高端产品的制造、研发、设计和销售、服务为一体的生产企业,拥有雄厚的技术力量、一如既往为客户提供可靠、质优价廉的“环境试验设备”满足客户的要求。公司产品已广泛应用于IC、电子、家电、通信、电脑、航空航天、兵器、汽车、线路板、连接器等行业和领域,成为其缩短开发周期,提升产品品质的不可或缺的得力助手。  多年以来,为了能够撑控更高的产品品质、更精密的制造技能、先进的管理经营理念;故1995年与日本知名试验设备制造商进行全面合作,不断开发新的产品,从而提升市场的竞争力;并努力降低制造成本,把其利润回馈给客户,使其能拥有品质优良、价格合理、服务到位之产品,进而达到双赢之目的,最终迎得客户的信赖与满意。  公司“ASLi”的商标早在北京商标局已注册,依托先进的技术,多年的研发销售经验,以完美的设计理念,可靠的制造工艺,先进的检测设备,一流的售后服务赢得了广大客户的信赖与和支持。我们通过不断的提升品质,强化管理,完善服务,迅速成为国内一流的环境试验设备生产厂家。   我们秉持“持续改进,追求卓越”的经营理念,“客户的满意即是我们努力之所在”的服务宗旨,愿与新老客户携手共创辉煌。 本公司可订做各种特殊(非标)要求的可靠性试验设备机型。 主营产品:可程式恒温恒湿,冷热冲击试验机,高压加速老化试验机,三综合振动,温度/湿度复合式盐雾试验机,温度冲击试验机,冲击试验台,步入式老化房,高温高湿,快速温变,电磁式高频振动,盐雾试验箱,高低温试验机,二箱冲击,双85试验箱,UV紫外线,沙尘试验机,冲击碰撞,电脑插拔力,三次元,耐光试验,耐水试验,蒸气老化,换气式老化,破裂强度等。
    留言咨询

粒子碰撞仪相关的仪器

  • 颗粒碰撞噪声检测仪,粒子碰撞噪声检测仪,微粒碰撞噪声检测仪,PIND,4511,FELIX产品型号:4511A(22mm台面)4511L(50mm台面)4511M4(100mm台面)4511M6(150mm台面)4511L-R及4511M4-R(宽脉冲) 美国SD公司的颗粒碰撞噪声检测仪用于电子元器件封装后,对器件内多余粒子碰撞噪声检试验,目的在于检测器件封装腔体内存在的自由粒子,是一种非破坏性实验。 用来测试电器零件从而提高电器零件的可靠性。用于检测集成电路、晶体管、电容器、航空/航天/军事领域的继电器等电子元器件封装内的多余物松散颗粒。 工作原理:颗粒碰撞噪声检测(Particle Impact Noise Detection P.I.N.D.)是一种对多余物检验的有效手段。其原理是利用振动台产生一系列指定的机械冲击和振动,通过冲击使被束缚在产品中的颗粒(即多余物)松 动,再通过一定频率的振动,使多余物在系统内产生位移。活动的多余物在产品中发生位移的过程,是多余物相对产品壳体的滑动和撞击的一个随机组合过程。在这个过程中,将产生应力弹性波和声波。这两种波在产品壳体中传播并形成混响信号,这个混响信号被定义为位移信号。采用压电传感器拾取到位移信号后,经前置放大器放大,位移信号由检测装置的主机采集、处理并显示。检测人员可以依据显示的信号波形判定出信号性质,以此得出检测结论。 选型说明:每种型号的颗粒碰撞噪声检测仪都包括:控制器,振动台,传感器,灵敏度测试单元,软件,示波器,电缆,耗材及相关文件。其型号选择主要根据被测件的重量和外型尺寸而定,我们的标准配置采用的是M230振动台可测负载重量,全频率范围内为200克,换能器台面直径为22mm~150mm,换能器因在其中心区域50%面积处灵敏度,故实际台面选择时换能器面积要略大于被测件 扁平面面积。 设备用途:用于电子元器件封装后,对器件内多余粒子碰撞噪声检测试验,目的在于检测器件封装腔体内存在的自由粒子,是一种非破坏性实验。用来测试电器零件从而提高电器零件的可靠性。 适用领域:用于检测集成电路、晶体管、电容器、航空、航天及相关军事领域的继电器等电子元器件封装内的多余物松散颗粒。
    留言咨询
  • 美SD粒子碰撞噪声检测仪4511A、4511L、4511M4、4511M6 选型说明: 每种型号的颗粒碰撞噪声检测仪都包括 :控制器,振动台,传感器, 灵敏度测试单元,软件, 示波器, 电缆, 耗材, 及相关文件.其型号选择主要根据被测件的重量和外型尺寸而定,我们的标准配置采用的是M230 振动台可测负载重量,全频率范围内为 400 克 , 换能器台 面直径为22mm~150mm, 换 能 器 因 在 其 中 心 区 域50%面积处灵敏度最高,故实际台面选择时换能器面积要略大于被测件最大扁平面面积。 设备用途:用于电子元器件封装后,对器件内多余粒子碰撞噪声检测试验,目的在于检测器件封装腔体内存在的自由粒子,是一种非破坏性实验. 用来测试电器零件从而提高电器零件的可靠性。 适用范围:用于检测集成电路、晶体管、电容器、航空/航天/军事领域的继电器等电子元器件封装内的多余物松散颗粒. PIND 技术参数: 振动规格:频率范围:25 至 250Hz, 正弦曲线其他振动模式:随机极限,75 至 400Hz 平坦频率自动阶型频率,40 至 250Hz低频率程序:最大振幅保护随频率变化频率分辨率:1Hz时间 :每个程序 0.1 至 25.5 秒时间程序分辨率:0.1 秒振幅:0.1 至 25.50’G’峰值,4 位数显振幅程序分辨率:0.1’G’重复性:0.5’G’峰值,带反馈控制D.U.T.载荷:最大 350g(整个范围)最大 400g 在 60Hz 冲击规格:方法:冲击台反馈控制自适应 D.U.T.载荷冲击振幅:100 至 2500’G’可编程程序分辨率:10’G’重复性:50’G’内脉冲宽度:100 微秒在 50%振幅下典型的是 150-200 微秒在 10%振幅下冲击延迟:冲击脉冲下降沿时间,从 25 至 250 微秒D.U.T.载荷:振幅随负载轻微下降最大能力 500 克在 1000g 振幅下(可能需要改变程序值来加大载荷) 最大载荷规格振动台极限:800 克振动极限:400 克 W/传感器冲击极限:500 克(可能需要增加程序值)电气规格电源:100,120,220,240VAC+/-10% at 50 or 60 Hz 可选功耗:最大 300 瓦额定功率放大:最大动态加载 100w RMS声波检测电路:60dB 增益+/- 2 dB100-200KHz 带宽极值:两点极值开关,出厂设定 输出:加速度显示:16 位 LED频率显示:16 位 LED极值交替指示:一个冲击检测 LED一个故障显示 LED冲击值显示:16 位 LED示波器:10V,峰值声音:4w 内部扬声器最小输出:10V,峰值 冲击传感器规格:灵敏度:-77.5 dB +/- 3 dB re 1V per 微巴 at 155 kHz按 ANSI2.1-1988 测量电缆: 整体 3 通道全屏蔽柔性电缆电磁干扰保护:所有电缆全法拉第屏蔽 传感器不同型传感器大小不一样例如:4511M 传感器参数为:100-4S155-4(传感器):压电晶体数量:4 个,每个 0.75 英寸直径检测范围直径:100mm(4in)重量:190 克 加速度计规格灵敏度:2.1 pc/G +/- 10% at 100 Hz几何位置:装于冲击传感器内STU 传感器灵敏度:-77.5 dB +/- 3 dB ref 1V perMicrobar at 155 kHz按 ANSI2.1-1988 测量外部 STU 脉冲器输出:250 微伏+/- 20% 物理特性(几何外形尺寸)控制器:13cmX43cmX47cm(5.25X17.0X18.5in)示波器:13cmX22cmx46cm (5.25X8.5X18in)M230 振动台:10cm High X 18cm Dia (4 X 7 in) PIND 检测技术原理 颗 粒 碰 撞 噪 声 检 测 ( Particle Impact Noise Detection,PIND)试验是一种多余物检验的有效手段.其原理是利用振动台产生一系列指定的机械冲击和振动,通过冲击使被束缚在产品中的颗粒(即多余物)松动,再通过一定频率的振动,使多余物在系统内产生位移。活动多余物在产品中发生位移的过程,是多余物相对产品壳体的滑动过程和撞击过程的一个随机组合过程。 在这个过程中,将产生应力弹性波和声波。两种波在产品壳体中传播,并形成混响信号,这个混响信号被定义为位移信号。采用压电传感器拾取到位移信号后,经前置放大器放大后,位移信号由检测装置的主机采集、处理并显示。检测人员可以依据显示的信号波形判定出信号性质,以此得出检测结论. 如图:一个小的金属薄片将对电子元件造成严重的事故
    留言咨询
  • 颗粒碰撞噪声检测仪,粒子碰撞噪声检测仪,微粒碰撞噪声检测仪,PIND,4511,FELIX产品型号:4511A(22mm台面)4511L(50mm台面)4511M4(100mm台面)4511M6(150mm台面)4511L-R及4511M4-R(宽脉冲) 美国SD公司的颗粒碰撞噪声检测仪用于电子元器件封装后,对器件内多余粒子碰撞噪声检试验,目的在于检测器件封装腔体内存在的自由粒子,是一种非破坏性实验。 用来测试电器零件从而提高电器零件的可靠性。用于检测集成电路、晶体管、电容器、航空/航天/军事领域的继电器等电子元器件封装内的多余物松散颗粒。 工作原理:颗粒碰撞噪声检测(Particle Impact Noise Detection P.I.N.D.)是一种对多余物检验的有效手段。其原理是利用振动台产生一系列指定的机械冲击和振动,通过冲击使被束缚在产品中的颗粒(即多余物)松 动,再通过一定频率的振动,使多余物在系统内产生位移。活动的多余物在产品中发生位移的过程,是多余物相对产品壳体的滑动和撞击的一个随机组合过程。在这个过程中,将产生应力弹性波和声波。这两种波在产品壳体中传播并形成混响信号,这个混响信号被定义为位移信号。采用压电传感器拾取到位移信号后,经前置放大器放大,位移信号由检测装置的主机采集、处理并显示。检测人员可以依据显示的信号波形判定出信号性质,以此得出检测结论。 选型说明:每种型号的颗粒碰撞噪声检测仪都包括:控制器,振动台,传感器,灵敏度测试单元,软件,示波器,电缆,耗材及相关文件。其型号选择主要根据被测件的重量和外型尺寸而定,我们的标准配置采用的是M230振动台可测负载重量,全频率范围内为200克,换能器台面直径为22mm~150mm,换能器因在其中心区域50%面积处灵敏度,故实际台面选择时换能器面积要略大于被测件 扁平面面积。 设备用途:用于电子元器件封装后,对器件内多余粒子碰撞噪声检测试验,目的在于检测器件封装腔体内存在的自由粒子,是一种非破坏性实验。用来测试电器零件从而提高电器零件的可靠性。 适用领域:用于检测集成电路、晶体管、电容器、航空、航天及相关军事领域的继电器等电子元器件封装内的多余物松散颗粒。
    留言咨询

粒子碰撞仪相关的资讯

  • 科学家在重离子碰撞实验中首次观测到超核集体运动
    近期,中国科学院近代物理研究所等机构的科研人员参与RHIC-STAR国际合作实验研究,首次在重离子碰撞实验中观测到超核的集体运动。该成果为研究致密核物质环境中的超核-核子相互作用开启了一个新的方向,相关成果于5月24日发表在《物理评论快报》(Physical Review Letters)杂志上。 超子是包含有奇异夸克(s)的重子,核子(质子和中子的统称)中只包含有上夸克(u)和下夸克(d)。超子和核子可以形成束缚态,人们称之为“超核”。理论预言宇宙中的致密天体——中子星的内部存在超子。然而,超子的出现将软化核物质状态方程,这给理论上构建大质量的中子星带来了挑战,被称为中子星研究中的 “超子谜题”。 实验上测量致密核介质中的超子-核子相互作用强度,是解决“超子谜题”的关键步骤,同时对于理解强相互作用的理论——量子色动力学具有重要意义。超核集体运动实验测量数据可用于提取致密核介质中的超子-核子相互作用,有可能解决“超子谜题”。 据研究人员介绍,高能重离子碰撞是在实验室产生和研究致密核物质性质的独特工具。重离子碰撞过程中,粒子由于致密核物质内部压强梯度会产生集体运动(集体流),如直接流、椭圆流等。在实验中,科学家们已经观测到介子、重子、轻核的集体流。由于实验上产生的超核非常稀有,此前超核集体流测量研究尚属空白。 研究人员基于美国布鲁克海文国家实验室的相对论重离子对撞机(RHIC)装置上的STAR实验3GeV金-金碰撞数据,重建得到约8400个超氚(由一个Λ超子、一个质子和一个中子构成)和约5200个超氢-4(由一个Λ超子、一个质子和两个中子构成)。这是目前实验上观测到的最大统计量的超氚和超氢-4数据样本。 研究团队首次在实验上观测到了这些超核具有显著的直接流。同时,他们还提取了超核和轻核直接流在中心快度区域的斜率。经过比较发现,轻核与超核的直接流斜率都存在一个相似的质量标度律,这意味着超核和轻核在重离子碰撞中的产生都可以用“并和过程”来解释。 这项工作为研究有限压力下的超子-核子相互作用开辟了一个新方向,对于建立核核碰撞和决定致密星体内部结构的状态方程之间的联系具有重要意义。 中子星是大质量恒星生命尽头塌缩形成的致密天体。近代物理所供图。
  • 粒子对撞机内首次探测到中微子
    据美国加州大学欧文分校官网20日报道称,该校物理学家主导的“前向搜索实验”(FASER)首次探测到粒子对撞机产生的中微子,此前该团队曾观察到6个中微子之间的相互作用,此次新发现有望加深科学家对中微子的理解,还有助揭示行进较长距离与地球发生碰撞的宇宙中微子,为管窥遥远宇宙打开一扇窗。中微子无处不在,非常神奇,被称为宇宙的“隐形人”,是宇宙中数量最丰富的粒子。1956年,科学家首次探测到反应堆发出的中微子,确认了其存在。中微子在恒星燃烧过程中也发挥着关键作用。FASER联合发言人、欧洲核子研究中心(CERN)粒子物理学家杰米博伊德解释道,中微子对建立粒子物理学标准模型非常重要,但科学家们此前从未探测到对撞机产生的中微子。FASER位于CERN内,旨在探测CERN著名的大型强子对撞机(LHC)产生的粒子。研究人员指出,他们从一个全新的来源,也就是粒子对撞机那里发现了中微子。目前物理学家研究的大多数中微子都是低能中微子,但FASER探测到的中微子是迄今实验室制造出的最高能量的中微子,与深空粒子在地球大气层中引发剧烈粒子簇射时发现的中微子相似。博伊德称,新发现的高能中微子能向人们揭示宇宙深空的奥秘,这是用其他方法无法获得的,LHC中发现的这些高能中微子对于理解粒子天体物理学中真正令人兴奋的观测结果至关重要。除探测中微子外,FASER的另一个主要目标是识别出构成暗物质的粒子。物理学家认为,暗物质构成了宇宙中的大部分物质,但从未被直接观测到。FASER尚未发现暗物质的“蛛丝马迹”,不过,随着LHC将在几个月后开始新一轮粒子对撞,科学家们期待看到一些令人兴奋的信号。
  • 双特异性抗体解析新方法:离子迁移质谱结合碰撞诱导去折叠
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics1,文章的通讯作者是密歇根大学的Brandon副教授。  双特异性抗体(bispecific antibodies, bsAbs)是一类重要的新兴疗法,能够同时靶向两种不同的抗原,已被开发作为对某些单克隆抗体疗效有限疾病的治疗手段。尽管bsAbs具有独特的优势,但它的结构较为复杂,需要特殊的制备工艺,“knobs-into-holes”(KiH)是其中一种可以用于制备bsAbs的技术,这种技术通过将knob链CH3结构域表面的特定氨基酸突变为较大氨基酸,将hole链上的突变为较小氨基酸,从而实现“knobs-into-holes”的配对形式,提高不同轻重链在配对时的正确配对率,产生正确的bsAbs。然而,由于抗体治疗药物分子量较大,通常比传统的小分子药物表现出更大的结构复杂性和异质性,对KiH bsAb 高级结构的完整表征对定义bsAb的结构功能关系,以及确保最终治疗的稳定性、有效性和安全性都至关重要。目前已开发的分析方法有很多,但是普遍存在样品消耗量大、数据采集和解析时间较长等缺点。近年来,非变性离子迁移质谱(ion mobility-mass spectrometry, IM-MS)和碰撞诱导去折叠(collision-induced unfolding,CIU)逐渐被证实是用于分析单克隆抗体高级结构的有效方法,能够从存在结构异质性和杂质的几微克样品中表征单抗治疗药物的高级结构。IM可以根据气相蛋白离子的电荷和旋转平均碰撞截面(collision cross sections,CCSs)在毫秒时间尺度上对蛋白进行分离。当与质谱耦合时,可以很容易地将质荷比相同但CCS不同的离子区分开来,而CIU可以使IM-MS同步提供蛋白质结构和构象稳定性信息。CIU根据二硫键、糖基化水平、结构域交换特性等信息来区分差异。  在这篇文章中,作者描述了定量CIU在bsAbs中的首次应用,扩展了非变性IM-MS和CIU的能力,用于稳定表征KiH bsAb及其亲本knob和hole同型二聚体单抗的高级结构。  图1 Native、未修饰的knob(蓝色)和hole(橙色)同型二聚体,以及KiH bsAb异型二聚体(绿色)的CIU实验。(A)24+电荷态(左)及其相应重复RMSD基线(右)的平均CIU指纹图谱(n=3)。所有的指纹图谱都显示了白色虚线框所示的三个主要特征。在(B) 5 V、(C) 65 V、(D) 110 V时的标准化TWCCSN2分布。在较低的激活电位下,所有抗体均具有相似的CCS,在较高的加速电位下则存在显著差异。(E)两两的RMSD分析显示,与重复的RMSD基线(虚线)相比,抗体之间的整体高级结构差异。(F)CIU50分析说明了KiH bsAb模型的稳定性如何保持在knob和hole的同型二聚体之间。  如图1所示,bsAb的稳定性似乎与本文研究的KiH模型的两个亲本同型二聚体单克隆抗体相关。在电压为65V时,KiH bsAb的TWCCSN2分布与亲本knob同型二聚体单抗的分布相似 而在110V时,则与亲本hole同型二聚体单抗的分布相似。并且KiH bsAb的稳定性介于两种亲本同型二聚体单抗的稳定性之间。与指纹图谱中记录的第一次CIU转换相对应的是CIU50-1值,第二次的则是CIU50-2值,从3组样本的数据分析推测,CIU50-1和CIU50-2很可能代表了KiH bsAb和mAb结构中不同结构域的局部稳定性。  图2 knob和hole的半体CIU数据。(A)16+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,半体之间的高级结构存在显著差异。(C)CIU50分析显示,蛋白质稳定性存在显著差异。  为了更好地展示KiH bsAb不同结构域的CIU特征,作者记录了同型二聚体单抗IM-MS光谱中16+电荷态的knob和hole半体的CIU数据。从图2A的指纹图谱可以看出,每种结构都包含4种主要的CIU特征,但是图2B的RMSD分析显示两种半体的高级结构之间存在显著差异。CIU50分析进一步表明,在观察到的两次展开过渡中,knob半体明显比hole半体更稳定。作者推测造成这种CIU主要差距的原因可能是Fab结构域的差异。  图3 Fab和Fc片段的CIU数据。(A)13+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,knob和hole的Fab片段之间存在显著差异。(C)CIU50分析显示,不同片段之间稳定性存在显著差异。  为了进一步将CIU特征联系到KiH bsAb的结构域当中,作者对木瓜蛋白酶消化后产生的Fab和Fc片段进行了CIU分析。从图3A可以看出,knob和hole的Fab片段都具有3种CIU特征,但是嵌合的Fc片段则具有4种CIU特征。尽管knob和hole的Fab片段具有相似的CIU指纹图谱,但是RMSD分析显示它们之间的高级结构仍然存在较大差异,并且knob的Fab片段稳定性明显高于hole的。至于Fc片段的稳定性则远高于两种Fab片段,可能的原因是重链CH3结构域的强非共价作用以及knobs-into-holes配对的影响。  图4 去糖基化后的knob、hole同型二聚体和KiH bsAb异型二聚体24+离子(n=3)。(A)比较对照组和去糖基化抗体的RMSD分析显示,高级结构有显著差异。CIU50-1(B)和CIU50-2(C)分析显示抗体去糖基化后表现出显著的不稳定性。(D)对照组和去糖基化抗体之间的CIU50值差异图。  先前的研究已经证明,CIU对不同水平的单抗糖基化很敏感,其中去糖基化会导致单抗高级结构的不稳定。作者利用高分辨率非变性轨道阱质谱分辨添加PNGaseF前后同型二聚体mAb和KiH bsAb糖型的变化。实验结果显示,KiH bsAb表现出高度糖异质性,包含至少12种不同的糖型。这很可能归因于组装的KiH bsAb中每个独立的knob和hole重链上存在独特的糖基化,进一步增加了其复杂性。  总而言之,这篇文章展示了IM-MS结合CIU用于建立KiH bsAb及其亲本同型二聚体之间高级结构联系的能力。单独的CCS不足以解决此研究中抗体之间细微的高级结构差异。相比之下,CIU指纹图谱则可以分辨和区分每一个等截面的抗体。这一解释bsAb CIU细节的能力,加上对KiH bsAb稳定性的更深入理解,有可能提供支持KiH bsAb发现和发展的关键信息。  撰稿:梁梓欣  编辑:李惠琳  文章引用:Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Villafuerte-Vega, R. C., Li, H. W., Slaney, T. R., Chennamsetty, N., Chen, G., Tao, L., & Ruotolo, B. T. (2023). Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics. Analytical Chemistry.

粒子碰撞仪相关的方案

粒子碰撞仪相关的资料

粒子碰撞仪相关的试剂

粒子碰撞仪相关的论坛

  • 碰撞池与反应池

    碰撞/反应池基本上有桶状的池体构成,两端留有空以方便粒子进出。池体内维持比周围真空腔内的压力稍高的增压状态。池内装有多级杆,也有池内装有离子透镜。池体一般位于离子透镜和主分析器之间。池中常用的气体有强反应气,如CH4,NH3,弱反应气H2,碰撞气he,xe,混合气体如H2/He或NH3/he(以he为主)。碰撞/反应池常常用反应池或碰撞池命名,用来强调和区分池体内进行化学反应过程特征。另一种对两种池体结构的主要不同处的论述是他们对排斥不希望的副反应产物离子的手段不同,一个利用质量歧视效应,另一个利用能量歧视效应。反应池内一般使用四级杆,此使用可变的带通,强调有一定的化学反应专一性。池内增压较高,离子动能较弱。使用强反应气NH3CH4或弱反应气H2O2。碰撞池池体内一般使用高级多级杆(六级杆或八级杆),强调对正离子的高功率引导功能,强调池体的动能歧视功能,一般增压较小。常使用的气体为碰撞气体He,及弱反应气体和混合气体。当前强反应气体混合气体被用于碰撞池后,使严格按池体内的化学反应过程来定义的池体命名方式模糊起来。

  • 【我们不一YOUNG】碰撞活化分解

    [font=&][size=15px]利用软电离技术(如电喷雾和快原子轰击)作为离子源时,所得到的质谱主要是准分子离子峰,碎片离子很少,因而也就没有结构信息。为了得到更多的信息,最好的办法是把准分子离子“打碎”之后测定其碎片离子。在串联质谱中采用碰撞活化分解(Collision activated dissociation, CAD)技术把离子“打碎”。[/size][/font][font=&][size=15px]碰撞活化分解也称为碰撞诱导分解(Collision Induced dissociation, CID),碰撞活化分解在碰撞室内进行,带有一定能量的离子进入碰撞室后,与室内情性气体的分子或原子发生碰撞,离子发生碎裂。为了使离子碰撞碎裂,必须使离子具有一定动能,对于磁式质谱仪,离子加速电压可以超过1000V,而对于四极杆,离子阱等,加速电压不超过100V,前者称为高能CAD,后者称为低能CID。二者得到的子离子谱是有差别的。[/size][/font]

粒子碰撞仪相关的耗材

  • 碰撞球
    配件编号:3600931产品名称:OFFSET IMPACT BEAD ASSEMBLY 碰撞球 产品规格:个仪器厂商:ThermoFisher/赛默.飞世尔价格:面议 库存:是
  • 粒子探测器配件
    粒子探测器配件是全球领先的粒子追踪探测器和粒子追迹探测器,它基于Medipix2/Timepix technology技术的像素探测器,它能够实现零背景噪音成像。 粒子探测器配件数字化单光子计数入射光子或粒子,直接转换成可探测的电信号被进一步处理,这种技术不仅实现零噪音成像,而且实现超高亮度和锐度的图像,非常适合粒子追踪和辐射监测,单光子计数等应用,能够识别3-5keV的辐射粒子或光子。不仅可以识别当个粒子,并且可以区分不同的粒子。 单光子计数模式:当个像素每秒记录高达100000光子数(100000cps).整个探测器的计数能力高达65亿cps,而且能量阈值可以设定。 能量模式(TOT):每个像素测量单个光子能量,非常适合全谱X射线成像和辐射监测,不仅可以对辐射粒子的轨迹成像,还可以测量粒子能量,非常适合辐射监测,因为粒子轨迹的形状对于不同辐射类型而言是独特的,这种技术也颠覆了现在辐射监测的方法。 到达时间模式(TOA)单个像素计算入射时间,非常适合辐射粒子追踪和时间飞行测量。 粒子探测器配件特点 高对比度 高动态范围 无噪音 实时监测 256x256像素单光子计数阵列 传感器面积14.1x14.1mm^2 单个像素55um超大面积 天文学,粒子物理,医学成像,光谱成像,粒子追踪,电子显微镜,无损检测,质谱学,X射线成像,X射线衍射,X射线荧光光谱。
  • 美国metone GT 526手持式激光粒子计数仪
    美国metone GT 526手持式激光粒子计数仪 技术参数 流量:0.1cfm(2.83lmin) 量程:0-3,000,000个粒子立方英尺 最小测量值:0.3&mu m 5种粒子大小可测:0.3,0.5,1.0,2.0,5.0&mu m(用户可选择) 1个显示通道:用户选择 取样时间:1分钟(可无间断连续测量) 按键:2个薄膜按键 数值显示:12位LCD 环境温度:0-50度 可充电池 尺寸(L x W x D) 6 x 3.5 x 2.5英寸(152.4 x 88.9 x 63.5 mm) 重量:1.625 lbs. (740 g) 保质期:合同签订日期保修一年
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制