浮头式换热器

仪器信息网浮头式换热器专题为您提供2024年最新浮头式换热器价格报价、厂家品牌的相关信息, 包括浮头式换热器参数、型号等,不管是国产,还是进口品牌的浮头式换热器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合浮头式换热器相关的耗材配件、试剂标物,还有浮头式换热器相关的最新资讯、资料,以及浮头式换热器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

浮头式换热器相关的厂商

  • 2002年,哈雷研发的第一台钎焊板式换热器B3-12系统诞生。2005年,哈雷成功研发出国内首个微型燃机用特种双波纹板。2006年,哈雷成功研发出新一代不锈钢分水器。2007年,哈雷相继成为德国TUV9001、美国UL,英国WRAS认证企业。2010年,哈雷被认定为国家级高新技术企业。哈雷产品在暖通领域国内占有量第一,不锈钢分水器占有量全国第一。当之无愧的成为中国钎焊板式换热技术优势供应商!中国不锈钢分水器行业领导品牌。以卓越科技,缔造高品质生活 ——哈雷宁波市哈雷换热设备有限公司坐落于宁波奉化西坞外向科技园区,专业致力于实现热量高效交换的创新产品与技术,以“自主创新”为原动力,持续不断地为客户提供优质产品和多行业解决方案。哈雷的产品和技术广泛服务于热泵、工业冷水机、空调、余热回收、壁挂炉、采暖热水器等众多领域。业务遍布全国各地以及欧洲、澳洲、美洲等国际市场。与国内众多知名企业及威能,林内,艾默生等世界500强企业建立了稳定的合作伙伴关系。年产能力100多万台。是目前业界有能力为客户提供完善产品、技术和系统解决方案的优势企业之一。哈雷矢志不渝的致力于新技术和新产品的研发,秉承 “ 立足中国,创世界技术 ” 的研发理念,通过不懈努力,汲取和创造尖端的科技成果。为其处于业界前沿地位提供了保证,哈雷汇集了行业资深的专业技术人员,并与国内清华,西安交大等一流大学、科研机构建立长期技术合作关系,持续不断地在热能效、换热结构、工业设计、模具设计等领域开展研发活动,开发满足客户需求的,创新的,精益求精的新产品与新技术,引领未来市场。哈雷不锈钢板式换热器等一批创新产品与技术对热交换产业作出了广泛而卓越的贡献,哈雷已成为业界最受依赖的企业之一。哈雷始终执着于高品质的追求,哈雷的每一件产品都凝聚了哈雷人无限探索和精益求精的精神。哈雷严格遵循德国TUV的ISO9001质量管理体系、美国UL、加拿大ULC、欧洲CE、及英国WRAS认证标准。执行苛刻的生产流程管理,完善的生产管理体系和专业的品质保证体系涵盖从原料到成品的每一个细节。哈雷引进国际领先的大型精密冲压设备、全自动超声波清洗机、高真空钎焊炉、真空箱氦气测漏回收系统、换热器综合系统性能测试台、水锤试验设备、水油压力交变试验设备、耐久性、破坏性试验台等一系列精良生产和检测研发设备。实现一流的生产设备与先进生产工艺的完美结合。让客户享受符合经济和环保效益的高品质产品和解决方案。
    留言咨询
  • 青岛康景辉热能设备有限公司,位于青岛胶州市胶北国际工业园,资金1000万元,占地40亩,是一家集设计、研发、生产、安装、售后于一体的板式换热器供应商。青岛康景辉热能设备有限公司 公司优势: 设有实验室:为客户提供水样检测。 技术团队:多年从事板式换热器的研发与设计,根据客户不同的工况为客户提供选型服务,并为客户提供合理的设计方案。 生产实力:公司拥有多台20000t压力机、8000t压力机、2000t压力机,所压板片口径覆盖25mm-500mm,能满足客户的不同需求。 严格的产品检验流程:严格把控生产中的每一个环节,所有产品出厂前必须经过高标准系统检测,确保没有任何问题后由专车配送。 完善的售后服务:售后服务以“快速到达、及时处理、热情服务、客户满意”为宗旨,用心服务好每一位客户。康景辉化学实验室 青岛康景辉热能设备有限公司专注板式换热器研发设计和生产制造,主要产品有板式换热器、管式换热器,换热机组和板式换热器板片及模具,公司产品广泛应用于石油、化工、冶金、制药、食品、供暖等行业。
    留言咨询
  • 无锡创想分析仪器有限公司是具有自主知识产权的创新型高科技上市企业,也是国内优秀的规模化分析仪器设备制造供应商。公司荟萃了光学、计算机、软件开发、分析化学、机械制造、电子工程、材料等专业的一大批学科优秀骨干人才,专业从事分析实验仪器的研发、生产和销售。产品有系列全谱直读光谱分析仪、系列红外碳硫分析仪、系列智能多元素分析仪、广泛应用于各行业的工业材料分析。 创想仪器公司在提供众多优质分析仪器的同时,以参股、合作、代理的形式同国内机械性能、无损检测、金相分析等设备厂商紧密合作,为顾客提供更为完善的实验室整体解决方案。 公司通过ISO9001:2008质量管理体系认证、内部实施CRM、ERP项目管理,为产品品质及企业的长远发展提供了强有力的保障。 公司在全国建立了地区营销中心和维修服务部,形成了强大而完善的营销服务网络,并与美洲、亚洲、非洲各地经销商建立战略合作伙伴关系,产品远销世界各地。
    留言咨询

浮头式换热器相关的仪器

  • Xslicer SMX-6000是采用本公司自行研发的微焦X射线发生装置与高灵敏度平板检出器并具有CT功能的X射线透视检查装置。通过顺畅的切换操作可进行快速的透视观察和截面观察。另外,可通过没有变形、高放大倍数且具有高清晰度的图像,来对电子装置等平板状样品所的细微内部结构和缺陷进行观察。
    留言咨询
  • 仪器简介:本设备采用1&mu m的微焦点管球,可以对微小零部件拍摄高分辨率的CT图像。 此设备以透视设备为主,兼顾CT功能,尤其适用于希望两者兼顾的用户。 详情请访问岛津网页: 技术参数:[1&mu m焦点] ・ 可直接观察IC盘上的BGA,能够用高放大倍数从所有角度位置观察、解析。 ・ 利用最新的NC技术提供旋转倾斜(跟踪)功能/自动定位功能/标记功能(选件) ・ 放大倍率最高可达2700倍,高分辨率透视,能够进行尺寸计测在本设备上还可配套立式CT装置(VCT-SV3),详情请访问岛津网页 BGA透视图像 SMX-160GT的倾斜图像不是让样品倾斜,而是驱动影像增强器最大倾斜到60° 角进行拍摄,得到具有立体感的透视图像。 详情请访问岛津网页 主要特点:● 实现了令世人震惊的处理速度 ・ 采用我公司自主研发的&ldquo 超高速重建驱动&rdquo 系统,达到了出人意料的快速处理。 ・ 超高速3DCONE CT系统能够在短时间内得到3维图像或MPR图像。 ● 采用1&mu m的微焦点管球,实现高分辨率!提升了高质量图像的处理能力! ・ 32位的浮动小数运算,大大提高了重建图像的质量。 ・ 3D的CONE CT也可进行OFFSET扫描,能够在短时间内获得3D-CT图像。 ・ 2D-CT能够达到4096X4096的高分辨率。 ・ 在2D-CT中最多能够达到6000次的角度分辨率(0.06度) ・ 精细补偿模式能够得到更加细腻的图像。 ・ 在2DCT中采用了我公司独特的处理技术,能够减低金属伪影。 ● 注重可操作性! ・ 在普通扫描和OFFset扫描的基础上,增加了半扫描。 ・ 可以从采集的数据中另作指定进行数据重建(再重建功能)。还能够集中采集数据,然后集中进行处理,这样能够更加有效地使用设备。 ・ 系统能够在数据采集完成后自动发送通知的电子邮件,通知功能还能使用在故障发生时。 ・ CT数据还能应用在CAD或者快速原形领域的倒模中(选购件)。 ● 可进行高精度检查分析,并能做内部3维计算测量。 图160gt-05 实装基板的CT(3D)图像 ※ 单击各图像可显示放大图像。 ※ 如改善外观及规格,恕不另行通知。
    留言咨询
  • 仪器简介:是适用于零部件评价等多领域的X射线透视检查装置,适用于铝,镁,锌铸件,组装零部件X线检查。 详情请访问岛津网页:技术参数:焦点尺寸 :50&mu m 搭载尺寸 :&phi 300X高650mm以下 搭载重量 :最大20Kg(包含夹具重量) X射线输出 :电压最大130KV、电流最大400&mu A 电源 :单相AC200V± 10%,1.5KVA(D种接地) 机器重量 :约1800Kg主要特点:岛津微焦X射线透视检查装置SMX-3000 micro,通过高输出的微焦X射线装置和平板检测器的组合,呈现了无变形的和清晰的高像素图像,可用于观察、检测铝铸件等部品内部缺陷。只需要鼠标就可以进行所有的操作,使操作者可在检查操作中更加集中精力。此外,增加了用实物照片定位和三维追踪来观察要检查部位的先进功能,能够轻松地以任意角度进行观察。
    留言咨询

浮头式换热器相关的资讯

  • 首套使用国产连续型换热器的氢液化系统开车成功
    2023年4月20日,由航天科技集团六院航天氢能科技有限公司研制的国产首套使用连续型正仲氢转化换热器的氢液化系统一次性开车成功,稳定产出液氢,包括控制系统、催化剂、连续型换热器等核心部件均实现国产,该系统是六院自2020年以来第三套研制开车成功的民用氢液化系统。该系统攻克了氢液化流程中复杂“流-热-固耦合”过程设计及功能实现,在国内首次实现连续型正仲氢转化换热器的工程实现,结构更加紧凑、核心部件冷箱绝热效率显著提升;优化并验证了集故障诊断、自动启停、变工况自适应控制等于一体的先进智能控制逻辑。经过近百日的技术讨论与验证以及近一年的设备攻关研制,经过单体测试、系统集成、吹扫置换、系统联调等严格的过程控制,系统一次性开车成功,连续稳定运行超72小时并实现了启-运-停全过程自动化控制,标志着我国在深低温工业级装备的设计、制造、集成和测试技术日臻成熟。继2021年9月9日我国首套国产2吨/天氦膨胀制冷氢液化系统开车成功以来,航天氢能团队锚定目标踔厉奋发,向采用更先进的连续型正仲氢转化换热器的氢液化系统攻关迈进,再一次打破了国外相关技术的垄断封锁,提升了我国深低温及液氢规模化生产领域的自主可控能力和国际地位及技术话语权,也为攻克大型连续型正仲氢转化换热型氢液化系统奠定了坚实的技术基础。
  • 换热器测量 | 高2米长5米,FreeScan Trak扫描了这么个“大家伙”
    在传统测量方式中,往往受限于被测物体体积及形状,给测量工作带来不少的困难,而无接触式扫描测量方式则可以轻松克服这些难关,今天,小编带你走进能源领域——使用FreeScan Trak 便携式无线CMM测量解决方案测量热交换器。”换热器,又称热交换器,是用于能源转换的一个工具,使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要。其在化工、石油、动力、食品及其它许多工业生产中占有重要地位。对于换热器加工厂而言,遇到动辄高2米,长5米的换热器,较为常见。现在,我们就来对比分析一下,使用传统的人工测量和使用三维扫描测量这两种方式,测量这个“大家伙”有什么不同之处。传统方式人工皮尺测量,这里我们以换热器的长度和平面直径这两项内容为例。此图仅做示意,不代表换热器测量的全部内容,1为示意测量热换器某部分长度,2为示意测量热换器某一平面直径。(该图源于百度图库)测量内容:只能测量一些基本的长度、直径,类似曲面等部位,难以测量。测量方式:一项一项进行测量,测量方式基本是通过两个人配合,分别在两端确定一个点,两点确定一条直线,测出直线数值(某些测量时,需要爬高操作,具有安全风险)。测量结果:人工操作,误差较大,结果难以保证。三维扫描测量方式使用三维扫描仪进行换热器的完整扫描,导入检测软件进行测量。测量内容:扫描一次,获取准确完整三维数据,各部位测量结果可以快速输出。测量方式:通过操作FreeScan Trak的光学跟踪仪,获取换热器完整三维数据(较高的部分,可以通过滚动热换器,完整扫描换热器整圈的数据即可,无需爬高)。测量结果:计量级精度(最高可达0.03mm),准确获取数据,测量结果有保证。- 数据截图 -- 检测结果(部分) -两种测量方式对比_传统方式三维扫描测量方式测量内容较少全面测量方式简单、危险高效、安全测量结果误差大准确总体而言,通过高精度3D数字化的方式来进行换热器的测量,数据更加准确,扫描一次即可获得所需测量的各项数值(无需一项项分开测量),且提高了生产检测过程的安全性。随着高精度三维扫描技术的不断发展,工业产品的“数字孪生”不断普及,拥有完整的三维数据模型,能够直观地提升工业产品检测的质量和效率,天远三维也将不断努力,使得高精度3D视觉检测技术在更多工业领域内发挥良好作用。设备介绍FreeScan TrakFreeScan Trak便携式无线CMM测量解决方案中,光学跟踪仪能够实时跟踪定位扫描头的空间位置,一般情况下,扫描时无需贴点,帮助操作人员节省了大量时间,将扫描大中型样件,获取计量级别精度的三维数据过程变得轻松简单。
  • 乐枫PES无菌针头式过滤器春季促销
    2017年4月初,乐枫RephiQuik PES针头式过滤器春季促销活动开始啦! 促销时间:2017年4月5日至2017年6月30日 促销产品:RephiQuik PES无菌针头式过滤器 这次促销活动,客户不仅可享受优惠的价格,同时还有机会获得精美礼品。 配合此次活动,客户可参加乐枫试用活动。详情请点击http://www.rephile.com.cn/web/trial.html。 此次活动促销的PES无菌针头式过滤器,采用的是的聚醚砜滤膜, 该滤膜亲水性强,为不对称结构,膜孔分布规整,流速高。与其他滤膜相比,具有低蛋白吸附,低溶出和高速,高通量等特点。该滤膜适用性广,通常用来做培养基,缓冲液和其他水相溶液的快速除菌过滤。 RephiQuik PES无菌针头式过滤器产品特点: 采用全球PES表面滤膜,有超低的蛋白质吸附能力; 不对称复合结构使滤器具有较高的负载能力,过滤速率快; ETO灭菌,不含热原及RNA酶 过滤更轻松,安全,可靠 RephiQuik PES无菌针头式过滤器产品详情: 1. 直径为32 mm的滤器过滤体积可达200 mL 2. 具有0.22 μm和 0.45 μm两种孔径 3. 最大进口压力可达10 bar(145 psi) 4. 聚丙烯(PP)材质的滤膜配有绿色的外壳; 5. 每个滤器上均清楚地印有孔径及膜类型信息 6. 进口接头为阴luer-lock,出口接头为阳luer滑动接头 7. 每个滤器均单独包装,每盒100个 RephiQuik PES无菌针头式过滤器产品应用: 主要用于生命科学实验中组织培养基配制,缓冲液及其他生物溶液除菌过滤等。 需了解更多详情,请拨打我们客服热线:400-690-0090关于上海乐枫生物科技有限公司上海乐枫专业从事高端水纯化和实验室分离纯化产品的研发、设计和制造,致力于,为生命科学和生物技术提供精锐品质、高附加值的创新产品。乐枫产品线包括实验室纯水系统、密理博纯水兼容耗材和实验室分离纯化产品。成立十年,乐枫创立出了自己的品牌RephiLe(瑞枫),拥有30多项专利和多个软件著作权。产品销往全球近90个国家和地区。

浮头式换热器相关的方案

浮头式换热器相关的资料

浮头式换热器相关的论坛

  • 新能源汽车电机冷却装置换热器说明

    新能源汽车电机冷却装置中的换热器在整个新能源汽车电机冷却装置运行中都是比较重要的,所以,新能源汽车电机冷却装置换热器我们还是有必要了解一下的。  新能源汽车电机冷却装置中的管壳式换热器由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,内部装有管束,管束两端固定在管板上。  进行换热的冷热两种流体,一种在管内流动,称为管程流体,另一种在管外流动,称为壳程流体。为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。换热管在管板上可按等边三角形或正方形排列。等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易结垢的流体。  新能源汽车电机冷却装置管壳式换热器由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两温度相差很大,换热器内将产生很大热应力,导致管子弯曲、断裂,或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。一般来说新能源汽车电机冷却装置管壳式换热器可分为以下几种主要类型:  新能源汽车电机冷却装置固定管板式换热器管束两端的管板与壳体联成一体,结构简单,但只适用于冷热流体温度差不大,且壳程不需机械清洗时的换热操作。当温度差稍大而壳程压力又不太高时,可在壳体上安装有弹性的补偿圈,以减小热应力。  新能源汽车电机冷却装置浮头式换热器管束一端的管板可自由浮动,完全消除了热应力 且整个管束可从壳体中抽出,便于机械清洗和检修。浮头式换热器的应用较广,但结构比较复杂,造价较高。  新能源汽车电机冷却装置U型管式换热器 每根换热管皆弯成U形,两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。此种换热器完全消除了热应力,结构比浮头式简单,但管程不易清洗。  新能源汽车电机冷却装置填料函式换热器 填料函式换热器其结构特点是管板只有一端与壳体固定连接,另一端采用填料函密封。管束可以自由伸缩,不会产生因壳壁与管壁温差而引起的温差应力。  新能源汽车电机冷却装置釜式换热器的结构特点是在壳体上部设置适当的蒸发空间,同时兼有蒸汽室的作用。管束可以为固定管板式、浮头式或U 型管式。釜式换热器清洗维修方便,可处理不清洁、易结垢的介质,并能承受高温、高压。它适用于液-汽式换热,可作为简结构的废热锅炉。  新能源汽车电机冷却装置的换热器也是有各种各样的,需要我们对于不同的型号不同的种类进行筛选。

  • 处理量46×104吨/年再生氮气管式换热器设计

    处理量46×104吨/年再生氮气管式换热器设计

    [align=center]化工原理课程设计说明书[/align]题目:处理量46×10[sup]4[/sup]吨/年再生氮气管式换热器设计[align=center]目录[/align]TOC \o "1-2" \h \u摘 要 - 1 -第1章 课程设计的基础知识 - 2 -1.1 课程设计的目的、数据 - 2 -1.2 设计内容及要求 - 2 -第2章 换热器的设计与选用 - 4 -2.1换热器设备的分类及性能比较 - 4 -2.2 列管式换热器的设计及系列选用概要 - 4 -2.3 复选及计算设计概要 - 5 -第3章 计算及物性参数确定 - 7 -3.1介质流向及定性参数的确定 - 7 -3.2 浮头式换热器概要 - 8 -3.3 热负荷、平均温差及估算面积 - 10 -3.4 总传热系数与总传热面积确定 - 11 -3.5换热器内压降的核算 - 17 -3.6 壳体壁厚确定 - 20 -设计评述与体会 - 21 -参考文献 - 22 -致 谢 - 22 -附录 - 23 -附录1 - 23 -[align=center]摘 要[/align]换热器是在工厂生产中最常见的过程设备之一,是用于物料之间进行热量传递的过程设备,使热量从热流体传递到冷流体的设备。通过这种设备使物料能达到指定的温度以满足工艺的要求。浮头式换热器是针对固定管板式换热器在热补偿方面的缺陷进行了改进的换热设备。两端管板只有一端与壳体完全固定,另一端则可相对于壳体做某些移动,该端称之为浮头。此次设计针对一定年产量的物料进行换热器的选用与设计,通过设计掌握能力以及理论与实际相结合效果,推动学习的兴趣与效率。关键词:[font=宋体]换热器;换热器设计;[/font][font=times new roman]浮头式换热器[/font][font=宋体];热量传递[/font]AbstractHeat exchanger is used in the materials to carry on the thermal transmission the process. Through this kind of equipment,materials achieve assignment the temperature to satisfy the craft the request. Floating head heat exchanger tube against a fixed plate heat exchanger in the thermal compensation of the defects and improved heat transfer equipment.[color=black]Completely fixed on both ends of the tube plate only at one end and shell, on the other side can do some movement relative to the shell, the end is called floating head.This design for a certain output of material selection and design of heat exchanger is, through the design master ability as well as the effect of integrating theory with practice, to promote the learning interest and efficiency.[/color]Keywords[color=black]: [/color][color=black]Heat exchanger The heat exchanger design Floating head heat exchanger The heat transfe[/color][font=tahoma][color=black]r[/color][/font][align=center]第1章 课程设计的基础知识[/align]1.1 课程设计的目的、数据[color=#333333]1、设计题目: [/color][color=#333333]处理量[/color][color=#333333] [/color][font=times new roman][color=#333333]46×10[/color][/font][font=times new roman][sup][size=20px][color=#333333]4[/color][/size][/sup][/font][font=times new roman][color=#333333] [/color][/font][color=#333333] [/color][color=#333333]吨/年[/color][color=black]再生氮气管式换热器的设计。[/color][color=#333333] [/color][color=black]2、设计的目的[/color][color=black]: [/color][color=black] 通过对氮气再生列管式换热器设计,达到让学生了解该换热器的结构特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。 [/color][color=black]3、设计原始数据[/color][color=black] [/color][color=black]学生任务分配:按以下处理能力1~11号从左到右依次选取[/color][color=black](1)处理能力 [/color][font=times new roman][color=black](25、30、37、 40、46、50、55、58)×10[/color][/font][font=times new roman][sup][color=black]6[/color][/sup][/font][color=black]吨/年再生氮气[/color][color=black](2)设备型式  列管式换热器[/color][color=black](3)操作条件 [/color] ①管程进口压力 [font=times new roman]2.5MPa[/font]饱和蒸汽出口压力2.5MPa饱和水②壳程 进口温度为 50℃, 出口温度为200℃压力为0.5MPa[color=#333333]③ 每年按309天计,每天24小时连续运行 [/color]1.2 设计内容及要求 [size=16px] [/size]1、设计内容:(1)工艺设计:确定设备的主要工艺尺寸,如:管径、管长、管子数目、管程数目等,计算K[sub]0[/sub]。(2)结构设计:确定管板、壳体、封头的结构和尺寸; 确定连接方式、管板的列管的排列方式、管法兰、接管法兰、接管等组件的结构。(3)绘制列管式换热器的装配图及编写课程设计说明书。[color=#333333]设计说明书的内容: [/color] (1)封面,包括课程设计题目、学生班级及姓名、指导老师、时间;(2)目录(标题及页数);(3)设计任务书; (4)中、英文摘要 (5)设计简要说明,包括:换热器总体结构(换热器型式、主要结构)的选择等; (6)换热过程的工艺计算包括:物料衡算、热量衡算、传热面积、换热管型号、壳体直径等; (7)换热器的结构计算; (8)换热器设计技术说明及汇总,包括:技术特性表和设计结果汇总表; (9)附属设备的选择(选做); (10)设计评论及存在问题的讨论。 (11)参考文献,设计所参阅的资料均应标明资料的名称、作者、期,页、版本等。3、设计要求: (1) 要求查阅有关换热器设计的相关资料,了解换热器的设计过程,了解过程换热原理。 (2)所确定的与设计计算有关的参数要充分、可靠、计算结果准确。 (3)设计必须独立完成,要求方案正确,论据充分,设计说明书内容要全面,应包括设计任务书中的所有内容,要求文字简炼,层次、阐述清楚,书写工整。;(4) 换热器装配图应按化工设备设计中的有关规定绘制。[color=black]设计图要求[/color][color=black]用A1(594×841)图纸绘制换热器一张,图面基本内容:包括主视图、俯视图、、 剖面图、局部放大图及其它。 [/color] 第2章 换热器的设计与选用2.1换热器设备的分类及性能比较由工艺用途可将传热设备分为加热器、冷凝器、冷却器、蒸发器、再沸器、空冷器等。根据冷、热流体交换的方法,传热设备可分为:间壁式(参与换热的两流体不直接接触)、直接式(适用于参与换热的两种流体不相混溶或允许两者之间有物质扩散、机械夹带的场合)及蓄热式(多用于从高温炉气中回收热量仪预热空气或将气体加热至高温)3类,其中间壁式换热设备是化工生产中使用最多的一类。间壁式换热器包括:管式(列管式)换热器(一般承压能力高)、板式换热器(一般承压能力低)对于上述3种换热器其性能的比较。[align=center]表1三种换热器类型比较[/align][table][tr][td][align=center]换热器类型[/align][/td][td][align=center]允许P[sub]max[/sub]/Mpa[/align][/td][td][align=center]允许[/align][align=center]t[sub]max[/sub]/℃[/align][/td][td] 传热面积m[sup]2[/sup]/m[sup]3[/sup][align=center]单位体积[/align][/td][td][align=center]每平方米面积的质量 kg/m[sup]2[/sup][/align][/td][td][align=center]传热系数[/align] KJ/(m[sup]2[/sup]hk)[/td][td][align=center]金属质量Kg[/align][/td][td][align=center]可靠性[/align][/td][/tr][tr][td][align=center]固定管板式换热器[/align][/td][td][align=center]84[/align][/td][td][align=center]1000~1500[/align][/td][td][align=center]40~164[/align][/td][td][align=center]35~80[/align][/td][td][align=center]3050~6100[/align][/td][td][align=center]1[/align][/td][td][align=center]○[/align][/td][/tr][tr][td][align=center]U型管式列管换热器[/align][/td][td][align=center]100[/align][/td][td][align=center]1000~1500[/align][/td][td][align=center]30~130[/align][/td][td][align=center]-----[/align][/td][td][align=center]3050~6100[/align][/td][td][align=center]1[/align][/td][td][align=center]○[/align][/td][/tr][tr][td][align=center]浮头式列管换热器[/align][/td][td][align=center]84[/align][/td][td][align=center]1000~1500[/align][/td][td][align=center]35~135[/align][/td][td][align=center]-----[/align][/td][td][align=center]3050~6100[/align][/td][td][align=center]1[/align][/td][td][align=center]△[/align][/td][/tr][/table]对于表中各符号表示的意义是:○--好 △--尚可单位传热量的金属耗量以列管式换热器等于1为基准。2.2 列管式换热器的设计及系列选用概要汇总设计数据,分析设计任务: 根据工艺衡算和工艺物料的要求、特性,掌握物料流量、温度、压力和介质的化学性质,物性参数等数据(查手册),还要掌握物料衡算和热量衡算得出的有关设备的负荷、流程中的地位,与流程中其他设备的关系等数据。这样,换热设备的负荷和它的流程中的作用就清楚了。对于换热流程的设计:要设计换热流程,充分考虑并利用流程中的热量;换热中把冷却和预热相结合;[冷热流体巧妙结合节省流量];安排换热顺序;合理使用冷热介质;合理安排管程和壳程的介质。3、选择换热器的材质: 根据介质的腐蚀性能和其他有关性能,按照操作压力、温度、材料规格和制造价格,综合选择换热器的材质。选择换热器的类型: 根据热负荷和选用的换热器的材质,选定某一类型的换热器,根据表1。确定换热器中介质的流向: 根据热载体的性质,换热任务和换热器的结构,决定换热器种介质的流向,分别为并流、逆流或折流等方式。确定和计算平均温差Δt[sub]m[/sub]: 确定终端温差,根据化学工程有关公式,算出平均温差Δt[sub]m[/sub]。计算热负荷Q[sub]T[/sub],流体对流传热系数α: 可用粗略估计的方法,估算管内和管间流体的对流传热系数。估算污垢热阻R[sub]s[/sub]并算出总传热系数K 。计算总传热面积S: 利用总传热速率公式[font=times new roman]S=Q[/font][font=times new roman][sub]T[/sub][/font][font=times new roman]/K*Δt[/font][font=times new roman][sub]m[/sub][/font],算出总传热面积S。调整温度差再算一次传热面积。选用系列换热器的某一个型号。验算换热器的压力降:换热器的压力降一般利用工艺图或摩擦系数通过化学工程的公式计算。如果核算的压力降不在工艺的允许范围之内,应重选设备。2.3 复选及计算设计概要 如果不是选用系列换热器,则在计算出总传热面积时,则用下列顺序反复计算:根据上述程序计算传热面积[font=times new roman]S[/font]或者简化计算,取一个K的经验值,计算出热负荷[font=times new roman]Q[/font][font=times new roman][sub]T[/sub][/font]和平均温差[font=times new roman]Δt[/font][font=times new roman][sub]m[/sub][/font]之后,算出一个试算的传热面积[font=times new roman]S[/font]。确定换热器基本尺寸和管长、管数,根据上面系列试算出的传热面积S,确定换热管的规格和每根管的管长(通用标准和手册可查),再由S算出管数。根据需要的管子数目,确定排列方法,从而可以确定实际的管数,按照实际管数可以计算出有效传热面积和管程、壳程的流体流速。计算设备的管程、壳程流体的对流传热系数。根据经验选取污垢热阻。见表2[align=center]表2管壳(列管)式换热器污垢热阻推荐值表[/align][table][tr][td][align=center]物料[/align][/td][td][align=center]污垢热阻(m[sup]2[/sup]℃)/W[/align][/td][td][align=center]物料[/align][/td][td][align=center]污垢热阻(m[sup]2[/sup]℃)/W[/align][/td][/tr][tr][td][align=center]冷冻盐水[/align][/td][td][align=center]0.000172[/align][/td][td][align=center]海水[/align][/td][td][align=center]0.00008[/align][/td][/tr][tr][td][align=center]有机热载体[/align][/td][td][align=center]0.0002[/align][/td][td][align=center]蒸馏水[/align][/td][td][align=center]0.000086[/align][/td][/tr][tr][td][align=center]工业水t(10%~25%)[/font]可行。若不行重新返回计算。确定换热器各部尺寸,验算压力降。如果压力将不符合工艺允许范围,继续返回重算。最终确定换热器的结构,并列出数据表。最终对应画出工艺图与设备图,工艺图手稿,设备图AUTO---CAD画出。[align=center] [font=times new roman][size=29px]第3章 计算及物性参数确定[/size][/font][/align]3.1介质流向及定性参数的确定对于设计给定值: 管程:饱和水蒸气对应压力[font=times new roman]2.5Mpa----2.5Mpa[/font]; 壳程: 氮气 对应压力[font=times new roman]0.5Mpa[/font] 根据设计所给出的数据对应管程[font=times new roman]P=2.5Mpa=2500Kpa[/font]下所对应的物性参数等数据由《化工原理课本附录5》中的区间范围,用内差法算出。[align=center]表3饱和水蒸汽下的参数表[/align][table][tr][td][align=center]温度/℃[/align][/td][td][align=center]绝对压强/Kpa[/align][/td][td][align=center]蒸汽密度/kg/(m[sup]3[/sup])[/align][/td][td][align=center]焓(液)/KJ/kg[/align][/td][td][align=center]焓(汽)/KJ/kg[/align][/td][td][align=center]汽化热/KJ/kg[/align][/td][/tr][tr][td][align=center]220[/align][/td][td][align=center]2320.9[/align][/td][td][align=center]11.600[/align][/td][td][align=center]942.45[/align][/td][td][align=center]2801.0[/align][/td][td][align=center]1858.5[/align][/td][/tr][tr][td][align=center]230[/align][/td][td][align=center]2798.6[/align][/td][td][align=center]13.98[/align][/td][td][align=center]988.50[/align][/td][td][align=center]2800.1[/align][/td][td][align=center]1811.6[/align][/td][/tr][/table]由内差法如下图1:[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822346898_4160_4139407_3.png[/img]计算出饱和水蒸汽的定性温度:相对应的在定性温度下的:C[sub]P[/sub]=4.634KJ/kg℃ λ=0.643W/(m℃) μ=0.000123Pas对于壳程但其的定性温度:0.5Mpa=500Kpa[font=宋体]下的有关物性参数:[/font]ρ=4.225kg/m[sup]3[/sup][font=宋体]——————————————密度[/font]Cp=1.406KJ/(kg℃)[font=宋体] ———————————比热容[/font]λ=0.0314W/(m℃)[font=宋体]————————————导热系数[/font]μ=0.000022Pas[font=宋体]—————————————黏度[/font]对于原氮气处理量为[font=times new roman]F=46*10[/font][font=times new roman][sup]3 [/sup][/font][font=times new roman]t/年[/font]质量流量:[font=times new roman]q[/font][font=times new roman][sub]m[/sub][/font][font=times new roman]=46*10[/font][font=times new roman][sup]4[/sup][/font][font=times new roman]*10[/font][font=times new roman][sup]3[/sup][/font][font=times new roman]kg/309*24h=6.2028*10[/font][font=times new roman][sup]4[/sup][/font][font=times new roman]kg/h[/font]体积流量:[font=times new roman]q[/font][font=times new roman][sub]v[/sub][/font][font=times new roman]=q[/font][font=times new roman][sub]m[/sub][/font][font=times new roman]/ρ=1.4681*10[/font][font=times new roman][sup]4 [/sup][/font][font=times new roman]m[/font][font=times new roman][sup]3[/sup][/font][font=times new roman]/h[/font]对于上述物性参数与各个物料之间的可靠性,在此选用换热器材质对于下面[align=center]表4压力范围表[/align][table][tr][td][align=center]0.1≤P<1.6[/align][/td][td][align=center]低压[/align][/td][/tr][tr][td][align=center]1.6≤P<10[/align][/td][td][align=center]中压[/align][/td][/tr][tr][td][align=center]10≤P<100[/align][/td][td][align=center]高压[/align][/td][/tr][tr][td][align=center]P≥100[/align][/td][td][align=center]超高压[/align][/td][/tr][/table]3.2 浮头式换热器概要浮头式换热器以其高度的可靠性和广泛的适应性,在长期使用过程中积累了丰富的经验。尽管近年来受到不断涌现的新型换热器的挑战,但反过来也不断促进了自身的发展。故迄今为止在各种换热器中仍占主导地位。浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。换热器的管子在管板上的排列不单考虑设备的紧凑性,还要考虑到流体的性质、结构设计以及加工制造方面的情况。管子在管板上的标准排列形式有四种:正三角形和转角正三角形排列,适用与壳程介质清洁,且不需要进行机械清洗的场合。正方形和转角正方形排列,能够使管间的小桥形成一条直线通道,便于用机械进行清洗,一般用于管束可抽出管间清洗的场合。浮头式换热器优点是:浮头式换热器的管束连同浮头可以自由伸缩,与外壳的膨胀无关,因而不产生温差应力;而且管束可以抽出,便于清洗管程和壳程;结构坚固;可靠性高;适应性广;处理能力大;能承受较高的工作压力。这些优点表明对于管子和壳体间温差大、壳程介质腐蚀性强、易结垢的情况,浮头式换热器很能适应。浮头式换热器缺点是:由于其结构较为复杂,尤其是单管程,锻件多,造价高,造价比固定管板式约高20%,而且浮头盖操作时无法检查,所以在安装和制造时应特别注意其密封,以免发生内漏。浮头式换热器适用范围:浮头式换热器适用于压力温度范围较大,特别是壳体和换热管壁温相差较大或介质易结垢的场合。一般易结垢介质走管程,两种介质都易结垢时,高压介质走管程,可以降低造价;腐蚀性介质宜走管程,可以减少耐腐蚀材料的用量;制造也比较方便。[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822351396_319_4139407_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822343770_2696_4139407_3.jpg[/img][align=center]图2浮头式换热器的简图[/align]3.3 热负荷、平均温差及估算面积1、 [font=times new roman]Q=KSΔt[/font][font=times new roman][sub]m.[/sub][/font]其上式 [font=times new roman]Q[/font]—————————传热速率(热负荷),W [font=times new roman]K[/font]—————————总传热系数,[font=times new roman]W/(m[/font][font=times new roman][sup]2[/sup][/font][font=times new roman]℃)[/font] [font=times new roman]S[/font]———————————与K之对应的传热面积,[font=times new roman]m[/font][font=times new roman][sup]2[/sup][/font]; [font=times new roman]Δt[/font][font=times new roman][sub]m[/sub][/font]——————————平均温度差,[font=times new roman]℃[/font]; 传热速率(热负荷)[font=times new roman]Q[/font] 传热过程中伴随相变化:有相变、无相变。 对于此换热器设计中伴随相变化过程则: [font=times new roman]Q=W[/font][font=times new roman][sub]h[/sub][/font][font=times new roman]γ=W[/font][font=times new roman][sub]c[/sub][/font][font=times new roman]C[/font][font=times new roman][sub]pc[/sub][/font][font=times new roman](t[/font][font=times new roman][sub]2[/sub][/font][font=times new roman]-t[/font][font=times new roman][sub]1[/sub][/font][font=times new roman])[/font] 其上式 [font=times new roman]W[/font]———————饱和蒸汽的冷凝速率,[font=times new roman]kg/h或kg/s[/font] [font=times new roman]γ[/font]———————饱和蒸汽的汽化热,[font=times new roman]KJ/kg[/font] 对于下角标: [font=times new roman]h[/font]———————热; [font=times new roman]c[/font]———————冷;Q=W[sub]c[/sub]C[sub]pc[/sub](t[sub]2[/sub]-t[sub]1[/sub])=W[sub]h[/sub]γQ=W[sub]氮[/sub]C[sub]P氮[/sub]Δt=q[sub]m[/sub]C[sub]P氮[/sub]Δt=W[sub]水汽[/sub]γ[sub]水汽[/sub] =6.20×10[sup]6[/sup](KJ/h) =2.728×1.046×(200-50)×10[sup]4[/sup](KJ/h) =9.73×10[sup]3[/sup]Kwq[sub]m水汽[/sub]=9.73×10[sup]6[/sup]/1843.2(Kg/h)=0.528×10[sup]4[/sup] Kg/hq[sub]v水汽[/sub]=q[sub]m水汽[/sub]/ρ[sub]水汽[/sub]=0.4224×10[sup]3[/sup]m[sup]3[/sup]/h2、平均温度差[font=times new roman]Δt[/font][font=times new roman][sub]m[/sub][/font]1)恒温传热是的平均温度差为Δt[sub]m[/sub]=T-t [font=宋体] ——————(T热、t冷) [/font]对于变温传热时的平均温差逆流和并流:Δt[sub]1[/sub]/Δt[sub]2[/sub]>2, Δt[sub]1[/sub]/Δt[sub]2[/sub]≤2,式中 [font=times new roman]Δt[/font][font=times new roman][sub]1[/sub][/font][font=times new roman]、Δt[/font][font=times new roman][sub]2[/sub][/font]——————————分别为换热器两端热冷流体的温差,[font=times new roman]℃[/font];错流和折流:式中 ——————————按逆流计算的平均温差,[font=times new roman]℃[/font]; —————————温度校正系数,量纲为一; [font=times new roman]Δt[/font][font=times new roman][sub]m[/sub][/font][font=times new roman]=(23+173)/2=98℃[/font]初算传热面积,由于管程以及所对应的压力较高,对于流体状态,K值的取值范围取[font=times new roman]30~300W/(m[/font][font=times new roman][sup]2[/sup][/font][font=times new roman]℃)[/font]则选取[font=times new roman]K=240 W/(m[/font][font=times new roman][sup]2[/sup][/font][font=times new roman]℃)[/font]S[sub]估[/sub]=Q/KΔt[sub]m[/sub]=2.7×10[sup]6[/sup]/(240×98)m[sup]2[/sup]=114.80 m[sup]2[/sup]3.4 总传热系数与总传热面积确定选用 : Φ25mm×2.5mm[font=宋体]较高级冷拔传热管(碳钢),取管内流速为[/font]6m/s[font=宋体],以《化工原理课程设计》王卫东主编资料查取流速范围[/font]5m/s~30m/s[font=宋体]之间。[/font]2、管程数和传热管数:可根据传热管各内径和流速确定单程传热管数:按单管程计算,所需的传热管数为 按单程管设计,传热管过长宜采用多程管结构。根据本设计实际情况,现取传热管长6m,则该换热管的管程数为 传热管总根数为:平均传热温差校正及壳程数 温度校正系数根据比值P和R通过温差修正系数图得出,该值实际上表示特定流动形式在给定工艺接近逆流的程度。在设计中,除非出于必须降低壁温的目的,否则总要求[font=times new roman]≥0.8[/font],如果达不到上述要求,则应改变其他流动形式。列如下图2对于[font=times new roman]P、R[/font](比值)对于查图得(以壳侧1程,管侧2程或2n程,n=整数)[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822348424_6370_4139407_3.jpg[/img]由査图3得:由于平均传热温差校正系数大于[font=times new roman]0.8[/font],同时壳程流体流量大,故取单壳程合适。管子的排列方式选择管子在管板上的排列方式有:正三角形排列、正方形排列、正方形错列。采用正三角形排列可以在同样的管板面积上排列最多的管数,应用最为普遍,但管外不易清洗,常用于清洁流体。正方形排列或转角三角形(也称错列)排列,由于可以用机械方法,因此适用于易结垢的流体。如下图所示:[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822360571_310_4139407_3.jpg[/img][color=black] (A) [/color][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822352063_4896_4139407_3.jpg[/img][color=black] (B) [/color][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822362488_5203_4139407_3.jpg[/img][color=black](C)[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822354058_7280_4139407_3.jpg[/img][color=black] (D) [/color][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822354919_5363_4139407_3.jpg[/img][color=black](E)[/color][/align][color=black]图 4 换热管在管板上的排列方式[/color][color=black](A) 正方形直列 (B)正方形错列 (C) 三角形直列 (D)三角形错列 (E)同心圆排列[/color][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822365307_2373_4139407_3.jpg[/img] 图5因此在这选用正三角形排列的方式管子间距[font=times new roman]P[/font][font=times new roman][sub]t[/sub][/font](管中心的距离),一般是管外径的[font=times new roman]1.25[/font]倍左右,以保证 [align=center]胀管时管板的刚度,管子布置间距见下表[/align][table][tr][td][align=center]管外径d[sub]0[/sub]/mm[/align][/td][td][align=center]间距[/align][align=center]P[sub]t[/sub]/mm[/align][/td][td][align=center]管板中心到管中心距Z/mm[/align][/td][td][align=center]管外径d[sub]0[/sub]/mm[/align][/td][td][align=center]间距[/align][align=center]P[sub]t[/sub]/mm[/align][/td][td][align=center]管板中心到管中心距Z/mm[/align][/td][/tr][tr][td][align=center]19[/align][/td][td][align=center]25[/align][/td][td][align=center]19[/align][/td][td][align=center]31.8[/align][/td][td][align=center]40[/align][/td][td][align=center]26[/align][/td][/tr][tr][td][align=center]25.4[/align][/td][td][align=center]32[/align][/td][td][align=center]22[/align][/td][td][align=center]35.1[/align][/td][td][align=center]48[/align][/td][td][align=center]30[/align][/td][/tr][/table]对于我的[font=times new roman]d[/font][font=times new roman][sub]0[/sub][/font]为[font=times new roman]25mm[/font]所对应的[font=times new roman]P[/font][font=times new roman][sub]t[/sub][/font][font=times new roman]=1.25×25mm=31.25mm≈32mm[/font]对应表中数值可计算出[font=times new roman]d[/font][font=times new roman][sub]0[/sub][/font][font=times new roman]=25mm[/font]时的[font=times new roman]P[/font][font=times new roman][sub]t[/sub][/font][font=times new roman]、Z[/font]值,利用内差法[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822357403_2408_4139407_3.png[/img]由图6可得[font=times new roman]P[/font][font=times new roman][sub]t[/sub][/font][font=times new roman]=31、56mm≈32mm Z=21.81mm=22mm[/font]各程相邻管的管心距为[font=times new roman]44mm[/font]壳体直径采用多管程结构,壳体直径可按式:多管程换热器壳体直径与管程数有关。式中 η 为管板利用率,取之范围如下:正三角形排列: 二管程 [font=times new roman]η=0.7~0.85[/font] 四管程 [font=times new roman]η=0.6~0.8[/font]正方形排列: 二管程 [font=times new roman]η=0.55~0.7[/font] 四管程 [font=times new roman]η=0.45~0.65[/font]计算得到的壳体直径按系列标准进行圆整。有[font=times new roman]157mm,273mm,400mm,500mm,600mm,700mm,800mm[/font]等。在这里[font=times new roman]η[/font]值取[font=times new roman]η=0.7[/font]折流挡板 采用圆缺形折流挡板(弓形折流挡板)其是常用的折流挡板,有水平圆缺和垂直圆缺两种。其切缺率(切掉圆弧的高度与壳内径之比通常为[font=times new roman]20%~50%[/font]之间)取弓形折流板圆缺高度为壳体内径的[font=times new roman]20%[/font];圆缺高度:[font=times new roman]h=0.2D=0.2×700mm=140mm[/font],圆整得[font=times new roman]h=150mm[/font] 取折流板间距 [font=times new roman]B=0.8×700mm=560mm[/font],圆整得[font=times new roman]B=600mm[/font] 折流板数目接管、壳程流体进出管口: 取接管内气体流速为[font=times new roman]u=12m/s[/font],其按气体流速范围取值[font=times new roman](5m/s~30m/s)[/font] 圆整之后可取管内径为[font=times new roman]450mm[/font]。 管程流体进出管口接管: 取接管内气体流速为[font=times new roman]u=10m/s[/font],其按气体流速范围取值[font=times new roman](5m/s~30m/s)[/font]圆整后取管内径为[font=times new roman]130mm[/font]。对流传热系数计算及传热面积核算 (1)对管程而言:流体有相变时的对流传热系数,而对于管、壳程α的计算,其通入介质都为气体,故此可用同一计算公式如下:管程传热膜系数:管程流体流通截面积:管程流体流速和雷诺数分别为普朗特数:管子按正三角形排列,传热当量直径为:代入得 (2)对于壳程传热膜系数: 故还用管子按正三角形排列:壳程流通截面积:管程流体流速和雷诺数分别为:普朗特数:污垢热阻和管壁热阻,查得管内外壁的污垢热阻都为: [font=times new roman]R[/font][font=times new roman][sub]内[/sub][/font][font=times new roman]=R[/font][font=times new roman][sub]外[/sub][/font][font=times new roman]=0.00008598(m[/font][font=times new roman][sup]2[/sup][/font][font=times new roman]℃/W)[/font] 已知管壁厚度[font=times new roman]b=0.0025mm[/font] ,对于该条件下碳钢的热导率为[font=times new roman]45W/(m℃)[/font]。总传热系数[font=times new roman]K[/font]传热面积校核,依照传热面积公式: 所选的换热器的实际传热面积为: 所以传热面积的裕度为: 或对于传热面积的校核 若说明换热器设计合理,保证留有了[font=times new roman]10%~25%[/font]的安全裕度,若不在此范围内则应重新计算。传热面积裕度合适,该换热器能够完成生产任务。3.5换热器内压降的核算 1、管程阻力对于上式中:ΔP[sub]1[/sub]、ΔP[sub]2[/sub][font=宋体]————————————分别为直管及回弯管中因摩擦阻力而引起的压降,[/font]P[sub]a[/sub][font=宋体] [/font]F[sub]t[/sub][font=宋体]————————————————结垢校正因子,对[/font]Φ25mm×2.5mm[font=宋体]管子取[/font]1.4[font=宋体],对[/font]Φ19mm×2mm[font=宋体]管子取[/font]1.5[font=宋体];[/font]N[sub]P[/sub][font=宋体]————————————————管程数;[/font]N[sub]S[/sub][font=宋体]————————————————串联的壳程数;[/font]N[sub]S[/sub]=1, N[sub]P[/sub]=4查对数坐标[font=times new roman](ε/d,R[/font][font=times new roman][sub]e[/sub][/font][font=times new roman])[/font]得,[font=times new roman]ε/d=0.25mm/20mm=0.0125[/font],此图为莫迪图[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301822363742_6417_4139407_3.jpg[/img]图7查得λ=0.046;算得 u[sub]i[/sub]=5.93m/s 查得ρ=12.5kg/m[sup]3 [/sup][sup] [/sup]因此流体阻力在允许范围内。2、壳程阻力,按下式计算:式中 [font=times new roman]ΔP[/font][font=times new roman][sub]0[/sub][/font]—————————壳程总阻力损失引起的压降, [font=times new roman]P[/font][font=times new roman][sub]a[/sub][/font]; [font=times new roman]ΔP[/font][font=times new roman][sub]1[/sub][/font][font=times new roman][sup]‘[/sup][/font]——————————流体横向通过管束的压降[font=times new roman],P[/font][font=times new roman][sub]a[/sub][/font] [font=times new roman]ΔP[/font][font=times new roman][sub]2[/sub][/font][font=times new roman][sup]’[/sup][/font]————————流体通过折流板出口处的压降,[font=times new roman]P[/font][font=times new roman][sub]a[/sub][/font]; [font=times new roman]F[/font][font=times new roman][sub]t[/sub][/font]—————壳程结垢校正系数,液体取[font=times new roman]1.15[/font],气体取[font=times new roman]1.0[/font];上式中[font=times new roman] F[/font]—————————管子排列方法对压降的校正因子,对正三角形排列[font=times new roman]F=0.5[/font],对正方形错列[font=times new roman]F=0.4[/font],对正方形排列[font=times new roman]F=0.3[/font] [font=times new roman]f[/font][font=times new roman][sub]0[/sub][/font]—————————壳程流体的摩擦系数,当[font=times new roman]R[/font][font=times new roman][sub]e[/sub][/font][font=times new roman]500[/font]时,[font=times new roman]f[/font][font=times new roman][sub]0[/sub][/font][font=times new roman]=5.0R[/font][font=times new roman][sub]e[/sub][/font][font=times new roman][sup]-0.228[/sup][/font] [font=times new roman]N[/font][font=times new roman][sub]B[/sub][/font]—————————折流挡板数; [font=times new roman]h[/font]——————————折流单板间距; [font=times new roman] u[/font][font=times new roman][sub]0[/sub][/font]——————————按壳程流通截面积S[sub]0[/sub]计算的流速,m/s 其中 [font=times new roman]N[/font][font=times new roman][sub]S[/sub][/font][font=times new roman]=1,F[/font][font=times new roman][sub]t[/sub][/font][font=times new roman]=1,[/font];流体流经管束的阻力:流体通过折流板缺口处的阻力:由于该换热器管程流体的操作压力较高,阻力适宜。3.6 壳体壁厚确定其他部件此设计的折流板为固定折流板,需要设拉杆和定距管,当换热气壳体直径小于[font=times new roman]600mm[/font]时,拉杆数量可取[font=times new roman]4[/font],其直径为[font=times new roman]10~12mm[/font];当壳体直径大于[font=times new roman]800mm[/font]时,拉杆数量可取[font=times new roman]6~8[/font],其直径为[font=times new roman]12mm[/font]。在这里[font=times new roman]D[/font][font=times new roman][sub]i[/sub][/font][font=times new roman]=700mm[/font],拉杆取[font=times new roman]5[/font],直径为[font=times new roman]12mm[/font]。[align=center]设计评述与体会[/align]首先,通过这次课程设计使我拥有很大的收获。通过课程设计,我将之前学过的理论知识在实际的设计工作中综合地加以利用,同时在观察和思考问题时能够把握住要点,充分理解。这次设计,培养了我对压力容器设计的兴趣。明确了设计的思想理念;掌握一些容器设计有基本方法和步骤,为以后进行设计工作方面打下了良好的基础。另外还使我能训练地应用有关参考资料、计算图表、手册;熟悉有关的国家标准,为成为一个工程技术人员在培养基本技能。 在此次设计中使我能够设计前应做好计划,能够学习相关基础知识,借鉴参考书上的实例,对别人的设计多问几个为什么,向指导老师以及同学咨询,与同学讨论。 我们通过对word文档的制作能够在其中更多的掌握技巧性知识,能够自己独立完成编版问题。最后,我想说:通过课程设计,使我的各方面的能力得到提高和增强,不仅在英语和计算机能力得到提高,还有增强了我的独立思考和创新能力。但是由于水平的有限,在设计过程中一定存在许多疏漏和不够合理之处,恳请各位老师批评指正。[align=center] 参考文献[/align]【1】上海化工工业设计院石油化工设备设计建设组《化工设备图册》热交换器[M]1975.6;【2】马晓讯 夏素兰 曾庆荣等.《化工原理》.北京.北京工业出版社,2014【3】马江权 冷一饮等编《化工原理课程设计》.北京.中国石化出版社出版,2014【4】王志魁主编《化工原理》[M] 第三版 北京 化学工艺出版社 2004.10;【5】黄璐 王保国等编《化工设计》第一版.北京.化工工艺出版社 2007.9;【6】兰州石油机械研究所主编《换热器》[M]工出版社出版 北京 1988.8【7】伊先清 吴元欣主编《化工设计》[M] 石油工业出版社 2005.6 北京;【8】《李国庭 陈焕章 黄文焕编著化工设计概论》[M] 化学工业出版设 北京, 2008.7 【9】申迎华 郝晓刚主编《化工原理课程设计》[M] 化学工业出版社 北京 2007[align=center]附录[/align]附录1 [font=宋体][size=16px]换热器 主要结构尺寸和计算结果[/size][/font][table][tr][td][align=center]参数[/align][/td][td][align=center]管程[/align][/td][td][align=center]壳程[/align][/td][/tr][tr][td][align=center]流率kg/h[/align][/td][td][align=center]5280[/align][/td][td][align=center]62028[/align][/td][/tr][tr][td][align=center]进出口温度/℃[/align][/td][td][align=center]223(223)[/align][/td][td][align=center]50(200)[/align][/td][/tr][tr][td][align=center]压力MPa[/align][/td][td][align=center]2.5[/align][/td][td][align=center]0.5[/align][/td][/tr][tr][td][align=center]定性温度/℃[/align][/td][td][align=center]223[/align][/td][td][align=center]125[/align][/td][/tr][tr][td][align=center]密度kg/m[sup]3[/sup][/align][/td][td][align=center]12.5[/align][/td][td][align=center]4.225[/align][/td][/tr][tr][td][align=center]定压比热容(KJ/kg.℃)[/align][/td][td][align=center]4.634[/align][/td][td][align=center]1.046[/align][/td][/tr][tr][td][align=center]黏度/Pa.s[/align][/td][td][align=center]0.000123[/align][/td][td][align=center]0.000022[/align][/td][/tr][tr][td][align=center]热导率/[W/m.℃][/align][/td][td][align=center]0.643[/align][/td][td][align=center]0.0314[/align][/td][/tr][tr][td][align=center]普朗特常数[/align][/td][td][align=center]0.8864[/align][/td][td][align=center]0.7329[/align][/td][/tr][tr][td][align=center]型式[/align][/td][td][align=center]浮头式换热器[/align][/td][td][align=center]壳程数 1[/align][/td][/tr][tr][td][align=center]壳体内径/mm[/align][/td][td][align=center]700[/align][/td][td][align=center]台数 1[/align][/td][/tr][tr][td][align=center]管径/mm[/align][/td][td][align=center]25[/align][/td][td][align=center]管心距/mm 32[/align][/td][/tr][tr][td][align=center]管长/mm[/align][/td][td][align=center]6000[/align][/td][td][align=center]管子排列 正三角形[/align][/td][/tr][tr][td][align=center]管数目(根)[/align][/td][td][align=center]252[/align][/td][td][align=center]折流板数/个 9[/align][/td][/tr][tr][td][align=center]传热面积/m[sup]2[/sup][/align][/td][td][align=center]115[/align][/td][td][align=center]折流板间距/mm 600[/align][/td][/tr][tr][td][align=center]管程数[/align][/td][td][align=center]4[/align][/td][td][align=center]材质 碳钢[/align][/td][/tr][tr][td][align=center]主要计算结果[/align][/td][td][align=center]管程[/align][/td][td][align=center]壳程[/align][/td][/tr][tr][td][align=center]流速m/s[/align][/td][td][align=center]5.93[/align][/td][td][align=center]44[/align][/td][/tr][tr][td]表面传热系数[W/m[sup]2[/sup].℃][/td][td][align=center]1855[/align][/td][td][align=center]363[/align][/td][/tr][tr][td][align=center]污垢热阻/(m[sup]2[/sup].℃/W)[/align][/td][td][align=center]0.00008598[/align][/td][td][align=center]0.00008598[/align][/td][/tr][tr][td][align=center]阻力/Pa[/align][/td][td][align=center]20676[/align][/td][td][align=center]128000[/align][/td][/tr][tr][td][align=center]热流量/KW[/align][/td][td=2,1][align=center]2700[/align][/td][/tr][tr][td][align=center]传热温差/K[/align][/td][td=2,1][align=center]98[/align][/td][/tr][tr][td][align=center]传热系数[W/m[sup]2[/sup].℃][/align][/td][td=2,1][align=center]272[/align][/td][/tr][tr][td][align=center]裕度/%[/align][/td][td=2,1][align=center]17.18[/align][/td][/tr][/table]

  • MTS880 换热器更换求助

    我单位的MTS880 换热器堵了,换不了热了,想换一个换热器,国内的厂家能生产不?请大家提供一点信息,谢谢!

浮头式换热器相关的耗材

  • 可拆板式换热器
    板式换热器介绍 板式换热器是由框架、传热板片组及夹紧螺栓等主要部件组成。 框架包括一个固定压紧板和一个活动压紧板,由上导杆与下导杆支承,在另‘端有一支柱。压制成的波纹板片悬挂在两板之间的上导杆上,移动活动压紧板将板片组压紧,再用一组夹紧螺柱将固定压紧板和活动压紧板夹紧至一定尺寸。两种介质经固定(或活动)压紧板上法兰孔流入由波纹板片组成的各自通道,热交换后介质再由固定(或活动)压紧板上的法兰孔流出。同定压紧板、活动压紧板、支柱及导杆均为低碳钢。考虑到用户的多种使用要求,框架设计有多种型式,主要有双支撑框架式和常用的落地式等,也可根据用户的要求更改框架的型式。 传热板片是板式换热器的核心部件之一。波纹板片通过一次压制成型,合理的波纹设计增加了板片有效传热面积,使流体顺波纹通过时形成湍流,强化了传热过程。装配时波纹与波纹相交成大量接触抗点,大大提高了板片组的刚度,因此能承受较高的压力。每块板片作为一个传热面,在密封垫的作用下,板片的两侧分别有冷热介质通过,进行换热。板片上有四个分配液体的孑L,孑L及板片四周装有密封垫片,限制介质在板片组内流动,各板片形成平行的通道,流经里面的两种介质,作最佳换热效果的方向流动,为适应多种腐蚀性较强的介质,波纹板片材料有:工业纯钛TAl,用于海水或其它腐蚀性介质;多种不锈钢,用j=淡水、饮用水、油类及其它非腐蚀性介质。 在波纹板片的密封槽上装有密封垫片,密封垫片设计成双道密封结构,并且有信号孔。当介质如从第一道密封泄露时,可从信号孑L泄出设备之外,便能及早发现问题加以解决,不会造成两种介质的混合。密封垫片可根据不同的流体和操作温度选用不同的胶种。 四、板式换热器板片材质:材质应用不锈钢SUS304 SUS316L 净水、河川水、食物油、矿物油工业纯钛及钛钯合金Ti tanium and Pal ladium 海水、盐水、盐化物哈氏合金Hadtelloy Alloy 浓硫酸、盐酸、磷酸镍Nickel 高温高浓度苛性钠 五、板式换热器垫片材质:材质应用工作温度丁腈橡胶NBR水、海水、矿物油、盐水15--1IO~C高温橡胶BNBR高温矿物油、高温水15--140~C三元乙丙EPDM热水、水蒸气、酸、碱25--150~C氟橡胶 Viton/Fluorine Rubber强酸、强碱、矿物油、润滑脂和燃油等5--180~C氯丁橡胶NEOPRENE酸、碱、矿物油、低分子量脂烃35--130~C硅橡胶Silicon Rubber高温和某些腐蚀性介质65-200℃六、板式换热器设计理念:板片带有增压的新型导流区设计是在板片导流区流速较大的地方采用多路通道增加压力,使整张板片中的流速达到均等,大大提高了板片的换热效率,减少了死角,改善了板片的结垢状况。板片高强度挂口设计是在挂口处增加花纹设计,加强翻边周围的刚性,组装起来更加整齐美观、打开性能更好。板片中间部位板槽设计足把板片内部的连续波纹断开,并存板片I}l增加了半槽结构,缓和板片所承受的压力,使板片压制成形后更、卜整,小易弯曲。板片互锁设计是在板片的四角压制特殊的机械互锁结构,改善了板片组装过程中容易串位泄露的现象,使板片组装起来更加便捷、美观。板片密封垫片全部采用免粘贴搭扣形式,减少运行维护成本,便于维修。七、板式换热器的技术优势和特点:传热系数高:传热板片上的特殊波纹设计,可使流体在极低的流速下产生强烈的湍流,湍流的自净效应又可防止污垢的产生,使得板式换热器的传热系数为管壳式换热器的3-5倍。经济性:相同换热量的前提下,与管壳式比较:投资少、运行费用低、维修费用低。可调整性:只需增加和减少板片即可满足工艺过程改变的需求。结构紧凑:在相同换热量的前提下,占用空间仅为管壳式的1/2一l/3易于洁洗维修八、板式换热器设计选型:冷、热介质的物性参数,如酸碱度、氯根含量、粘度、密度、导热系数、比热等。冷、热介质的进出口温度。冷、热介质的流量或其中一种的流量。冷、热介质压力损失要求。板式换热器固有特性,如板片材料、密封胶垫材料等
  • 针头式过滤器
    Phenex 经 LC/GC认可的针头式过滤器用于色谱分析之前的样品和溶剂过滤? 分析之前快速过滤 LC 和 GC 样品? 不含颗粒、PVC 和浸出物的过滤器? 系统停机时间更短? 结果更一致,重现性更高? 延长色谱柱的使用寿命Phenex 提供:? 广泛的化学兼容性? 100% 完整性测试? 尽可能少的浸出物? 较低的滞留量? 极佳的流速? 较低的蛋白吸附? 较高的总通量? 双向应用? 经认证的质量针头式过滤器选择指南1、按样品量选择过滤器直径2、按样品性质和色谱方法选择孔径3. 请根据样品和过滤对象的特性选择滤膜。针头式过滤器应用和推荐的滤膜对于高载荷和含大量颗粒的样品,建议安装玻璃纤维 (GF) 预过滤器,它可与滤膜集成为一个整体(Phenex-GF/NY 或 -GF/CA),也可与您选择的针头式过滤器串联。无菌型针头式过滤器Phenomenex 提供的无菌型针头式过滤器是采用独立泡罩包装的即用型产品,能够在进样口压强较低的情况下提供较高流速,实现快速无菌过滤。订购信息全塑料一次性注射器? 适用于所有针头式过滤器应用*? 鲁尔旋锁出口可让连接变得更容易? 由超洁净的高纯度塑料制成订购信息*选择较大容量的注射器可以减小针头式过滤器滤膜上的压力。推荐使用 10 mL 注射器。
  • 针头式滤器
    针头式滤器 针头式滤器 Millipore产品 编号 规格 包装 价格(元) SLGVR25KS &Phi 33 mm,0.22um 只 12.00 SLHVR25KS &Phi 33 mm,0.45um 只 12.00 滤膜/滤器 国产 编号规格 包装 价格(元) YH022 &Phi 25 mm,0.22um,混纤维膜 200/盒 18.00 YH045 &Phi 25 mm,0.45um,混纤维膜 200/盒 18.00 YH-25 &Phi 25 mm可换膜滤器 只 8.00
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制