生物培养仪

仪器信息网生物培养仪专题为您提供2024年最新生物培养仪价格报价、厂家品牌的相关信息, 包括生物培养仪参数、型号等,不管是国产,还是进口品牌的生物培养仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合生物培养仪相关的耗材配件、试剂标物,还有生物培养仪相关的最新资讯、资料,以及生物培养仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

生物培养仪相关的厂商

  • 扬州市培英实验仪器有限公司专业从事实验室仪器、环境设备的研究与开发,严格执行ISO9001国际质量体系认证的标准。公司具备研发团队,专业生产干燥箱、培养箱、摇床、水槽等系列产品。
    留言咨询
  • 400-860-5168转3767
    上海培因实验仪器有限公司,主要生产生化培养箱,霉菌培养箱,光照培养箱,人工气候箱,恒温恒湿箱,电热恒温培养箱,隔水式恒温培养箱,电热恒温水槽,高低温试验箱,电热恒温水浴锅,电热恒温鼓风干燥箱,电热循环烘箱等等,各类环境类试验室设备. 上海培因实验仪器有限公司,坚持以科技和质量立足市场,品质成就品牌的经营理念,生产系列环境类箱体仪器产品,我公司不仅能为客户提供高品质的产品,而且还能为客户设计制造各种非标定制产品,能满足从事工业,生物、电子、化工等等行业科研、生产的需求,欢迎广大新老客户光临我厂参观考察,交流指点!
    留言咨询
  • 400-860-5168转4988
    生物产业是我国的七大支柱型产业之一,近年来年产值已超过3万亿元。我国的生物产业虽然体量很大,但一方面缺乏引领国际科研与消费趋势的能力,另一方面产业主要集中在上游,利润空间狭小且国际竞争力不足。生物产业的核心是性能优良的菌株(微生物菌种或者植物种子等),生物产业的现状与良种的选育能力息息相关。天木生物是一家聚焦生物育种技术与装备开发的高新技术企业,为从核心提高我国生物产业的竞争力,依托清华大学技术雄厚的科研团队,与清华大学无锡应用技术研究院、清华大学化工系绿色生物技术实验室、清华大学化工系邢新会、张翀教授课题组、工物系李和平副研究员课题组及中科院、江南大学等兄弟院校的相关研究人员等相关研究与设备研发团队共同组建“生物育种研究中心”;面向产业,形成多学科交叉的科研与特色技术服务平台。高效的突变与高通量的筛选是育种技术的两个核心问题。天木生物立足于常压室温等离子体高效突变技术、单细胞培养的微流控高效筛选技术、压力遗传进化技术等生物学新技术新方法,与产业展开技术与装备的“产学研”联合开发,研制具有自主知识产权及世界领先水平的特色生物装备。为更好地服务于产业,有效地提高企业自身的育种能力和研发水平,天木生物还将在提供专业装备、专业技术服务的基础上,打造成为一个人才培养的高端平台。该人才培养平台既可以对在校生或应届生进行专业的实践与培训,更可以有效提升产业有一定实践经验的专业技术人员的能力。“自强不息,厚德载物”。天木生物将以提升中国生物产业的核心竞争力为己任,以“顶天、立地、树人”的科研与经营理念,将清华大学等科研院所的最前沿的科研成果与科研力量嫁接、植根于产业,有力的推动我国生物产业的发展,为国家经济发展做出贡献。
    留言咨询

生物培养仪相关的仪器

  • 智能微生物培养系统(厌氧、微需氧培养专用)DQ1000型产品简介:Petrisphere系统是智能的微生物厌氧培养系统,可随具体培养需求制造所需的气体环境。仪器适用于厌氧菌培养、微好氧菌培养、细胞培养及用户自定义环境条件(不同O2浓度)的微生物培养,是实验室开展以上类型工作的最佳设备! Petrisphere型智能微生物厌氧培养系统: 一台Petrisphere系统能满足实验室开展不同温度/不同浓度的微需氧/厌氧微生物培养,耗气量仅为传统工作站的10% 。DQ1000型:不同温度微需氧/厌氧微生物培养;氧气浓度可定制。技术简介:1. 系统功能:1.1 用于制造厌氧(氧浓度为0%)、微需氧(氧浓度为6%)和特殊氧气浓度(0.2%-16%)比例的厌氧和微需氧环境,适用于厌氧菌、微需氧菌和细胞培养等。1.2 用于食品安全国家标准GB4789要求的空肠弯曲菌,溶血性链球菌,双歧杆菌,乳酸菌和志贺氏菌检测;还可用于饮用天然矿泉水中的产气荚膜梭菌等需要厌氧、微需氧及特殊氧气浓度培养菌的分离培养。2. 技术参数:2.1 开机自检:开机检测当地大气压,获得仪器初始值;方便后续软件计算;2.2 仪器原理:通过真空抽排置换原理,精确控制气体压力大小,从而达到控制培养罐氧气浓度的目的;2.3 大屏幕操作:10寸彩色显示屏,不同的功能显示不同的颜色,实时显示当地气压,触摸屏操作,无需物理按键;2.4 达成环境时间:最快达到微需氧条件小于100秒,最快达到厌氧条件小于180秒;2.5 傻瓜式操作:仪器可一键生成厌氧、微需氧和弯曲菌培养浓度,无需另外设置参数;2.6 多罐模式:仪器配置多通道,仪器最大可扩展至4个通道,可同时对多个培养罐进行控制,提高仪器使用效率;2.7 过程控制:仪器每次生成所需的气体环境都会对培养罐做五项检测:气源压力、管路连接、罐体密封性、罐盖密封性和催化剂活性检测,保证培养罐的密封性;2.8 仪器分辨率:氧浓度设置范围0%-16%,最小可设置0.2%氧浓度,精确控制培养所需浓度;2.9 气源压力调节:调节减压阀时仪器实时显示气源压力,无需观察减压阀上的指针;2.10 气体消耗:达到微需氧气体消耗≤ 2 L/12平皿;达到厌氧气体消耗≤ 7L /12平皿;2.11 厌氧催化剂:配套厌氧催化剂,辅助仪器达到0%氧浓度;可重复使用,不产生化学废弃物;2.12 催化剂活性检测分级:催化剂活性检测可关闭和开启,开启时可对效果检测分为5级;2.13 培养罐体:系统配套多种培养罐,培养罐清澈透明方便观察,每只培养罐均可支持不同的培养应用。2.14 罐体规格:7种规格培养罐可选,包括小型培养罐(单罐放置6皿ф9cm培养皿)、中型培养罐(单罐放置12皿ф9cm培养皿)、双罐培养罐(单罐放置24皿ф9cm培养皿)、弯曲菌专用培养罐(单罐放置10块弯曲菌培养双孔培养皿及8支增菌管)、微生物鉴定专用培养罐(单罐放置6块酶标板/细胞培养板/鉴定条培养板)、志贺氏菌专用培养罐(单罐放置10只培养袋)、大型培养罐(单罐放置36皿ф9cm培养皿或四个250ml三角瓶或8包均质袋)等2.15 内置打印机:仪器内置打印模块,可选择需要的打印信息,无需连接电脑打印;2.16 无线氧浓度监测:配置无线氧浓度监测装置,可实时监测培养过程中的氧浓度变化,还可监测温度、湿度等信息,信息可存储导出;传感器厚度:19mm,可放入超小型培养容器;(现场提供演示:测量传感器厚度,演示时必须同时具有:氧浓度、温度、湿度监测信息)2.17 仪器统升级:可根据实际工作量增加不同数量和不同大小的培养罐;可增加气罐连接并进行相应软件升级;2.18废气处理:内置废气处理装置,可自动处理排出的有害气体,避免废气对实验室造成污染。 2.19质控程序:系统每次生成所需的气体环境都会对培养罐做气源压力、管路连接、罐体密封、罐盖密封和催化剂活性五项检测,保证培养时培养罐的密封性。2.20调节精度:氧浓度设置范围0%-16%,设置数值≤0.2%递进,精确控制培养所需浓度。3. 工作环境:3.1 环境温度:0~40℃;3.2 相对湿度:≤85%;3.3 功率:420W;3.4 电源:交流 220V±22V,50-60HZ;3.5 重量:20kg3.6 外形尺寸:L*W*H:360*315*410mm系统配件: 培养罐 无线氧浓度监测系统
    留言咨询
  • 电热恒温培养箱 微生物恒温培养装置DH系列电热恒温培养箱适用于工矿企业、农业、生化、生物、医药行业对细菌、微生物等方面的培养实验。主要特征:1、采用PID微电脑智能数显控温仪表,控温精度可靠。2、设定温度与实际温度均有数字显示,操作方便。3、具有温度上限跟踪报警、掉电记忆及自我诊断功能。4、外壳板材喷塑,内部为不锈钢板,抗腐蚀性能良好5、门上有透视孔,便于观察培养箱内部的工作情况。6、工作腔内设有风道,温度分布均匀, 可以保证培养箱内温度的均匀性。7、工作室内配有多层可以移动并可调节高度的不锈钢搁板。电热恒温培养箱 微生物恒温培养装置技术参数:型号:DH6000BE电源电压:220V 50Hz控温范围:室温+5-60℃温度波动:±0.5℃消耗功率:400W隔板:2块内胆容积:255L工作室尺寸:600×600×710mm外形尺寸:700×720×840mm电热恒温培养箱的工作原理:利用固体、液体、气体受温度的影响而热胀冷缩的现象 在定容条件下,气体(或蒸气压强因不同温度而变化 热电效应的作用 电阻随温度的变化而变化 热辐射的影响等。一般地说,任何物质的任一物理属性,只要它随温度的改变而发生单调的、显著的变化,都可用来标志温度而制成温度计。1.在无防爆装置的干燥箱内,请勿放入易燃物品,培养箱外壳有效接地,使用完毕后,应将电源关闭,以保证使用安全。2.使用前注意所用电源电压是否相符。使用时,将电源插座接地线按规定进行接地,培养箱内物品放置切勿过挤,留出空间。3.培养箱内外应经常保持清洁,长期不用应盖好塑料防尘罩,放在干燥室内,鼓风干燥箱每次用完后,须将电源全部切断,经常保持箱内外清洁。清洁完毕悬挂相应的标识。4.放置箱内物品切勿过挤,留出空气自然对流的空间,使潮湿空气能在风顶上加速逸出。5.应定期检查温度调节器之银触点是否发毛或不平,如有,可用细纱布将触头砂平后,再使用,并应经常用清洁布擦净,使之接触良好(注意切断电源)。室内温度调节器之金属管道切勿撞击以免影响灵敏度。6.鼓风干燥箱在通电使用时,切忌用手触及箱左侧空间的电器部分或用湿布揩抹及用水冲洗,检修时应将电源切断。7.不宜在高电压、大电流、强磁场、带腐蚀性气体(如含酸、碱、硫物质),以免干扰损坏及发生危险,电源线不可缠绕在金属物上,不可设置在高温或潮湿的地方,防止橡胶老化以致漏电。要做好培养箱的日常维护保养工作,使用、维护应有专职人员进行,保养时先切断电源,保证安全。在保证好自身安全的情况下,正确的使用电热恒温培养箱,这是我们值得注意的一个方面。
    留言咨询
  • 申贝科学仪器微生物培养箱BXP-530S控温精度高,热分布好,适用于室温+5℃以上到100℃的所有恒温实验,并且循环风速可调,新风量可调。培养箱具备强大的数据管理功能,保证了培养过程数据的可追溯性。另外,微生物培养箱BXP-530S制作工艺精良,无任何粉尘污染,特别适合洁净实验室使用。功能特点:5寸高清触摸屏,BRIGHT II控制系统,可根据环境改变,对控制参数值进行自动补偿;可实时查看仪器温度记录数据和曲线,报警记录信息等;多级密码管理功能,防止随意操作;带有预约功能,可按照公历时间进行预约;可编程程序设计,可设置30段99周期;带有程序升温功能,可控制升温和降温速率;带有数据储存功能,可储存100万条数据,并支持用U盘以不可更改文件格式导出进行查看和备份,并对数据进行追溯;双重超温报警功能(a.通过温度传感器系统控制,b.独立温控开关);风机6段调速,可保证培养物不同风速的要求;可10段控制排风口开度,可满足不同换风速率需求,保证不同培养物的差异化需氧量。结构特点:预热腔设计,空气加热混合后直接进入工作室,确保快速升温及良好的热分布效果;采用铝箔全封闭5cm超厚保温层,保温效果好,玻璃纤维零泄漏,适合洁净实验室使用;双层门设计,具备全景钢化玻璃内门,开外门观察不影响内部温度;抽屉式搁板设计,方便放样、取样,支持任意定位;标配有2个485接口和1个USB接口。技术参数:型号:BXP-530S控温范围:RT+5~100℃升温时间(60℃):25min温度均匀性(60℃):±0.5℃温度波动度(60℃):±0.3℃30S恢复时间(60℃):11min额定功率(kW):1内胆尺寸(mm):1070×595×835外形尺寸(mm):1235×850×1080载物托架(标配/最多):3块/12块是否支持重叠码放/层数:否选配件:名称描述打印机思普瑞特色带、热敏(国产)包括电源线一根,485延长线一根,打印纸一卷爱普生色带(进口)包括电源线一根,485延长线一根,打印纸一卷监控软件FDA版可满足FDA要求GMP版可满足GMP要求额外的搁架除标配的搁架外,另外需要选配的搁架GPRS短信报警报警产生后,将报警状态短信发送到指定的手机上进风高效空气过滤器保证进入内腔空气的洁净度,可达到100级排风高效空气过滤器保证排出内腔空气的洁净度,可达到100级BXP-65S微生物培养箱BXP-130S微生物培养箱BXP-280S微生物培养箱BXP-450S微生物培养箱BXP-530S微生物培养箱
    留言咨询

生物培养仪相关的资讯

  • 不同细胞培养工艺生物反应器产率和培养基成本比较
    p    strong span style=" color: rgb(0, 112, 192) " 简介 /span /strong /p p   用于重组蛋白和单克隆抗体(mAb)生产的细胞培养工艺有不同的方式。补料分批(Feb-Batch)工艺由于操作简单,且较易规模放大,被临床和商业化生产广泛采用,目前的技术发展已可在18天内获得20-30x10^6cells/mL的细胞密度,同时获得& gt 10g/L的滴度水平。 /p p   灌流工艺以往更多用于生产不稳定的产品,如血液凝集因子和酶类产品,但也有用于生产 mAb产品,如Remicade(英利昔单抗)。在灌流培养中,通过培养基置换,降低产物在反应器内的滞留时间,而灌流速率取决于特异性的产物和/或工艺需求。 /p p   近几年,在上游工艺中,基于灌流的工艺强化获得了极大的发展,驱动力主要来自于对降低成本和占地的需求,以及提高设备灵活性。随着细胞系、培养基和细胞截留设备的发展,现在的灌流工艺已可获得较高的细胞密度和产量,使其成为一个非常有吸引力的选择,包括mAb的生产。例如,在mAb生产中,结合2vvd的培养基置换速率,通常可达到50-60x10^6cells/mL的稳态细胞密度,以及高达4g/L/day的生物反应器产率。此外,浓缩补料分批(CFB)也可以通过培养基置换,维持高细胞密度,而将产物截留在生物反应器内。 /p p   灌流和CFB的差异在于所用的中空纤维膜的孔径。对于抗体,使用Per.C6细胞系,可在12-13天内,达到21.4g/L的终产物滴度(峰细胞密度& gt 150x10^6cells/mL),而使用CHO细胞系时,可在16天内达到25.3g/L的滴度,峰细胞密度& gt 180x10^6cells/mL。随着生物反应器产率的提高,可使用占地更小、成本更低的一次性设备,来替代大规模的不锈钢设备(10,000-25,000L),通过增加设备轮转或连续工艺,生产等量的产物。 /p p   尽管灌流工艺可使用基于过滤的细胞截留设备,如TFF和ATF,在生物反应器内获得并维持高细胞密度,但通常会要求使用较高的培养基置换速率,以将高密度细胞的活性维持在可接受的水平。与不同工艺相关的培养基成本是评估其生产等量产物时经济性的关键因素。而即使单位培养基成本适当,较高的培养基置换速率也会显著影响生产产品成本(CoG),亦即,上游操作成本与培养基成本紧密相关。 /p p   生产单位产品的总生产CoG和上/下游成本的比重会随产物滴度和设备尺寸的变化而变化。在分析CoG的所有输入值中,一旦工艺确定,培养基用量及其成本是固定的,不管设备、设施等是否发生改变。细胞培养工程师的一个主要目标是降低培养基成本,同时获得高产量。本文使用相同的基础(basal)和补料(feed)培养基,稍作优化,开发了具有高生物反应器产率的不同细胞培养工艺(补料分批、灌流和CFB),并比较了不同操作模式的生物反应器产率及其相关的培养基成本。 /p p    strong span style=" color: rgb(0, 112, 192) " 实验 /span /strong /p p   实验使用生产单克隆抗体的重组CHO细胞系,不同工艺使用相同的3L生物反应器,培养基使用专利的基础(basal)和补液(feed)培养基,后者又分为两种补液-A和补液-B,均富含葡萄糖、氨基酸、维他命等。详细细胞系和种子扩增、生物反应器操作信息请参看原文。 /p p   对于补料分批培养,反应器起始工作体积1.5L,接种密度为0.5或2x10^6cells/mL,后者通过3天的N-1灌流来达到目标密度。生物反应器补液以每日葡萄糖水平为基础进行。 /p p   对于CFB工艺,使用50kD PS中空纤维过滤器的灌流设备,对于灌流,使用0.2μm PES中空纤维过滤器的灌流设备。接种密度1x10^6cells/mL,工作体积1.3L,一般第2天开始培养基置换,最大置换速率1vvd。灌流培养在第8天开始进行细胞废弃(cell bleeding),以维持所需细胞密度和活性。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/b370cbae-a09d-4aad-901e-9998bacb5c16.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 不同细胞培养模式图解(xu et al, 2017) /span /strong /p p   细胞培养每日取样分析,详细分析内容和方法,请参考原文。 /p p    strong span style=" color: rgb(0, 112, 192) " 讨论 /span /strong /p p   不同操作模式的细胞培养性能 /p p   实验测试操作模式包括:补料分批、灌流和CFB,使用相同的3L生物反应器规格以及基础和补料培养基组合,以便比较细胞/生物反应器产率和培养基成本。 /p p   补料分批模式 对于补料分批模式,接种密度为0.5或2x10^6cells/mL,后者通过N-1灌流,可使对数生长期降低2天,所以8天就可达到峰密度,而前者需要10天。两种条件达到的峰细胞密度范围均为20.2-26.2x10^6cells/mL。两种接种密度在第14天分别达到5.4± 0.1g/L和6.8± 0.2g/L的滴度。生物反应器单位体积产率(VPR)按最终生物反应器滴度除以培养周期计算。2x10^6cells/mL接种密度条件,相比0.5x10^6cells/mL,可获得更高的VPR(0.49± 0.01g/L/day vs. 0.39± 0.01g/L/day),主要是由于前者降低了起始生长阶段的时间,延长了生产期。 /p p   灌流模式 在灌流培养中,使用了2种不同的培养基组成:1种只使用基础培养基,另一种为基础加补液-A。在培养过程中,通过合适的cell bleeding,维持较高的活性& gt 85%。只使用基础培养基时,平均细胞密度为44± 4.1x10^6cells/mL,从第8天至32天的日产量为0.7± 0.04g/L/day。在基础+补液条件中,随细胞密度的增加,补液-A作为培养基置换的一部分,逐渐引入,而总培养基置换率保持为1vvd,平均细胞密度增加至73.9± 5.4x10^6cells/mL,日产量增加至2.29± 0.28g/L/day。细胞特异性产率从16.0± 1.2pg/cell/day增加至30.1± 2.3pg/cell/day,从而使反应器产量增加~230%。 /p p   浓缩补料分批模式(CFB) 与灌流相似,评估了只使用基础培养基和使用基础+补液培养基的条件。与灌流工艺相比,CFB不需要进行cellbleeding,细胞质累积至更高的水平。当只使用基础培养基时,在第18天达到峰细胞密度72.0± 9.6x10^6cells/mL,上清液滴度为12.2± 0.6g/L。使用基础+6%补液-A+2%补液-B时,峰细胞密度为117.4x10^6cells/mL,第18天上清液滴度为21.4g/L,使用基础+8% 补液-A +8% Feed-B时,峰细胞密度为83.4x10^6cells/mL,第18天上清液滴度为36.7g/L。可见,增加补液-A和补液-B的量,可显著提高细胞特异性产率至45.1pg/cell/day。 /p p   细胞特异性产率、生物反应器产率和产物质量 /p p   当只使用基础培养基时,批次、灌流和CFB工艺可达到相似的qP,范围为14.7-17.1pg/cell/day。在此条件下,累积的细胞数量会直接影响产物滴度和单位体积产率。正如预期,批次培养的VPR显著较低,仅为0.08g/L/day,而灌流和CFB工艺由于可维持更高的细胞密度,可获得相当的VPR,0.68-0.70g/L/day。 /p p   浓缩补液培养基通常用于补料分批工艺,以提高细胞生长和细胞特异性产率。在此研究中,补加补液培养基,可显著提高qP和VPR。对于补料分批培养,qP提高至29.4-32.0pg/cell/day,VPR达到0.39g/L/day(接种密度0.5x10^6cells/mL)或0.49g/L/day(接种密度2x10^6cells/mL)。N-1灌流获得的更高的接种密度可提高VPR,因为缩短了生长期的时间,延长了生产期,提高产量。但是,即使与只使用基础培养基的灌流和CFB相比,补料分批培养的VPR仍较低,因为细胞密度差别显著。 /p p   相比补料分批工艺,只使用基础培养基以1vvd的速率进行培养基置换时,可轻松地将细胞密度提高2-3倍。而与只使用基础培养基的条件相比,在灌流培养中补充10%补液-A可使VPR提高~230%,qP提高~90%。相似的,在CFB工艺中,补充不同比例的补液-A和补液-B可将VPR提高至1.19-2.04g/L/day。 /p p   最近有报道显示,长寿命的人浆细胞可在体外维持120pg/cell/day的IgG分泌率,对于基因工程哺乳动物细胞,最高生产速率估计为~100pg/cell/day。qP的提高将来自于细胞系和培养基的优化。所以,理论上,在灌流工艺中,如稳态细胞密度维持为100x10^6cells/mL时,每日产量可高达10g/L/day。 /p p   实验同时评估了不同操作模式的产物质量特征,结果显示,CFB会形成更高水平的HMW和稍高的酸性异构体,主要是由于产物所暴露的细胞培养环境。在补料分批和浓缩补料分批中,产物滞留时间为整个培养周期。此外,在仅使用基础培养基的CFB工艺中,HMW最高,说明培养基组成可能在HMW形成中扮演了重要的角色。但是,产生的HMW仍低于5%,且大部分可在纯化步骤中去除。另一方面,即使是相同的高细胞密度环境和相似的培养基组成,灌流培养的酸性异构体和HMW更低,可能是由于产物在罐内更低的滞留时间。 /p p   培养基成本分析 /p p   由于细胞系或培养基组成的变化会显著影响产物滴度/产率,所以对不同操作模式的比较需使用相同的细胞系和培养基条件才有意义。本文使用从小规模生物反应器获得的细胞培养性能,来比较不同操作模式的培养基成本,并假定在规模放大时,不同工艺没有显著的产率下降。需要指出的是,实验中的灌流速率没有在对数生长期,以细胞特异性为基础,进行良好的优化。相反,在整个培养周期中,将灌流速率固定为1vvd。在不同的培养阶段,对细胞特异性灌流速率进行精细调节,应可进一步降低培养基用量和成本。 /p p   当只使用基础培养基时,生产每克抗体的培养基成本在批量和灌流工艺中都很高。加入适量的补料培养基,可降低每克mAb的培养基成本,且即使补料培养基相对较贵,细胞密度和qP的增加相比培养基成本的增加更加显著。 /p p   使用N-1灌流的补料分批的培养基成本比常规补料分批工艺低,N-1灌流需要3x基础培养基置换,但因接种密度的提高,继而获得的滴度的增加,抵消了培养基用量的增加。N-1灌流的补料分批和灌流的培养基成本相当,~$10/g mAb。这说明,虽然往常认为由于较高的灌流速率,灌流的培养基用量更高,继而培养基成本更高,但只需要生物反应器产率达到一定的阈值,从培养基成本上来看,还是相当有竞争力的。 /p p   CFB工艺的培养基成本与其它操作模式的趋势不同。在只使用基础培养基的条件中,成本与批量和灌流工艺相当,但CFB培养基成本会随补料培养基的使用而增加,其相对较高的培养基成本(& gt $17/g)可能是因为需要较长的细胞生长时间,在培养中,直到第10天,细胞密度达到峰水平,才开始出现显著的产物滴度增加。降低CFB培养基成本的一种方法是优化细胞寿命,延长批次时间,但更长的罐内滞留时间,可能会影响产物质量属性,或是进一步优化培养基,如替换昂贵的成分和优化其滴度。 /p p   总生产COG /p p   除了培养基成本的不同,使用诸如灌流和CFB之类的工艺,结合一次性设备,在小规模上进行生物制品生产,可显著降低成本投入,从而获得更加灵活的生产策略,当产品需求增加时,可以快速地进行规模扩展(scale out),而不是规模放大(ScaleuP)。与传统不锈钢设备相关的固定成本,可以转变为“可变”的成本结构。基于此处的案例,灌流工艺的培养基成本实际上低于补料分批工艺。 /p p   进行总成本分析时,如下游均以批量模式进行,且认为不同工艺的劳动力成本相当,则本文建模分析结果显示,N-1灌流的补料分批和灌流工艺的下游CoG/g相当,分别为$63/g和$59/g,而标准补料分批和CFB工艺的下游CoG/g稍高,分别为$71/g和$81/g。对于mAb和不稳定的产品,基于灌流的连续工艺都可以提供显著的经济优势。 /p p    strong span style=" color: rgb(0, 112, 192) " 总结 /span /strong /p p   在本研究中,比较了不同操作模式下,生物反应器的产率,包括补料分批、灌流和CFB工艺。对于研究的细胞系,qP高度取决于所用的培养基,不管采用哪种操作模式,这使得累积细胞密度成为决定产物滴度和生物反应器产率的主要因素。结果显示,补料分批培养生物反应器产率最低(0.39-0.49g/L/day),而基于灌流的培养方式,由于可维持更高的细胞密度,产率相对较高,灌流为2.29g/L/day,CFB为1.19-2.04g/L/day。灌流的一个显著优势是可以达到并维持极高的细胞密度,用于产物形成。 /p p   灌流工艺一个经常观察到的缺点是培养基用量较高,因为需要进行连续的培养基置换,以维持所需的高活细胞密度。这里的研究显示,高产率灌流培养的培养基成本实际上低于补料分批工艺。CFB工艺的培养基成本最高,虽然在18天内达到了36.7g/L的极高滴度,为降低CFB工艺的培养基成本,建议可以精调培养基置换率,以在起始的生长阶段获得更好的培养基利用,或通过培养基优化,提高细胞特异性产率。 /p p    i 小编出于交流目的编译此文,由于水平有限,不当之处,敬请谅解,详细内容,请参看原文。 /i /p p i   原文:S.Xu, J.Gavin, R. Jiang, et al., Bioreactor Productivity and Media Cost Comparison for Different Intensified Cell Culture Processes. Biotechnol. Prog., 2017, Vol. 00, No.00. /i /p p br/ /p
  • 振荡在生物培养中的作用
    生物培养分为静态培养和振荡培养。振荡培养,亦称悬浮培养,是指把微生物细胞接种于液体培养基中,并放置在摇床或振荡器上不停振荡的一种培养方法。广泛应用于菌种筛选和微生物扩大培养,是微生物生理、生化、发酵和其他生命科学研究领域中常用的培养方式。振荡培养不适用于含有易挥发性化学溶剂,低浓度爆炸气体和低燃点气体的物质以及有毒物质的培养。那静态培养与振荡培养有什么区别呢?CO2培养箱为细胞培养模拟了一个适宜的培养环境,包括温度,CO2浓度和湿度等外部条件。如干细胞在静态培养条件下,细胞贴附在底部瓶壁,溶解氧和营养物质会形成浓度梯度。然而悬浮细胞在温和的振荡培养条件下,消除了浓度梯度,增加了溶解氧浓度,更有利于生长。在细菌和细胞培养时,振荡培养可改善与培养基成分的接触和氧的供应,特别是对真菌的培养,不会形成菌膜或者菌团。霉菌静置培养得到的菌体能明显看到是有菌丝的,形态与平板上生长状态有些类似;而摇床培养得到的菌体是球形的,即菌丝聚集成团。所以在微生物工业上与振荡培养具有同样效果的搅拌培养也已被广泛应用。组织培养中的旋转培养法也是振荡培养的一种。摇床振荡培养的作用:1、传质,就是底物或代谢产物更好在体系内转移和发挥作用。2、溶氧,在好氧培养过程中,空气是滤过开放的,所以通过振荡可以让更多空气中氧气溶解于培养基中。3、体系均一,有利于对不同参数的取样测定。
  • 生物量监测在微生物(细胞)培养条件优化的应用
    上一篇推文,介绍了WIGGENS的CGQ生物量在线监测系统,在微生物(细胞)效能评价/菌种筛选的应用。 本期介绍生物量监测在微生物(细胞)培养条件优化中的应用。培养基为微生物(细胞)的生长提供环境条件以及碳源,氮源,生长因子等。培养基具有通用性,但每种培养物都有特殊性。在通用培养基的基础上针对培养物的特性做适当的调整或成分添加,对目的产物的高效产出,具有重要正作用。 下图是德国法兰克福歌德大学,使用CGQ生物量监测系统对Saccharomyces cerevisiae (一种酿酒酵母)在不同碳源组分中的生长曲线。 三种碳源Glc(葡萄糖)、Gal(半乳糖)、Mal(酰胺)不同浓度对酿酒酵母的生长有着明显的影响,对迟缓期和对数期的影响显著。碳源各组分浓度不同,对酿酒酵母进入平台期的时间甚至有超过6小时的差距影响。这对注重效率的工业发酵来说,减少迟缓期的时间段,有着重要的参考意义。 下图是,在M9培养基中,通过加入不同浓度的甘油,Escherichia coli (大肠杆菌)的生长曲线 从上图大肠杆菌的生长曲线可以看出,在M9培养基中,甘油浓度是对大肠杆菌最终生长量的最大影响因素。0.4%的甘油浓度对比0.1%的甘油浓度,对数生长期有明显提升,最终得到的生物量也是低浓度甘油的4倍以上。 下图是通过培养过程的摇瓶补液,CGQ进行的实时生物量监测。 在大肠杆菌培养中,通过LIS摇瓶补液系统,在摇瓶培养过程中进行在线补入缓冲液,缓冲液对pH值进行了调节。在使用LB培养基培养大肠杆菌的过程中,对生物量的限制的最大因素不是培养基组分,而是pH值,持续的进行pH调节,可以有效的增加生物量,提高培养基的利用率。更多的CGQ生物量监测应用,请参考如下文献:[1]Tripp et al (2017):Establishing a yeast-based screening system for discovery of human GLUT5inhibitors and activators (Nature – Scientific Reports)[2]Bruder, S. &Boles, E. (2017): Improvement of the yeast based (R)-phenylacetylcarbinol productionprocess via reduction of by-product formation (Biochemical EngineeringJournal).[3]Gottardi et al. (2017):De novo biosynthesis of trans-cinnamicacidderivatives in Saccharomycescerevisiae (AppliedMicrobiology and Biotechnology).[4]Bracharz et al. (2017):The effects of TORC signal interference on lipogenesis in theoleaginous yeast Trichosporonoleaginosus (BMCBiotechnology). [5]Bruder et al. (2016):Parallelised onlinebiomass monitoring in shake flasks enables efficient strain and carbon sourcedependent growth characterisation of Saccharomycescerevisia (MicrobialCell Factories).

生物培养仪相关的方案

生物培养仪相关的资料

生物培养仪相关的论坛

  • 微生物培养的仪器问题

    微生物培养的仪器问题对于微生物的研究,拥有大量的实验材料是十分必要的,这就需要进行微生物的培养。而且,对于某些微生物病原体的检测,也是需要进行微生物的培养。所以微生物培养用的培养基的制作也就成为了最基本的实验技术。 然而现今培养基已经可以工业化生产,技术也比较成熟,也就对培养基不是那么重视了。常识性的,培养基分为天然的(Defined Media)和合成的(Complex Media) 。天然培养基是提供接近于微生物生长的自然环境的营养物质,然而为此付出的代价是我们并不完全清楚其中的物质的组成或其含量,这种培养基可以用于实验用基本培养基和生产,但在作某些实验时得到的数据会不稳定。合成的培养基是用多种高纯化学试剂配制成的,各种成分和含量都是已知的。虽然制作成本高,也很烦琐,但成分精确,重复性强,用于对于营养、代谢、生理生化特性的研究等要求较高的工作。然而可以在这种微生物培养基上生长的微生物十分有限,原应是许多微生物的生长代谢我们并不完全了解,无法配出微生物满意的营养基质。现在的微生物培养技术已经相当成熟了,然而其中总有令人不满的地方。比如,无论何时空气中总有微生物,无论是制作培养基过程中还是将微生物接种到培养基上时总会和空气接触,很容易想到不久后长出的菌落到底是谁的,样品的?还是空气的?这些也许是无法避免的,但确实会带来很多麻烦。整个过程充满着失败的可能性,没有先进的仪器设备就无法降低这种可能性,对于研究这种时时处处在身边的小东西我们总显得有点力不从心。用铁丝接种环划线就很容易弄坏培养基,更别说分离出单菌落了。这需要经验和技术,对于一个研究微生物的人来说本不该去关心的经验和技术。前人也许是这样的,但我们未必也需要这样。对于无法用肉眼观察的东西,研究和培养是很困难的,尤其是没有先进的仪器设备的时候,那种痛苦是可想而知的。我们现在用的固体培养基大都是用琼脂。在琼脂发现以前,想要做细菌的纯培养是非常困难的,那时候只有液体培养基,根本无法进行纯培养。后来用凝胶培养基,但很多细菌都无法在基质上正常生长,直到琼脂被用来做固体培养基的基质,才解决了这个难题。应为琼脂是多聚糖的硫酸盐,其中主要是D-半乳糖,一般微生物很难分解利用它。这在微生物培养上是一次很大的革新。由于材料容易获得,而且本身的特性又很好,所以至今仍在使用。然而,微生物的培养依旧受到很大限制。我们对微生物的了解还不够多,许多微生物的培养只能用天然培养基,这在要求可重复的实验中会带来很大的麻烦;另外,条件的限制导致很多实验都无法达到无菌环境,实验结果有多少是可靠的,很难说明。微生物的培养只是一种手段,但却是一种很重要的手段。虽然只要能说明研究成果就可以了,但在实际操作中也确实有着非常繁琐,难以操作的地方存在,只要做过微生物培养的实验便可以知道,想要做出漂亮的结果是非常困难的,其中需要改进的地方有很多,比如有没有办法就算再不是无菌的环境下也能尽量减少空气中细菌的干扰,可不可以用更柔软的材料做接种环来划线,有没有其他的方法来给涂布棒灭菌。不然实验失败很难找出其中的原因。虽然实验失败的可能性很多,但我们至少应该减少它发生的可能性。微生物培养基是微生物实验必不可少的组成,它以及与它有关的组成构成了微生物培养的装置,这些仪器和操作中的不确定因素太多,这样做出的实验结果是没有说服力的。这些仪器和操作有待于改进。(因为我的基础太差,所以无法指出其中需要改进的地方到底应该改成怎样,但已经明显体会到了这些仪器以及操作的不足之处。)

  • 关于微好氧/低氧培养(微生物)和三气培养(细胞)

    对于微生物培养,大家常用的是恒温培养箱、霉菌培养箱、震荡培养箱、恒温水浴箱、发酵罐等,满足了日常工作需要;当然,这都是针对好氧菌而言。 而对于厌氧菌和兼性好氧菌,则需要考虑选用合适的厌氧、微好氧/低氧培养装置(如厌氧培养盒/袋、厌氧罐以及专业的厌氧培养箱、厌氧工作站、微好氧/低氧培养箱、厌氧发酵罐/反应池等)。 常规的动物细胞培养,一般选用CO2培养箱、滚瓶培养装置、悬浮培养装置、生物反应器/细胞培养罐等。为更接近或模拟体内微环境,三气培养箱(即CO2培养箱加配O2传感器)逐渐为人们所熟知!当然,更专业的Biospherix 系列O2/CO2控制器加培养盒、H35微好氧/低氧细胞培养箱、X vivo 一体化细胞工作站等三气培养装置也给大家提供了更多的选择!

  • 微生物培养的污染因素

    微生物培养的污染因素及预防方法随着现代生物学研究的发展,微生物培养成为了重要的实验手段之一。然而,在进行微生物培养过程中,存在着许多污染因素,这些污染因素可能会对实验结果产生影响或者导致实验结果不准确。下面将介绍一些常见的微生物培养的污染因素以及相应的预防方法。1、风速与风向培养箱内的风速和风向对于保持温度的均一性以及避免污染都非常重要。一般来说,适当的风速和风向可以帮助培养箱内的温度保持均一,有利于微生物的正常生长。然而,当风速过大时,可能会导致培养基干裂,从而影响培养结果的准确性。另外,药典要求培养皿倒置培养,这是因为经过多次验证发现,当培养箱运行时的风向与培养皿盖的朝向不一致时,容易引入空气中的灰尘、杂菌等,从而污染培养物。因此,在使用培养箱的过程中,需要注意风速和风向的控制,并尽量与培养皿盖的朝向一致。2、培养皿的密闭性培养皿由平底和盖组成,一些微生物实验室常用的培养皿直径为90mm,采用顶盖封装。然而,由于不同厂家制造的培养皿的成型工艺和参数不同,平底和盖之间的间隙也存在差异。这些间隙虽然能够满足需氧型微生物对氧气的需求,但也增加了污染的可能性。经过实验证实,在同样的培养条件下,间隙大的培养皿比间隙小的培养皿更容易受到污染。此外,间隙的大小不同还会导致培养皿内培养基的水分蒸发不一致,从而影响培养结果数据的一致性。因此,在使用培养皿的过程中,需要选择质量可靠的培养皿,并注意平底和盖之间的间隙情况。3、培养箱内的湿度微生物生长需要一定的湿度条件。湿度对微生物生长的影响是通过影响微生物细胞内水分活度进而影响其新陈代谢来实现的。不同微生物的生长对湿度有一定的要求,一般来说,细菌最为敏感,酵母和霉菌次之。降低湿度会使微生物的水分活度降低,从而减慢其生长速度。因此,在微生物培养的过程中,需要保持适宜的温度和湿度,以有利于微生物的生长。培养箱内湿度的来源主要有培养基的水分散失、湿度自动调控系统以及培养箱所在的环境。因此,在使用培养箱的过程中,需要控制湿度,保持适宜的生长环境。4、培养物溢洒培养物溢洒是指含有生物危险物质的液体或固体物质意外与包装材料分离的过程。一旦发生生物危害物品的溢出,尤其是含有病原微生物的培养物的溢出时,会导致微生物的生长和繁殖,从而引起培养箱的污染。为了预防交叉污染,当发生培养物溢洒时,需要及时清理和消毒培养箱。应该使用有效的消毒剂对培养箱的内壁以及接触溢出物品的材料进行消毒或高压灭菌。此外,如果溢洒物中含有破碎的玻璃等材料,不得直接用手取走或弃置,应该使用硬纸板和镊子等工具处理,并将处理物放置在安全的废弃物容器中。最后,对清洁工具也需要进行消毒处理,以确保卫生安全。5、自然环境污染培养箱需要放置在洁净、干燥、通风良好的自然环境中。如果环境中空气洁净度不够高,容易滋生细菌、真菌和病毒等微生物,并通过平底和盖之间的间隙污染培养基,从而影响培养结果数据的准确性。因此,在使用培养箱的过程中,需要注意放置环境的卫生和通风状况,尽量避免自然环境的污染。综上所述,微生物培养过程中存在着多种污染因素,这些因素可能会对实验结果产生影响或导致实验结果不准确。为了保证实验结果的准确性,需要在使用培养箱进行微生物培养时,注意控制风速和风向、选择合适的培养皿、控制湿度、避免培养物溢洒以及注意自然环境的卫生状况。只有这样,我们才能够获得可靠且准确的微生物培养结果。

生物培养仪相关的耗材

  • 维科生物 培养器一次性
    一次性集菌培养器 一次性集菌培养器,经过五十多道工序精心制造,每道工序严格检验,产品100%通过完整性检测,按ISO9001质量体系要求,实现了质量追溯与质量的持续改进。根据检品性状及包装不同,特别选择了多种不同材质,不同结构的微孔滤膜,设计开发了34种集菌培养器,基本满足各类检品无菌检查的需要。性能特点1、 专业进行环氧乙烷灭菌。  2、 超音波焊接工艺,焊接平整牢固,达到最佳密闭性能。 3、 特种材料复合制造的高弹性泵管,张力持久,耐磨抗压,能保证最 大检验量过滤顺利完成。 4、 采用美国进口医用透析包装,确保产品无菌性能,能快速解析环氧 乙烷,降低环氧乙烷残留。5、 透明吸塑盒包装,与国际标准接轨技术参数FY110 FY220 FY330瓶装大容量注射剂 采用侧孔双芯针头,一座双针设计,频繁插拔换瓶不堵塞,连续操作更方便BF220 BF330玻璃瓶装粉剂 增加一个溶解针头,巧妙解决全封闭溶解方案,并实现溶解、过滤一次完成RSD220 RSD330软塑料袋装药液 配有大口径斜孔针头和专用空气滤帽,确保全量过滤AY220 AY330安瓿装药液 加长型取样针,全量快速吸取检品DAY220 DAY330安瓿装可溶性粉剂 可控式溶解过滤单针一体化设计,将外源性污染的可能降到最低限度SYQ220 SYQ330 ZSQ220 ZSQ330医疗器材(输液器、输血器、 透析管、静脉导管等) 配有专用接口,连接各种待检器材,保证全封闭过滤检测KSY110 KSY220 KSY330抗生素药液 与国外滤膜生产厂家合作,进口特种材质的滤膜,将抗生素吸附量降到最低KAY220 KAY330安瓿装抗生素药液 可将过滤、冲洗一体化操作,免去其它转移操作NRF220 NRF330瓶装强抑菌性与难溶性粉剂 三针座设计,可将溶解、稀释、再溶解、过滤、冲洗一体化操作,可降低药物浓度,减少抑菌成分的吸附KBF220 KBF330瓶装抗生素粉剂 双针座设计,可将溶解、稀释、过滤、冲洗一体化操作,免去其它转移操作YRJ220 YRJ330瓶装乳剂(油性供试品) 选用疏水性滤膜、确保乳剂类供试品顺畅、全量过滤SWY220 SWY330粘稠性药液(生物制品) 选用加强型专用微孔滤膜,更可靠、更快速SWF220 SWF330冻干粉针(生物制品) 溶解、转移操作选用加强型专用微孔滤膜,更可靠、更快速特殊培养器与泵管的型号与用途JRJ220 JRJ330有机溶剂 乙醇,汽油,化学试剂等BG220 BG330 FBG220 FBG330泵管 与反复使用培养器配套使用,用于微生物限度检验使用 应用领域 维科集菌培养器配套市面上所有种类的集菌仪使用,应用于无菌制剂的无菌检查,包括抗生素类及含有抑菌成分的制剂、无菌原料药、大输液、水针剂、灭菌医疗器具、灭菌注射用水、生物制品等等。 验量过滤顺利完成。
  • Nalgene 2602 带生物混合器的培养瓶
    Nalgene 2602 带生物混合器的培养瓶?该培养瓶系统由三件Nalgene 产品组成,包括一个带端口的容积为12 L 的培养瓶( 目录编号2600-0012),一个1/8 HP 顶部驱动生物混合器( 目录编号2653-0010 或2653-0020) 和一个带有13-1/2 in. 轴(3/8 -in. 直径)的下部装置(轴上带有4-in. 的轴流玻璃填充聚丙烯叶轮和2-1/2" 宽的聚丙烯挡板),可实现高效的上下混合。新型生物混合器能够提供可变速度、可编程速度、连续控制,还能够实现顺时针和逆时针旋转,专为实现系统组件的最高效率而设计。这些混合器已经过认证,可以在美国、加拿大、日本和欧盟使用。用户可以对培养瓶和下部装置进行高温高压灭菌。USPVI/ 透明订货信息:Nalgene 2602 带生物混合器的培养瓶目录编号 2602-0110-0220电压110220每箱数量11
  • 谱新生物 细胞培养板 培养板
    产品优势:①电子束灭菌②无热源,无内毒素③产品批号标识,便于质量追溯④产品可提供袋装或支架包装⑤杜邦特卫强热熔封装,独立包装,防潮,防湿、防水⑥真空等离子处理⑦高透明度,100%纯聚苯乙烯 产品信息:品名货号规格包装规格6孔细胞培养板PX-CCP0061个/袋,50袋/箱50个/箱12孔细胞培养板PX-CCP0121个/袋,50袋/箱50个/箱24孔细胞培养板PX-CCP0241个/袋,50袋/箱50个/箱48孔细胞培养板PX-CCP0481个/袋,50袋/箱50个/箱96孔细胞培养板PX-CCP0961个/袋,50袋/箱50个/箱(更多产品信息请参考:http://www.hillgene.com/product/31.html) 江苏谱新,定位于细胞药物CDMO龙头企业,股东包括国家中小企业发展基金、中科院控股国科嘉和基金、海尔资本、华邦健康、中信建投资本等。公司总部位于美丽的太湖之滨-苏州市吴中区,注册资本1亿元,拥有苏州总部(10000m2 GMP厂房)、深圳基地(8000m2GMP厂房在建),初步形成全国布局的生产基地网络布局;美国北卡基地也在建设中,同步进行全球产能布局。谱新生物聚焦于细胞治疗药物领域,搭建了细胞药物专用的质粒构建平台、悬浮无血清病毒生产平台和全封闭的细胞工艺开发平台,打造了细胞药物从发现到产品交付的高速公路。平台已支持多个合作伙伴成功孵化了多款CAR-T、TCR-T、干细胞等药物。致力于让更多项目更早更快地达到下一里程碑,把更多细胞药物推向市场,造福更多患者,让细胞药物谱写生命新篇章。 公司信息详询:http://www.hillgene.com/电话:400-900-1882邮箱:info@hillgene.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制