基因富集分析

仪器信息网基因富集分析专题为您提供2024年最新基因富集分析价格报价、厂家品牌的相关信息, 包括基因富集分析参数、型号等,不管是国产,还是进口品牌的基因富集分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合基因富集分析相关的耗材配件、试剂标物,还有基因富集分析相关的最新资讯、资料,以及基因富集分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

基因富集分析相关的厂商

  • 南京溯远基因科技有限公司成立于2017年9月,同年12月完成国内首台Sanger测序仪原型机的研制。公司专注于高端生命科学仪器的研究开发,定位全球领先的高端生命科学仪器设备制造商,集研发、生产、销售、维修为一体,核心团队成员均为生物医学领域的深耕者,是一家具有专业技术背景的高科技创新性企业。公司为国家科技部认证的高新技术企业,拥有30多项各类专利。公司研发的基于Sanger测序平台的Classic系列基因分析仪属国内首创,打破了外资企业在这一领域的长期垄断格局,而且即将改变目前此类仪器主要依赖进口的现状。公司的基因分析仪最高支持8色荧光,各项性能比肩同类进口产品,并于2020年12月完成II类医疗器械备案(苏械注准20202221294)。
    留言咨询
  • 南京溯远基因科技有限公司成立于2017年9月,同年12月完成国内首台Sanger测序仪原型机的研制。公司专注于高端生命科学仪器的研究开发,定位全球领先的高端生命科学仪器设备制造商,集研发、生产、销售、维修为一体,核心团队成员均为生物医学领域的深耕者,是一家具有专业技术背景的高科技创新性企业。公司为国家科技部认证的高新技术企业,拥有30多项各类专利。公司研发的基于Sanger测序平台的Classic系列基因分析仪属国内首创,打破了外资企业在这一领域的长期垄断格局,而且即将改变目前此类仪器主要依赖进口的现状。公司的基因分析仪最高支持8色荧光,各项性能比肩同类进口产品,并于2020年12月完成II类医疗器械备案(苏械注准20202221294)。
    留言咨询
  • 400-860-5168转4405
    “专业专心专注,我们致力于分析检测技术。” 孚禾科技 PHXTEC 是专业的分析检测设备供应商。我们坚持自主研发、自主制造,坚定持续创新、质量至上、客户优先,为各行业提供一系列性能优异、有竞争力的产品,包括模块组件、仪器设备和完整的解决方案。 我们的产品包括微型气相色谱仪、原子吸收光谱仪、气相色谱仪、便携式气相色谱仪、在线气相色谱仪、电子压力流量控制器模块、检测器模块等,整体性能均为业内领先水平。我们在石油化工、环境监测、煤矿安全等多个领域都有优秀的应用案例,并和国内外多家知名公司建立了良好的产品和技术合作关系。 我们积极进取,努力前进。我们也期待着与您的合作,共创互利共赢! 发展历程:2023年 700 Micro GC 微型气相色谱系统2023年 500 TVOC 便携式挥发性有机气体分析仪2023年 630 SCANIR 便携式红外热成像气体泄漏检测仪2022年 220 ELITE 便携式非甲烷总烃/苯系物分析仪2022年 新一代原子吸收光谱仪 AA68 SERIES2021年 500 TVOC 系列 便携式总烃分析仪2020年 200 PLUS 系列 便携式气相色谱仪2020年 新一代微型气相色谱系统 Micro GC PLUS2018年 200 系列 便携式气相色谱仪2016年 300 系列 在线式气相色谱仪2015年 301-M 系列 高精度独立电子压力流量控制 EPC/EFC 模块2015年 401-M 系列 高灵敏度独立火焰离子检测器 FID 模块2012年 第一代原子吸收光谱仪 6810 SERIES

基因富集分析相关的仪器

  • 仪器原理 针对大气中挥发性有机溶剂总类多、性质差异大、浓度低、常温富集效率差别大、检测结果易受大气相对湿度影响等特点,仪器增加Pre-3000深冷预处理装置,与315型深冷富集VOC在线分析仪配合使用,实现大气中VOC样品在线监测。 Pre-3000深冷预处理装置,采用电制冷技术,制冷温度可达-100℃,在深冷条件下,对样品进行物理除水,除水效率可达99%以上,有效解决了样品相对湿度变化对检测结果的影响;以及样品中水汽对色谱峰漂移的影响,定性结果更准确;在深冷条件下可有效提高挥发性有机溶剂样品(醇、酮、酯等)的富集效率,可达常温条件下的50倍以上。结合分流进样技术和直热式高温热脱附技术,有效解决色谱峰拖尾和峰展宽问题,使系统定性定量分析结果更加准确。 315型VOC在线分析仪采用程序升温色谱分离技术和氢火焰离子化检测器(FID)技术进行样品的分离分析检测,样品气体经Pre-3000深冷预处理模块除水、富集浓缩后,通过直热式高温热脱附,被快速送入315型分析仪器中,分离后的VOC组分依次进入到FID检测器进行检测,得到各单一组分准确的定性定量分析结果。深度除水色谱定性定量重复性更佳仪器特点 超低温电制冷技术,对样品深度除水,解决水汽对色谱柱性能的影响; 低温样品捕集,解决挥发性溶剂常温富集效率低、差异大的问题,提高样品富集效率; 分流进样技术,解决大容量采样,热解吸引起的峰拖尾和峰展宽问题,系统定性定量分析结果更准确; 直热式加热技术升温快(40℃/s),解吸迅速彻底,避免热脱附引入的峰展宽,色谱分离效果更好,定性定量更准确; 采用复合填料技术,样品捕集种类更多,单次分析检测更多样品; 使用电子压力流量控制技术(EPC、EFC)控制载气、空气和氢气,精度高,重复性好; 整机采用19”标准机柜设计,仪器体积小,安装使用方便。应用领域  环境大气挥发性溶剂监测  石化化工园区挥发性有机溶剂监测  挥发性卤代烃监测、科学研究应用监测  水中VOC在线监测等
    留言咨询
  • 仪器原理 大气中的挥发性有机物样品,具有组成复杂、含量低、活性强、浓度和化学活性差异大等特点,系统通过与Exp-200深冷预处理装置配合使用,结合氢火焰离子化检测器(FID)技术和质谱检测器技术(MSD)进行大气中VOC样品的在线分析监测。 样品经Pre-3000深冷预处理装置除水、富集浓缩后,通过直热式高温热脱附,被快速送入至毛细管色谱柱进行分离,分离后的样品,低碳(C2-C5)类VOC样品使用氢火焰离子化检测器(FID)进行检测;高碳(C6-C12)和含氧类VOC样品使用质谱检测器(MSD)进行检测,得到各单一组分准确的定性定量分析结果。 在线色谱-质谱分析仪充分利用了气相色谱的分离技术和质谱检测器的定性检测技术,可有效用于环境大气中复杂多组分VOC样品监测。一次采样可检测100多种各类VOC(碳氢化合物、卤代烃、含氧挥发性有机物)样品。仪器特点 工业标准系统设计,系统可靠性高;断电开机后,系统自动循环运行,维护量低; 低温电制冷技术,仪器体积小,整机采用19”标准机柜设计,安装维护方便; 质谱检测数据自动分析处理,结果直接输出,并传送至分析平台,无需人工计算; GC-FID、GC-MS双系统进行VOC检测,一次可检测100多种各类VOC(碳氢化合物、卤代烃、含氧挥发性有机物); GC-FID系统使用预分离和阀切换反吹技术,避免高沸点组分进入分析系统,提高色谱柱的使用寿命; 对样品深度除水,解决水汽对色谱柱性能的影响;深冷富集可提高样品富集效率,解决含氧类VOC常温富集效率低、差异大的问题,提高检测灵敏度。应用领域  环境空气组分分析监测  环境空气痕量样品监测  石化化工园区厂界挥发性溶剂及未知物组分分析  科学研究
    留言咨询
  • 日立DS3000紧凑型基因分析仪 上世纪90年代初,三大科学计划之一的 “人类基因组计划”启动,并于2001年完成了人类基因组草图,而这一伟大工程,正是基于“Sanger法”的DNA测序技术。 随着科学技术的不断发展,一代测序受检测效率的限制,无法应对大量基因组测序的需要,因此二代测序、三代测序技术,甚至四代高通量测序技术不断涌现。但一代测序因其极高的准确率,直到今天仍然在科研、法医、疾控、食药及临床领域等广泛使用,也是高通量测序验证过程中的重要环节,因此,被称为基因检测的金标准。制药,食品,科研等研究机构均需要通过测序来进行基因分析,为了满足该需求,日立研发了紧凑型基因分析仪“DS3000”,现已全新上市。 日立DS3000秉承日立高新多年来研究开发的毛细管技术与激光辐射技术,作为小型CE测序仪不仅外形“紧凑”,还实现了“高性能”及“高速处理”,可轻松完成片段与测序分析。此外,本产品还采用了环境友好型设计,通过减少在产品使用时排出的CO2排放量,为客户提供可降低环境负荷的产品。DS3000采用4通道毛细管,一次性可处理32个样本,可同时进行6色荧光检测。支持短串联重复序列分析、微卫星不稳定性检测、突变分析和测序分析等用途。 产品特点:1. 操作简便-结构紧凑&触摸屏设计设备采用GUI的触摸屏显示设计,宽400 mm×长600 mm×高600 mm,结构紧凑,节省空间。触摸屏采用扁平化设计,界面布局直观,加强操作的便捷与实用性。 -卡槽式包装耗材耗材包装采用卡槽式设计,安装简便。-流程高效1. 简化的操作流程,安装方法和步骤说明清晰易懂,无论是初次使用仪器的新手,还是不定期使用仪器的用户,均可轻松完成操作。 2. 配备远程监控系统:DS3000配备远程监控系统,支持“远程设备访问”,可以在Web端监测设备状态,设置检测条件,显示分析结果及生成报告等。进一步提升了操作的便利性,实现高效的工作流程。3. 方便普适,用户可使用任何电脑:可使用用户端网络及电脑输出报告,进行二次解析等。 2. 系统智能-智能耗材管理耗材使用情况实时监控,根据参数,系统能够自动计算出耗材剩余使用次数,提高耗材管理效率。-检测结果智能判断校准检测通过波形及数值表现每道毛细管的信号强度,样本检测根据质量参数设置,自动判断检测结果合格与否,一目了然。 3. 性能优异-创新无泵注胶系统——无需清洗泵,无需排气泡DS3000 采用无泵注胶系统,并成功研发出可移动密封式注射型聚合物,经久耐用,在填充聚合物时无需排气泡,避免了不必要的浪费,同时免除了以往的清洗步骤,有助于缩短维护时间并降低成本。由此可降低用户维修频率,操作性能得到极大提升。 -创新设计光源——使用寿命更长DS3000采用全新设计的激光二极管光源 (LD光源),受模拟脉冲信号控制,DS3000仅在检测时打开光源,与以往光源相比,延长了实际亮灯时间。 日立DS3000基因分析仪作为一款小型的集成化台式DNA分析仪,“紧凑”而“高效”,可以帮助生命科学专家在各种规模实验室进行Sanger测序和DNA片段分析工作。 (此产品仅供科研使用)
    留言咨询

基因富集分析相关的资讯

  • 安捷伦指定华大基因为中国首家认证的靶向富集服务提供商
    2011年4月4日, 安捷伦公司宣布,基因组学研究中心华大基因(BGI)已经正式成为安捷伦认证的SureSelect XT靶向序列捕获系统服务提供商(CSP)。安捷伦CSP计划是一项针对希望提供更高水平数据质量的服务供应商合作计划。   位于深圳的华大基因是世界上最大的基因研究机构,是中国第一家获得安捷伦认证的SureSelect XT靶向序列捕获系统服务提供商。该机构获得了SureSelect XT靶向序列捕获系统协议所涵盖的所有认证,包括人类所有外显子、SureSelect索引、DNA捕集、RNA捕集、kinome RNA和客户定制包。   安捷伦SureSelect XT 靶向序列捕获系统   “我们非常高兴能够成为安捷伦的CSP,”华大基因基因测序业务主管Li Jingxiang说。 “安捷伦SureSelect XT靶向序列捕获系统是一个很出色的,并且是国际上知名的产品,利用此我们可以为客户提供最好的目标测序服务。”   “我们非常高兴地看到,这个重要的测序中心可以通过更广泛的基因组学实验,从安捷伦SureSelect XT靶向序列捕获系统中获利。”安捷伦SureSelect平台及基因组学市场营销总监Fred P. Ernani博士说到。   该平台自2009年成立,目前安捷伦可以提供35 种SureSelect靶向富集包。它已被超过45个同行评审的出版物所引用,包括在遗传疾病等方面的研究和发现工作。   SureSelect XT使靶向富集流程简化,使研究人员可以仅对目标基因组区域(而非整个基因组)进行测序。结合先进的新一代测序系统不断提升的性能,SureSelect XT 平台的多样本检测能力使基因学家可以在一次实验中相比以前探索更多样品的基因组。直到现在,文库制备和靶向富集步骤一直是限制此类实验速度的瓶颈之一。为了实现高通量样品处理,安捷伦现已发布综合式工作站,用于SureSelect XT 文库制备和靶向富集工作流程的自动化。   SureSelect XT 还为客户提供高度灵活的定制化产品。用户使用安捷伦eArray xD桌面设计工具,可以轻松设计出在单管中捕获任意目标基因组的定制产品,从而提高研究效率。安捷伦还提供eArray在线设计工具,用户使用该工具可定制和安捷伦目录SureSelect试剂盒类似的产品,例如 SureSelect 人全外显子系列产品。   SureSelect XT靶向序列捕获系统已经被科学杂志12月17期的两项2010年10大突破所引用,这两项突破为:“Reading the Neandertal Genome”和“Homing In on Errant Genes”。
  • 一种膜渗透的、固定化金属亲和色谱富集的交联试剂用于推进体内交联质谱分析
    大家好,本周为大家分享一篇发表在Angew. Chem. Int. Ed.上的文章,A Membrane-Permeable and Immobilized Metal Affinity Chromatography (IMAC) - Enrichable Cross-Linking Reagent to Advance In Vivo Cross-Linking Mass Spectrometry,该文章的通讯作者是德国莱布尼茨分子药理学研究所的Fan Liu教授。交联质谱 (XL-MS) 已被用于在全蛋白质组范围内表征蛋白质的结构和蛋白间相互作用。目前,由于能够穿透完整细胞的交联试剂和富集交联肽的策略的缺乏,体内交联质谱研究的深度远远落后于细胞裂解液的现有应用。为了解决以上限制,本文开发了一种含膦酸盐的交联剂-tBu PhoX,它能够有效地渗透各种生物膜,并且可以通过常规的固定化金属离子亲和色谱 (IMAC) 进行稳定富集。 文章建立了一个基于 tBu-PhoX 的体内 XL-MS 分析流程,在完整的人类细胞中实现了较高的交联识别数目,并大大缩短了分析时间。总的来说,本文开发的交联剂和 XL-MS 分析流程为生命系统的全面交联质谱表征铺平了道路。细胞蛋白质组通过广泛的非共价相互作用网络进行组织,表征蛋白质-蛋白质相互作用 (PPIs) 对于了解细胞的调节机制至关重要。交联质谱 (XL-MS) 是系统研究细胞 PPIs 的一种强有力的方法,在 XL-MS 中,天然蛋白质接触通过交联剂共价捕获,交联剂是一种由间隔臂和两个对特定氨基酸侧链具有反应性的官能团组成的有机小分子,交联样品经过蛋白酶水解后,可以通过基于质谱的肽测序来定位氨基酸之间的交联。由于交联剂具有确定的最大长度,检测到的交联揭示了蛋白质内部或蛋白质之间的氨基酸的最大距离。以上这些信息提供了对蛋白质构象、结构和相互作用网络的见解。虽然最初仅限于纯化的蛋白质组装,但如今 XL-MS 已经可以应用于复杂的生物系统——这是通过开发先进的交联搜索引擎、样品制备策略和交联剂设计而实现的。特别是,已进行的几项全蛋白质组范围的 XL-MS 研究表明,可以通过使用可富集的交联剂来改进交联产物的鉴定,例如,通过添加生物素或叠氮化物/炔烃标记,使得消化混合物中的交联肽段能够基于亲和纯化或点击化学富集。最近,一种基于膦酸的交联剂 PhoX 被引入作为现有生物素或叠氮化物/炔烃标记试剂的高效和特异性替代品。PhoX 可通过固定化金属离子亲和色谱 (IMAC) 实现交联富集,这是一种非常快速和稳健的富集策略。 然而,尽管 PhoX 已被证明可用于从细胞裂解液中进行交联鉴定,但它无法渗透细胞膜,因此不适合体内的 XL-MS检测。基于以上讨论,本文开发了交联剂 tBu-PhoX ,其中,膦酸羟基被叔丁基保护以掩盖负电荷(图 1)。为了检测 tBu-PhoX 的膜通透性,文章交联了各种膜封闭的生物系统,包括人 HEK293T 细胞、从小鼠心脏分离的线粒体和革兰氏阳性枯草芽孢杆菌,并在 SDS-PAGE 上监测了蛋白质条带的变化(图 2)。在SDS-PAGE中,观察到在交联剂浓度为0.5和1.0mM时,蛋白质向更高分子量的浓度依赖性迁移,这表明了有效的膜渗透和交联。相比之下,将 PhoX 应用于完整的 HEK293T 细胞将产生与非交联对照相同的条带模式。图1 tBu-PhoX交联剂图2 PhoX或tBu-PhoX交联HEK293T细胞的SDS-PAGE在证明了 tBu-PhoX 可渗透各种生物膜系统后,文章接下来开发了一种基于 tBu-PhoX 的体内 XL-MS 工作流程,相比于之前的全蛋白质组 XL-MS 策略,该工作流程提高了样品处理和交联富集的速度和效率(图 3)。首先,按照标准蛋白质消化方案将交联蛋白质消化成肽;其次,使用 IMAC 珠对消化混合物进行预清除步骤以去除内源性修饰(特别是磷酸化);第三,预清除的消化混合物(从 IMAC 流出)在稀释三氟乙酸 (TFA) 溶液中孵育以去除叔丁基并暴露膦酸基团以进行二次 IMAC 富集。第四,使用标准 IMAC 程序丰富交联产物,最后通过 LC-MS 分析以进行交联产物鉴定。图3 与tBu-PhoX进行体内交联和后续样品处理的工作流程接下来,文章优化了体内 XL-MS 工作流程的几个分析参数,以最大限度地提高交联检测的效率。首先,通过使用 IMAC 珠预清除评估了去除磷酸肽的效率;之后,使用 tBu-PhoX 交联完整的 HEK293T 细胞,经酶切成肽后,并应用预清除 IMAC 步骤去除内源性磷酸肽。在去保护步骤之后,利用 IMAC 富集交联,并通过单次 120 min LC-MS 运行测量富集的样品。通过测量 IMAC 洗脱液中磷酸肽和交联产物的数量,发现第二个 IMAC 中只有数百条磷酸肽,而预清除 IMAC 中有 4,128 条磷酸肽,这突出了通过预清除 IMAC 步骤去除磷酸肽的效率。此外,与单阶段 IMAC 结果相比,使用预清除 IMAC 的工作流程鉴定了 22% 以上的交联(1165 对 952 交联),证明了该两阶段工作流程去除干扰修饰肽的好处(图 4A)。其次,文章在肽水平上研究了膦酸盐去保护的功效。使用 tBu-PhoX 制备了体内交联的 HEK293T 样品,并分析了在不同的酸度(TFA 浓度)和孵育时间下,去保护后交联的数量如何变化。结果显示,不同浓度的 TFA 下获得了相似数量的交联。为简化处理(即在接下来的IMAC富集步骤中保持相对较低的样品体积),选择 0.5% TFA 的去保护条件,持续两个小时(图 4B,C)。第三,文章测试了 Orbitrap Tribrid 质谱仪的不同采集参数如何影响交联识别,即在高场非对称波形离子迁移率质谱法 (FAIMS) 中应用的电荷态选择和补偿电压 (CVs)。当考虑电荷状态 +3 和更高时,确定了最多数量的 tBu-PhoX 交联肽(图 4D)。图4 样品处理和LC-MS参数的优化文章将优化参数后的体内 XL-MS 工作流程应用于完整的 HEK293T 细胞。使用 180 min的 LC 梯度和优化后的分析参数,文章从体内 tBu-PhoX 交联的 HEK293T 细胞中获得了 9,547 个交联(图 5A)。基因本体分析表明,交联蛋白参与了广泛的分子功能、生物过程和细胞成分,表明 tBu-PhoX 可以揭示所有细胞区域的 PPIs(图 5A)。另外,文章还考察了完整细胞的体内 XL-MS 是否捕获了与细胞裂解液的 XL-MS 不同的 PPIs。为了验证这一点,从 HEK293T 细胞中制备 tBu-PhoX 交联裂解液,并使用与体内 XL-MS 实验相同的工作流程处理样品。 结果显示,从五个 SEC 部分中确定了 9,393 个交联。这表明 tBu-PhoX 允许以类似的效率进行裂解和体内 XL-MS。比较本文的体内和裂解数据表明,在体内 XL-MS 实验中,蛋白质间交联的数量更高,从而产生了更加相互关联的 PPI 网络(图 5B,C)。这种效应可以通过细胞环境的拥挤来解释,其中蛋白质紧密堆积并参与多种相互作用,这些相互作用被细胞裂解和稀释部分破坏。文章在 8 种选定蛋白质复合物的已知 3D 结构上可视化了 145 个体内检测到的交联(图 5C),另外,还观察到 96.6% 的交联在 35 Å 的最大距离限制内(图 5D),表明此 XL-MS 工作流程对内源性蛋白质复合物的体内结构分析的适用性。最后,文章比较了 tBu-PhoX 与 PhoX 在表征细胞裂解液的 PPI 网络方面的性能。使用与上述 tBu-PhoX 裂解液交联实验相同的交联条件从 HEK293T 细胞制备 PhoX 交联裂解液。为了去除内源性磷酸肽,在单阶段 IMAC 富集之前,用碱性磷酸酶处理消化的肽两小时。使用与 tBu-PhoX 相同的 LC-MS 方法进行 LC-MS 分析。该实验产生了 2,117 个交联,与使用 tBu-PhoX 识别的交联数量(1,942 个交联)相比略高。然而,基于 PhoX 的 XL-MS 流程需要更长的样品制备时间,因为需要进行碱性磷酸酶再处理和之后的额外脱盐步骤。行体内交联综上所述,本文开发并应用了一种新型的、可富集的、用于体内 XL-MS 的膜渗透交联剂 tBu-PhoX。在广泛使用的交联条件下(交联剂浓度为 1-5 mM),tBu-PhoX能够有效地穿透各种生物膜,为完整的细胞器和活细胞提供交联的机会。tBu-PhoX上的叔丁基基团使得高效的两阶段IMAC样品制备方案成为可能;首先,使交联剂对 IMAC 呈惰性,以促进基于 IMAC 快速而彻底地提取不需要的磷酸化肽,然后,通过去除叔丁基暴露膦酸基团,从而有效地二次 IMAC 富集交联剂修饰的肽。通过随后的 SEC 分馏,可以进一步富集交联肽段以进行 LC-MS 分析。XL-MS 在表征生命系统中的蛋白质结构和相互作用方面发挥着越来越重要的作用。为了促进这一发展,迫切需要有效的体内 XL-MS 方法。文章报告的体内 XL-MS 工作流程满足了这一需求,提供了与之前基于裂解液的 XL-MS 研究类似的交联识别能力,但需要的测量时间不到之前报告的十分之一。这一结果突出表明,本文开发并应用的 tBu-PhoX 交联剂和集成样品制备流程为推进体内相互作用组学和结构生物学提供了一种非常有前景的化学方法。
  • 在线富集HTLC- MS -MS分析环境水资源中多种抗生素
    人们日益关注环境水资源中抗生素的存在情况。这迫使环境和政府实验室开发新的液相色谱/质谱(LC/MS)方法,以监测水资源中抗生素的存在状况。   然而,环境水资源中含有的抗生素的通常是很痕量的,往往需要大量的水样进行富集和净化。在液相色谱/质谱(LC/MS)分析之前,需要对大约100-1000mL水样进行富集和清理,以达到被测物质的检测限。即使样本量很多,该提取过程也是耗时耗力的,实现高通量检测非常困难。   本研究提出的方法,使用了可以对样品进行在线浓缩和净化的Thermo Scientific TSQ Quantum Ultra三重四极杆质谱仪,不仅大大缩短了样品处理的时间,而且在高选择反应监测(H-SRM)模式下,可以进行痕量浓度(pg/mL)抗生素检测分析。   详细内容见附件:在线富集HTLC- MS -MS分析环境水资源中多种抗生素.pdf

基因富集分析相关的方案

基因富集分析相关的资料

基因富集分析相关的试剂

基因富集分析相关的论坛

  • 【求助】沉淀富集物成分分析

    我这里有个沉淀物富集的膜片,想做铁锰的沉淀含量分析,各位有什么好的方法?主要是要得出铁锰的所占的百分比!我这里只有紫外。

  • 【转帖】分离与富集分类及在定量分析中的作用

    对复杂试样,在定量分析前往往需要预分离与富集,通过预分离与富集可以将被测组分从复杂体系中分离出来后进行测定;可以把对被测组分测定有干扰的组分分离除去;可以将性质相近的组分互相分开;可以把微量或痕量的待测组分富集。 2. 常用的分离与富集方法 有沉淀分离法、液 液萃取分离法、离子交换分离法、色谱分离法、蒸馏和挥发分离法等。二、沉淀分离法 沉淀分离法是采用沉淀剂,通过沉淀反应将被测组分或干扰组分形成沉淀,最后达到液 固分离。主要包括: 1. 氢氧化物沉淀分离法 沉淀剂:氢氧化钠、氨和氨缓冲液。 特点:共沉淀现象较严重;选择性较差。 2. 硫化物沉淀分离法 沉淀剂:H2S。 有 40 多种金属离子可生成硫化物沉淀,而且各种金属硫化物沉淀的溶度积相差较大。溶液中硫离子浓度与溶液的酸度有关,控制溶液 pH 可控制金属离子分步沉淀。 特点:H2S 气体有毒;共沉淀现象较严重;选择性较差。 3. 有机沉淀剂沉淀分离法 特点:高选择性;高灵敏度;应用广泛。 4. 共沉淀分离和富集 利用共沉淀现象来分离和富集微量组分,可采用无机共沉淀剂和有机共沉淀剂。三、液 液萃取分离法四、离子交换分离法 1. 离子交换分离法 利用离子交换剂与溶液中离子发生交换反应而使离子分离的方法,称为离子交换分离法。 2. 离子交换树脂 离子交换树脂是以网状结构的高分子聚合物为骨架,骨架上有可以被交换的活性基团。 3. 交联度和交换容量 树脂中所含交联剂的质量百分数就是该树脂的交联度。树脂的交联度一般在 4% ~ 14% 为宜。 交换容量是指每克干树脂所能交换的物质的量,通常以 mmolg1表示。 4. 离子交换亲和力 离子在树脂上的交换能力大小称为离子交换的亲和力。亲和力的大小与水合离子半径、离子的电荷以及离子的极化程度有关。水合离子半径越小、电荷越高、极化度越高,其亲和力越大。 5. 离子交换分离操作过程 树脂的选择和处理;装柱;交换;洗脱;树脂的再生。 6. 离子交换分离法的应用 水的净化;干扰组分的分离;痕量组分的富集。五、薄层层析分离法 1. 层析分离法和薄层层析分离法 层析分离法是由一种流动相带着试样经过固定相,物质在两相之间进行反复的分配,由于物质在两相中的分配系数不同,移动的速度也不同,从而达到相互分离的目的。薄层层析分离法是在一块平滑的玻璃板上均匀地涂布一层吸附剂作为固定相的一种层析分离法。

基因富集分析相关的耗材

  • 镀金石英砂富集管
    耗材名称:镀金石英砂富集管用于仪器:2600详细说明:用于2600分析仪作采样富集管使用,可通过此耗材将待测样品富集后保存,对于野外采样,可一次性携带多根镀金石英砂富集管,依次对采样点进行采样,送至实验室后进行分析;也可用于预富集金管使用,在需要测量可能含有强氧化性或腐蚀性的样品时,可在分析之前使用该耗材先将汞富集,随后再解热解析到纯金富集管上,避免纯金富集管直接与待测样品接触以及防止腐蚀性物质穿透金管,对检测器造成损害。更换周期:根据采样物质不同有较大变化范围,通常为(6个月-2年)
  • MassPREP磷酸肽富集包
    MassPREP磷酸肽富集包1、从复杂的蛋白组学样品中选择性的富集磷酸肽2、高效、高重现的亲和性富集3、操作简便4、应用于高通量分析MassPREP磷酸肽富集包,用于从复杂样品基质中选择性的富集磷酸肽,包括一个填充了亲和性吸附剂的96孔微量、固相萃取(SPE)板,还包括一个独特的化学试剂(增强剂)添加后进一步增加对磷酸肽的选择性。与目前流行使用的固化金属亲和色谱(IMAC:Immobilized Metal Affinity Chromatography)技术相比,这种分离模式不需要用金属螯合剂提前上载到吸附剂上。此磷酸肽富集方法是简便化的方法。方法的耐用性在于吸附剂对于磷酸肽和增强剂具有高天然亲和性,从而获得吸附剂对磷酸肽的卓越选择性。比较未使用MassPREP磷酸肽富集包(上图)和使用(下图)的磷酸肽分析效果产品描述 单位/包 数量/单位 部件号MassPREP磷酸肽富集包 186003864包括如下:MassPREP磷酸肽富集uElution板 1 1 plate 186003820MassPREP烯醇酶/磷酸肽标准品 1 1 nmole 186003286MassPREP选择增强剂 10 500 mg 186003821MassPREP选择增强剂 5 500 mg 186003863
  • 汞发生富集系统
    HJ 910-2017 环境空气 气态汞的测定 金膜富集/冷原子吸收分光光度法适用范围本标准规定了测定环境空气中气态汞的金膜富集/冷原子吸收分光光度法。本标准适用于环境空气中气态汞的测定。当采样体积为 60 L(60 min,标准状态)时,方法检出限为 2 ng/m 3,测定下限为 8 ng/m 3;当采样体积为1440L(24 h,标准状态)时,方法检出限为 0.1 ng/m 3,测定下限为 0.4 ng/m 3。方法原理 以金膜微粒汞富集管采集环境空气中的气态汞,汞在金膜表面生成金汞齐。将采样后的富集管在 600 ℃以上加热解析,汞被定量释放出来,随载气进入测汞仪内经过再次富集和解析,在 253.7 nm 下,利用冷原子吸收分光光度法测定。仪器+设备富集管:内含可富集汞的金膜微粒。富集管的制备方法及示意图见附录 A。该管对汞的饱和吸收量为 1 μg。也可直接购买市售金膜微粒汞富集管。注 1:由于不同仪器使用的热解析器规格不同,因此制备或购买的富集管规格应与仪器配套。注 2:采样前将富集管在马弗炉(6.5)内 750 ℃加热 3 h,富集管空白值应低于检出限(约 0.15 ng)。冷却后,富集管两端用聚乙烯或聚四氟乙烯塞塞紧,置于聚乙烯自封袋或专用具塞玻璃管中保存,1 个月内使用。汞发生富集系统1.由空气净化管、富集系统连接管、汞蒸气发生瓶、酸气吸收瓶、U 型干燥管、富集管、汞尾气过滤器、可调流量计和抽气泵组成。2.空气净化管:为空白的富集管,用于汞发生富集系统管路入口空气的净化。3.富集系统连接管:聚乙烯或聚四氟乙烯管,与富集系统接口或连接端配套。4.汞蒸气发生瓶:25 ml 玻璃翻泡瓶,带莲蓬形多孔吹气头的磨口瓶塞。或其他与富集系统相匹配的反应装置。5.酸气吸收瓶:25 ml 玻璃翻泡瓶,带莲蓬形多孔吹气头的磨口瓶塞。内装 10 ml 氢氧化钠溶液,用于汞发生富集系统中酸气的吸收。 6.U 型干燥管:管外径为 1.3 cm、支管外径为 0.5 cm、高度为 10 cm 的 U 型具塞玻璃管,内装无水氯化钙,填料两端用石英棉塞紧。也可直接购买市售无水氯化钙干燥管。7.汞尾气过滤器:含碘活性炭管,直接购买市售或用自行制备的碘活性炭填管。碘活性炭制备参见附录 B。8.可调流量计:流量范围 0.1~1.0 L/min,流量控制误差为±2.5%。9.抽气泵:隔膜泵,负载流量≥1.0 L/min,流量使用范围 0.1~1.0 L/min。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制