马弗炉整流器

仪器信息网马弗炉整流器专题为您提供2024年最新马弗炉整流器价格报价、厂家品牌的相关信息, 包括马弗炉整流器参数、型号等,不管是国产,还是进口品牌的马弗炉整流器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合马弗炉整流器相关的耗材配件、试剂标物,还有马弗炉整流器相关的最新资讯、资料,以及马弗炉整流器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

马弗炉整流器相关的厂商

  • 400-860-5168转5029
    上海马弗炉科技仪器有限公司,专业高温设备制造商。主营产品:箱式炉,管式炉,真空气氛炉,钎焊炉等高校、科研院所、工矿企业做高温烧结、金属退火、质量检测。粉末冶金行业以及义齿加工行业的烘烤、氧化锆盘预烧结等。
    留言咨询
  • 400-860-5168转4912
    菲斯福仪器(河北)有限公司简介 菲斯福仪器(河北)有限公司(原黄骅菲斯福实验仪器有限公司)创立于2011年。主要生产实验室设备及医疗器械,产品在国内外科研院所及大学实验室得到广泛应用。经过十年的发展,公司已成为集研发、生产、销售为一体的集团化高新技术企业,并拥有自己的品牌——FAITHFUL。 公司已通过ISO9001质量体系认证和欧盟CE认证。主要产品包括:干燥箱,培养箱,摇床,净化工作台,人工气候箱,恒温恒湿箱,生化培养箱(BOD实验箱),陶瓷纤维马弗炉,水浴锅,水箱,加热板,磁力搅拌器,电热套,自控蒸馏水器等。 我在积极开发国内市场的同时,更致力于国际市场的开拓。目前有一百多个代理商遍布世界各地,包括德国,法国,波兰,俄罗斯,荷兰,土耳其,日本,韩国,马来西亚,美国,墨西哥,伊拉克等。
    留言咨询
  • 弗尔德(上海)仪器设备有限公司(Verder Shanghai Instruments and Equipment Co., Ltd.)其前身是弗尔德莱驰(上海)贸易有限公司,是弗尔德集团(Verder Group)在华设立的全资分公司,总部在上海,在北京、广州、武汉等地设有办事处或联络处。公司业务主要分成Liquid Division(流体事业部门)和Scientific Division(科学仪器事业部门)。成立于1915年的德国RETSCH(莱驰)公司是Scientific Division(科学仪器事业部门)的核心品牌之一,是全球最大的实验室固体样品前处理暨研磨粉碎筛分设备的生产厂家,主要产品为颚式研磨仪、盘式研磨仪、超能球磨仪、行星球磨仪、切割粉碎机、超离心研磨仪、刀式捣磨仪、臼式研磨仪、混合球磨仪、冷冻研磨仪、筛分仪、压片机、分样仪、快速干燥仪等,在商检、质检、高校、农业、生物、制药、化工、研究所、地质、钢铁、冶金等领域有广泛的客户基础,是众所周知并一致公认的第一品牌!德国RETSCH TECHNOLOGY(莱驰科技)做为RETSCH的姊妹公司,专业致力于粒度及粒形分析仪器的研发和生产,基于ISO13322-2标准设计,Camsizer/Camsizer XT可以一次进样,测量粒度大小、粒度分布、球形度、纵横比、对称性、凹凸度,并可进行颗粒计数或密度及比表面积测量,已经逐渐成为催化剂、玻璃珠、金属粉末等行业粒度分析的新宠,被誉为um级以上粉体测量的最佳粒度粒形分析仪,也是动态图像法当之无愧的行业领航者。德国Eltra(埃尔特)专注于元素分析30 多年,从最初的碳硫分析仪,扩展到氧氮氢分析仪、热重分析仪的研究制造,Eltra 已经成为元素分析领域的佼佼者,尤其在冶金地质行业,ELTRA的碳硫分析仪及氢氧氮分析仪一直具有性能稳定、坚固耐用、性价比高的口碑。其独一无二的双炉设计系统,更可以让一台碳硫分析仪同时满足有机样品和无机样品的测量与分析。2012年加入弗尔德集团后,德国ELTRA(埃尔特)将依托于弗尔德科学仪器事业部的优秀资源,进一步加强在钢铁、金属、汽车、航空、煤炭、水泥、建筑、高校、研究所、商检、质检等领域的推广。CarboliteGero(卡博莱特盖罗)是弗尔德集团建立的专业马弗炉品牌,所谓“英德工艺,熔于一炉”,弗尔德科学仪器事业部整合全球两大马弗炉专业厂家:英国Carbolite(卡博莱特)和德国Gero(盖罗)的顶尖技术,优化各项资源,产品温度范围从30度至3000度,从普通烘箱、高温烘箱、箱式马弗炉、管式马弗炉、多气氛马弗炉、真空高温马弗炉以及行业专用的灰化炉等一应俱全,并且在温度均匀性、均温区长度、制造工艺、安全性等方面领先于其他竞争对手,真正成为马弗炉领域“高大上”的品牌!德国ATM是质量控制设备(金相领域)的一流制造商,不仅提供全面的金相设备,还提供相应的耗材、夹具以及整体实验室规划。 高品质、高灵敏度和创新的设计是ATM切割、镶嵌、磨抛、电解抛光设备及耗材的共同特点。得益于先进的研发、制造技术和工厂,ATM还可为客户提供满足特殊需求,订制化的机型。超过三十个国家地区的客户,可通过ATM强大的销售、售后和应用团队或者网络与专家进行直接沟通,获取高效的现代金相制备解决方案。Qness是来自于奥地利(萨尔兹堡)的专业高端硬度测试产品品牌。Qness拥有一支具备高度工作积极性且在硬度测试领域经验丰富的员工队伍,产品线包括显微硬度计、宏观标准硬度计和在线硬度计。这些产品根据最新标准研发设计,并采取了先进制造工艺和创新的操作软件,能够高效、持续地满足布氏、洛氏、维氏和努氏硬度的现代测试需求。2020年,ATM与Qness将强强联手,合并为全新的QATM品牌,为您提供更完整的解决方案。产品详情请浏览弗尔德(上海)仪器设备有限公司官方网站www.verder-scientific.cn
    留言咨询

马弗炉整流器相关的仪器

  • 石英亚沸蒸馏器 400-860-5168转2885
    SYZ-550石英亚沸蒸馏器产品描述:SYZ-550石英亚沸蒸馏器是提取高纯水的全封闭石英玻璃仪器,本仪器在原单重石英亚沸高纯水蒸馏器的基础上增添了一组.因为此产品从蒸馏水原料进口由一道蒸馏、二道蒸馏至出水都由它自动完成,所以此产品也叫&rdquo 石英亚沸高纯水蒸馏器&rdquo . 石英亚沸蒸馏器在提纯过程中因冷凝空间温度高可制取无菌无热超纯水,加热丝封闭在壳体内,接受水又不接触空气,整个提纯过程不受环境污染。仪器为园筒形,卧式标准磨口全封闭石英玻璃仪器系统。它由两只提纯器、一只石英储水瓶和仪器外壳工作架等四部分组成。 SYZ-550石英亚沸蒸馏器产品特点:SYZ-550石英亚沸蒸馏器用高纯石英为基材,以基于热辐射原理保持液相温度低于沸点温度蒸发冷凝而制取高纯水,较好地解决了汽液分离问题,与离子交换法,电渗析法,蒸馏法比较,水质纯度较高。原子吸收光谱分析仪,等离子光谱分析仪,UB-240型分光光度计,高压液相层析分析仪和极谱仪等对重金属元素Cu,Pb,Cd,Zn检测证明:用&ldquo 蒸馏器&rdquo 制取的高纯水符合目前较灵敏的痕量分析方法对水质的要求。在高压液相层梯度试验中,由重蒸去离子末能试验要求及UV-240型分光光度计以蒸馏水和去离子水一直末能解决的空白值和稳定性问题,由于使用了该产品完全符合设计标准要求。随着现代化科学技术发展,常常要求高纯水(亚沸蒸馏水)供应,尤其是采用现代化仪器(如极谱催化法,阳极溶出伏安法、差肪冲极谱、微服技术分析、中子活化分析、同位素称释、火花源质谱、化学电离质谱、电感藉合等源的原子发射光 谱、无焰原子吸收光谱、气相色谱、及高压气相色谱、核子共振、电子探针、X射线荧光、电子熊谱学俄显电子能诺学等)进行测定痕量元素及微量有机物时,是必不可少的配套仪器,因为它能大大降低空白值,从而能提高方法,灵敏度和准确性。 SYZ-550石英亚沸蒸馏器技术参数1、纯度:金属杂质单项含量为蒸馏水一次提纯&le 5ppb,多次提纯极限含量&le 5ppt。2、电导率:一次提纯0.08x10-6&Omega -1cm25℃3、电导率:多次提纯0.059 x10-6&Omega -1cm25℃4、电源:220V± 10% 50HZ5、功率:1500W6、出水量:800-1000ml/h7、型号:SYZ-550
    留言咨询
  • 石英亚沸蒸馏器 400-860-5168转2885
    SYZ-A石英亚沸蒸馏器产品描述:SYZ-A石英亚沸蒸馏器是提取高纯水的全封闭石英玻璃仪器,本仪器在原单重石英亚沸高纯水蒸馏器的基础上增添了一组.因为此产品从蒸馏水原料进口由一道蒸馏、二道蒸馏至出水都由它自动完成,所以此产品也叫&rdquo 石英亚沸高纯水蒸馏器&rdquo . 石英亚沸蒸馏器在提纯过程中因冷凝空间温度高可制取无菌无热超纯水,加热丝封闭在壳体内,接受水又不接触空气,整个提纯过程不受环境污染。仪器为园筒形,卧式标准磨口全封闭石英玻璃仪器系统。它由两只提纯器、一只石英储水瓶和仪器外壳工作架等四部分组成。 SYZ-A石英亚沸蒸馏器产品特点:SYZ-A石英亚沸蒸馏器用高纯石英为基材,以基于热辐射原理保持液相温度低于沸点温度蒸发冷凝而制取高纯水,较好地解决了汽液分离问题,与离子交换法,电渗析法,蒸馏法比较,水质纯度较高。原子吸收光谱分析仪,等离子光谱分析仪,UB-240型分光光度计,高压液相层析分析仪和极谱仪等对重金属元素Cu,Pb,Cd,Zn检测证明:用&ldquo 蒸馏器&rdquo 制取的高纯水符合目前较灵敏的痕量分析方法对水质的要求。在高压液相层梯度试验中,由重蒸去离子末能试验要求及UV-240型分光光度计以蒸馏水和去离子水一直末能解决的空白值和稳定性问题,由于使用了该产品完全符合设计标准要求。随着现代化科学技术发展,常常要求高纯水(亚沸蒸馏水)供应,尤其是采用现代化仪器(如极谱催化法,阳极溶出伏安法、差肪冲极谱、微服技术分析、中子活化分析、同位素称释、火花源质谱、化学电离质谱、电感藉合等源的原子发射光 谱、无焰原子吸收光谱、气相色谱、及高压气相色谱、核子共振、电子探针、X射线荧光、电子熊谱学俄显电子能诺学等)进行测定痕量元素及微量有机物时,是必不可少的配套仪器,因为它能大大降低空白值,从而能提高方法,灵敏度和准确性。 SYZ-A石英亚沸蒸馏器技术参数1、纯度:金属杂质单项含量为蒸馏水一次提纯&le 5ppb,多次提纯极限含量&le 5ppt。2、电导率:一次提纯0.08x10-6&Omega -1cm25℃3、电导率:多次提纯0.059 x10-6&Omega -1cm25℃4、电源:220V± 10% 50HZ5、功率:1000W6、出水量:400-500ml/h7、型号:SYZ-A
    留言咨询
  • 石英亚沸蒸馏器 400-860-5168转2885
    SYZ-135石英亚沸蒸馏器产品描述:SYZ-135石英亚沸蒸馏器是提取高纯水的全封闭石英玻璃仪器,本仪器在原单重石英亚沸高纯水蒸馏器的基础上增添了一组.因为此产品从蒸馏水原料进口由一道蒸馏、二道蒸馏至出水都由它自动完成,所以此产品也叫&rdquo 石英亚沸高纯水蒸馏器&rdquo . 石英亚沸蒸馏器在提纯过程中因冷凝空间温度高可制取无菌无热超纯水,加热丝封闭在壳体内,接受水又不接触空气,整个提纯过程不受环境污染。仪器为园筒形,卧式标准磨口全封闭石英玻璃仪器系统。它由两只提纯器、一只石英储水瓶和仪器外壳工作架等四部分组成。 SYZ-135石英亚沸蒸馏器产品特点:SYZ-135石英亚沸蒸馏器用高纯石英为基材,以基于热辐射原理保持液相温度低于沸点温度蒸发冷凝而制取高纯水,较好地解决了汽液分离问题,与离子交换法,电渗析法,蒸馏法比较,水质纯度较高。原子吸收光谱分析仪,等离子光谱分析仪,UB-240型分光光度计,高压液相层析分析仪和极谱仪等对重金属元素Cu,Pb,Cd,Zn检测证明:用&ldquo 蒸馏器&rdquo 制取的高纯水符合目前较灵敏的痕量分析方法对水质的要求。在高压液相层梯度试验中,由重蒸去离子末能试验要求及UV-240型分光光度计以蒸馏水和去离子水一直末能解决的空白值和稳定性问题,由于使用了该产品完全符合设计标准要求。随着现代化科学技术发展,常常要求高纯水(亚沸蒸馏水)供应,尤其是采用现代化仪器(如极谱催化法,阳极溶出伏安法、差肪冲极谱、微服技术分析、中子活化分析、同位素称释、火花源质谱、化学电离质谱、电感藉合等源的原子发射光 谱、无焰原子吸收光谱、气相色谱、及高压气相色谱、核子共振、电子探针、X射线荧光、电子熊谱学俄显电子能诺学等)进行测定痕量元素及微量有机物时,是必不可少的配套仪器,因为它能大大降低空白值,从而能提高方法,灵敏度和准确性。 SYZ-135石英亚沸蒸馏器技术参数1、纯度:金属杂质单项含量为蒸馏水一次提纯&le 5ppb,多次提纯极限含量&le 5ppt。2、电导率:一次提纯0.08x10-6&Omega -1cm25℃3、电导率:多次提纯0.059 x10-6&Omega -1cm25℃4、电源:220V± 10% 50HZ5、功率:3000W6、出水量:2000ml/h7、型号:SYZ-135
    留言咨询

马弗炉整流器相关的资讯

  • 半导体情报,科学家利用自旋整流器实现低功率射频能量的高效收集与应用!
    【科学背景】随着无线传感器网络在健康监测、环境监测和物联网(IoT)等应用中的重要性日益增加,如何有效供电成为一个关键问题。当前,许多传感器需要在难以接触的地方进行安装,例如用于空气质量、温度和湿度监测的传感器,这些传感器的电力需求通常无法依赖传统电池供给。因此,开发一种能够从环境中收集能量并转化为电力的技术成为了一个重要研究方向。在众多能源收集技术中,射频(RF)能量收集因其全天候可用、易于获取且可以与小型无线传感器网络集成的优点而备受关注。射频能量收集的关键挑战之一是如何在低功率条件下提高能量转换效率。尽管已有技术如肖特基二极管和隧道二极管在较高功率条件下表现出较高的效率,但在环境射频功率低于 -20 dBm 的情况下,这些技术的效率大幅降低,无法满足实际应用需求。此外,传统射频整流器面临热力学极限和高频寄生阻抗等问题,这些因素严重制约了其在低功率环境下的性能。为此,新加坡国立大学Hyunsoo Yang等科学家们致力于改进自旋整流器的性能。例如,作者的研究团队开发了一种新型的自旋整流器 rectenna,其在 -62 dBm 的射频功率下具有约 10,000 mV mW&minus 1 的高灵敏度,能够在弱且嘈杂的环境中有效收集射频能量。此外,作者还开发了一种基于片上共面波导的自旋整流器阵列,该阵列展示了约 34,500 mV mW&minus 1 的零偏灵敏度和 7.81% 的高效率。作者的研究解决了传统自旋整流器在低功率环境下效率低的问题,通过利用电压控制的磁各向异性(VCMA)驱动的自参量效应,显著提高了灵敏度和检测带宽。这一进展使得作者的自旋整流器可以在 -27 dBm 的低射频功率下为传感器提供无线供电,展现出良好的应用前景。【科学亮点】1. 实验首次展示了高灵敏度自旋整流器(SR)rectenna的应用:本文首次报道了一种具有高灵敏度的 SR rectenna,能够在 -62 dBm 的低射频功率下进行能量收集,达到约 10,000 mV mW&minus 1 的灵敏度。这种 SR rectenna 能够在弱且嘈杂的环境中有效捕获射频能量。2. 通过优化器件特性提升灵敏度:研究中指出,单个 SR 的灵敏度与其内在特性密切相关,包括垂直各向异性、器件几何形状和来自极化层的偶极场。这些因素共同定义了纳米磁体的能量景观,并促使低输入功率下的大角度磁化进动。此外,SR 的灵敏度还与磁隧道结(MTJ)的动态响应相关,尤其是零场隧道磁阻(TMR)和电压控制的磁各向异性(VCMA)系数对增强零偏置整流电压的作用。3. SR 阵列的自参量效应提升了性能:实验还显示了 SR 阵列在没有外部天线或匹配设置的情况下,通过 VCMA 驱动的自参量效应,增强了灵敏度和检测带宽。该 SR 阵列基础的能量收集模块(EHM)能够在 -27 dBm 的低射频功率下为商业传感器供电,展示了其在实际应用中的有效性和高效性。【科学图文】图1:利用自旋整流器Spin rectifiers,SRs的射频Radiofrequency,RF能量收集。图2: 自旋整流器SR整流天线的性能。图3: 宽带和谐振整流的调谐。图4:基于宽带低功率自旋整流器SR的能量收集器energy harvesting module,EHM。图5: 肖特基二极管、自旋整流器SR阵列和SR整流天线之间的整流性能比较。【科学启迪】本文的研究通过优化自旋整流器的设计,包括垂直各向异性和设备几何形状,研究成功实现了在极低射频功率下的高灵敏度检测。这表明,通过精细调控材料和结构特性,可以显著提高纳米尺度整流器的能量转换效率,从而扩展其在低功率环境下的应用范围。其次,本文引入了基于电压控制的磁各向异性(VCMA)的自参量效应,展示了在没有外部天线或匹配设置的情况下,如何通过自参量激发实现更高的灵敏度和更宽的检测带宽。这一发现不仅突破了传统射频整流器在低功率和复杂环境下的性能瓶颈,还为未来开发更高效的射频能量收集模块提供了新的思路。最后,本研究表明,基于自旋整流器的射频能量收集模块在实际应用中具有良好的性能,如在 -27 dBm 的低射频功率下为商业传感器供电。这表明这些整流器不仅具备高灵敏度和高效率,还具备良好的实际应用潜力,适合于未来无线传感器网络和物联网设备的集成与应用。原文详情:Sharma, R., Ngo, T., Raimondo, E. et al. Nanoscale spin rectifiers for harvesting ambient radiofrequency energy. Nat Electron (2024). https://doi.org/10.1038/s41928-024-01212-1
  • 传承 GFL 科技的LAUDA Puridest蒸馏器
    LAUDA Puridest 蒸馏器采用 “ GFL Technology ”质量标志 LAUDA Puridest 蒸馏器的预期寿命超过 15 年,是可靠、耐用的实验室水处理设备之一。LAUDA Puridest 蒸馏器由 LAUDA-GFL 开发和制造,共计 14款不同型号。该公司以可靠的实验室技术作为优质制造商而享誉全球,自 2018 年 12 月 31 日起加入 LAUDA 集团。 “ GFL Technology ”质量标志意味着 LAUDA 延续了 GFL 品牌传统,该品牌在 20 多年来一直以其质量和可靠性在全球实验室行业中享有盛誉。 产品特点 Ÿ 高品质蒸馏物LAUDA Puridest 蒸馏器提供超纯、低气体、无菌和无热原的蒸馏物,用于稀释试剂及样品组等。LAUDA Puridests 可净化任何原水,以产生电导率低至 1.6 µS/cm 以下的馏出物。它符合 DAB 规定和国际药典要求。 Ÿ 多种型号,适配不同需求LAUDA Puridest 蒸馏器有多种型号可供选择 - 每小时可生产 2 升至 12 升,内部储罐可选配。无论是具有手动或全自动清洁循环功能的单级不锈钢蒸馏器、双级不锈钢/玻璃蒸馏器还是全玻璃蒸馏器 - LAUDA Puridest 是可理想适配于任何应用场景。 Ÿ 极易上手的操作流程,符合人体工程学 蒸馏器的调试和操作极其简单。提取超纯水非常简单。连接原水和电源后,可直接提取超纯水。唯一需要的维护是清除蒸馏器中的污染物。LAUDA Puridest 的维修与清洁工作简单,且无需重复采购耗材,是理想适配任何地点的可靠解决方案。 由 4 个组别的 14 个型号组成的系列2 和 4 升/小时的单蒸馏器- 不锈钢热水炉- 直接出水(无储水罐)- 出水电导率2.3 µS/cm2,4,8 和 12 升/小时的单蒸馏器- 不锈钢热水炉- 从储水罐出水- 出水电导率 2.3 µS/cm2,4 和 8 升/小时的双蒸馏器- 不锈钢(1)和玻璃(2)热水炉- 直接出水(无储水罐)- 双出口出水电导率:2.2 和 1.6 µS/cm2,4 和 8 升/小时的双蒸馏器- 全玻璃热水炉- 直接出水(无储水罐)- 双出口出水电导率:2.2 和 1.6µS/cm (1) 不锈钢热水炉进行第一次蒸馏(2) 玻璃热水炉再进行第二次蒸馏常见应用领域 Ÿ 细菌和医学样品制备Ÿ 细胞和组织培养物的制备Ÿ 清洁和灭菌过程Ÿ 在质量、开发和研究实验室中生产缓冲溶液Ÿ 微生物和分析应用 适用于任何应用:Puridest PD 4 R 带有内部储罐和 PD 2 用于直接馏出物提取 我们的准则是简单:标配运行状态显示和清洁要求的 LED 指示灯 关于 LAUDA 我们是 LAUDA——精确温度控制领域的专家。我们的温度控制设备和加热/冷却系统是许多应用的核心。作为全方位服务供应商,我们在研究、生产和质量控制中保证最佳温度。我们是值得信赖的合作伙伴,特别是在汽车、化学/制药、半导体和实验室/医疗技术行业。65 多年来,我们每天都以崭新面貌在全球范围内提供我们专业咨询和创新的环保设计方案,满足我们的客户。
  • 广州大学王家海教授团队在纳米孔单分子计数器和纳米孔整流器领域的系统性成果
    经过30多年的发展,纳米孔在核酸测序领域已经成功实现商业化,在分子诊断领域(分析化学)也取得了巨大的进步。期间,研究者发展了不同种类的纳米孔,包括蛋白质纳米孔、高分子纳米孔、玻璃纳米孔和各种无机薄膜纳米孔。于此同时,理论研究和各种功能化技术也逐渐完善。研究内容从核酸测序扩展到对药物小分子、蛋白质、核酸碱基突变及其他一些重要的对象进行检测。本文主要介绍王家海教授团队在纳米孔领域取得的一系列进展和成果。(一)将纳米孔的离子整流现象运用到分析化学,提高纳米孔的应用范围和深度2008年之前,基于纳米孔的分子检测主要使用电阻脉冲方法(Resistive-pulse method)(图1):在纳米孔两边施加电压时,纳米孔一端的离子在电场的作用下通过纳米孔,可观察到稳定的恒电流;当带有一定体积和电荷的探测物存在于溶液中时,电场的作用使其通过纳米孔,纳米孔中的离子浓度临时改变,可观察到一系列的电阻脉冲峰(Resistive pulse)。根据峰的大小、持续的时间和频率,即可对探测物进行定量和定性测量。图1. 基于蛋白质纳米孔的电阻脉冲方法电阻脉冲方法高度依赖纳米孔的孔径、稳定性、长度和表面的电荷及表面功能基团。譬如用于基因测序的蛋白质纳米孔,孔径只有两纳米左右。这些苛刻的要求,限制了该方法广泛用于生物体系中不同对象的探测及其实用化。因此发展新方法能使纳米孔分析化学应用更广泛和深入。2008年,为了提高纳米孔在分析化学上使用范围和深度,把离子整流现象运用到分析化学(Nanomedicine, 2008, 3, 13-20)。相关工作两次在国际大会进行专题报告。离子整流方法:在锥形纳米孔(带负电)两端实行电压扫描时,观察到一个非线性的电流对电压的曲线(I-V curve);把带正电的探测物置于溶液,探测物会选择性吸附到锥形纳米孔内表面,探测物改变或逆转了孔内表面电荷数目,当再次对锥形纳米孔两端实行电压扫描时,会观察到一个改变的非线性的电流对电压的曲线,通过对电流改变值进行分析,即可对探测物进行定量分析(图2)。图2. 基于锥形纳米孔的离子整流方法随后,该团队进一步把这个原理运用于探测不同疏水性药物小分子(Talanta, 2012, 89, 253-257)。药物检测原理如下(图3):(1)当不断改变药物分子在锥形纳米孔小端一侧的浓度时,观测到一系列变化的电流电压曲线。当药物分子达到一定值时,药物在纳米孔内的吸附达到饱和,电流电压曲线不再发生变化,这时候表面覆盖率达到1。(2)没有药物分子的时候,药物表面覆盖率为0,电流电压曲线为黑线。对应一定药物浓度的表面覆盖率,可以利用特定电压所对应的电流计算。(3)表面覆盖率与药物在溶液中的浓度和药物与表面的结合常数相关联。(4)如果以表面覆盖率为Y轴,药物浓度为X轴,结合Langmuir方程式,就可以拟合出药物与薄膜内表面的结合常数。不同疏水小分子在薄膜上的吸附能力不一样,所以可以用电流电压曲线区分不同小分子(图4);小分子Hoechst 33342 在20微摩尔时薄膜内表面吸附达到饱和(图4A),分子Propidium Iodide 在1毫摩尔时薄膜表面吸附达到饱和(图4B)。分子Bupivacaine hydrochloride 在8毫摩尔时在薄膜内表面吸附达到饱和(图4C)。图3. 离子整流定量检测药物分子。(A)不同浓度的药物引起不同的离子整流和电流电压曲线。(B)药物在纳米孔表面的覆盖率可以通过相对电流改变量计算。(C)药物表面覆盖率与溶液中的药物浓度和药物与表面的结合常数通过Langmuir方程式相关联。(D)如果以表面覆盖率为Y轴,药物浓度为X轴,结合Langmuir方程式,就可以拟合出药物与薄膜内表面的结合常数。图4. 区别不同疏水性带正电的药物小分子。(A)对应于小分子Hoechst 33342的电流电压曲线图和相应的表面覆盖率随药物浓度变化图。(B)对应于小分子Propidium Iodide的电流电压曲线图和相应的表面覆盖率随药物浓度变化图。(C)对应于小分子Bupivacaine hydrochloride的电流电压曲线图和相应的表面覆盖率随药物浓度变化图。相对于电阻脉冲方法,离子整流方法带来新的期待,它对纳米孔大小、表面修饰、膜厚度的要求都比电阻脉冲方法宽松很多。尽管如此,离子整流仍然需要更进一步的发展:高分子膜中50纳米以下纳米孔在电镜的观测下,会变形,测量不准,误差很大,且操作费事;高分子膜表面的疏水性影响了探针分子的修饰,纳米限域内的分子探针修饰无论是成功率还是重现性都比开放表面修饰差很多;基于高分子纳米孔离子整流,离子整流的整流系数变化还不太理想,使整个体系的检测限与其他表面技术和荧光方法相比较,还有一定差距;离子整流的应用范围需要继续扩展。(二)发展基于光透射技术的纳米孔孔径测量方法此前常用的表征核孔膜孔径的方法有电子扫描显微镜(SEM)和光学显微镜。SEM测试费用昂贵,操作时间长。光学显微镜只能测量微米尺度以上的物体。况且这两种方法都不能够实现在线监测。为了纳米孔孔径测量更方便,测量时孔径不变化,该团队发展了一种基于光透射技术的测量方法(Chem. Commun., 2013, 49, 11451-11417)。运用紫外分光光度计测量出核孔膜的大小(图5),可以覆盖50纳米到1微米的区间,有望填补在线检测核孔膜生产的技术空缺。该团队发明的这个方法,优势在于简单(图6),可以生产出微型化的装备快速检测孔径大小(图7),主要运用于高分子核孔膜的制备与表征(Track-etched Membrane),实现实时在线检测。该团队已经基于该方法开发了相关检测仪器,已经与企业开始技术转化洽谈。[1]图5. 核孔膜孔径在增大的过程中孔的周边会有一个缓冲带,这个区域会随着孔径增大而同时变大,会反射光。逐渐增大的缓冲带会使薄膜越来越不透明图6. 薄膜仅仅需要放在紫外样品池支架上(静电吸附)图7. 核孔膜孔径与光反射log值呈现良好的线性关系(三)设计无探针修饰的纳米孔分析平台,消除限域纳米孔内立体阻碍的干扰高分子膜表面的疏水性影响了探针分子的修饰,纳米限域内立体阻碍对探针和被测物之间的相互作用有很大的影响,造成纳米限域内分子探针修饰无论是成功率还是重现性都比开放表面的修饰差很多。针对这个不足之处,该团队设计了无探针修饰的纳米孔分析平台(Microchim. Acta, 2015, 59, 4946-4952 Talanta, 2015, 140, 219-225 Biosens. Bioelectron., 2015, 63, 287-293 J. Mater. Chem. B, 2014, 2, 6371-6377)。在运用纳米孔作为检测平台时,探针修饰是常用的做法,但这种方法有不足之处,譬如纳米孔内表面的立体阻碍,影响检测限的优化。纳米孔内高电场也影响了探针在孔内的稳定性。在该团队的工作中,探针游离在溶液当中,可以高选择性的和目标对象结合(多余的探针被单碳纳米管除去),只有结合了目标物的探针才能被纳米孔吸附,从而改变纳米孔表面的电荷,因此能用纳米孔选择性检测目标分子。这个新方法的优势在于,探针与目标对象的作用完全在溶液中,不受表面影响。将该方法用于对三价镉离子的探测,仅仅通过选择适当的缓冲溶液就可以做到。图8. (a-c)在纳米孔表面吸附高分子PEI,然后吸附Zr4+离子,纳米孔具备吸附核酸探针的能力;(d)与探测物结合的核酸适配体吸附到纳米孔表面,没有与检测对象相结合的自由核酸适配体被单壁碳纳米管吸附带走。纳米孔表面的电荷改变可以通过离子整流探测。基于高分子的纳米孔整流器容易发生非特异性吸附,尤其是含有胺基的小分子容易吸附在纳米通道表面,这会降低纳米通道传感器的效率。该课题组利用主客体相互作用来消除过量小分子的影响,在检测三聚氰胺中利用环糊精(Cyclodextrin)解决了这一个问题。与单壁碳纳米管(SWNTs)相结合,β-环糊精(β-CD)为涂覆有聚乙烯亚胺(PEI)和锆离子(Zr4+)的锥形纳米通道提供了优异的传感性能。以三聚氰胺为检测对象,制备的纳米通道可以选择性检测三聚氰胺诱导的双链DNA(dsDNA)(Biosens. Bioelectron., 2019, 127, 200-206)。全部工作在广州大学完成。图9. 环糊精可以屏蔽三聚氰胺的非特异性吸附(四)借助纳米通道支撑基底,发现高分子膜材料上具备完美的离子二极管效应和离子整流现象高分子纳米孔离子整流系数变化不够大,其检测能力与其他表面技术和荧光方法还有一定差距。通过提高纳米孔的离子整流效率可以进一步降低检测限。借助纳米通道基底,该团队发现气体高分子响应膜材料上完美的离子二极管效应和离子整流现象(RSC Adv., 2015, 5, 35622-35630)。二极管效应早先是电子二极管很重要的一种现象,有广泛的应用实例。在后来的蛋白质纳米通道中也发现了二极管效应,与电子二极管不同的是电流的载体是离子,这种效应是离子二级管效应,其原理也被其他人工材料采用。本文发明了一种全新的离子二极管,并用新的物理化学机理解释了超薄气体响应高分子膜的这种离子二极管效应。该高分子膜除了可以应用在油水分离、海水淡化和能源隔膜等领域中,对应用在分析化学中也是很有前景,其离子整流系数达到几万倍,几乎接近完美。图10. (A)和(D)核孔膜电镜图(200 nm),(B)和(C)长满高分子膜的PET膜的上下两面。(E)和(F)高分子膜的厚度(1.6 μm)。图11. 只要调换溶液和控制电压方向,就可以制备可开关的离子二极管。电压方向可以控制离子在薄膜附近的浓度,从而引起薄膜亲水或者疏水。(五)运用离子整流解释高分子薄膜内羧基可以带正电纳米孔分析化学的应用范围需要继续扩展,譬如运用离子整流观测表面化学反应,把纳米孔集成到微小器件中用于体内检测。2011年该团队运用离子整流解释了高分子薄膜内羧基可以两步质子化反应带正电(Nanoscale, 2011, 3, 3767-3773)。发现不对称锥形纳米孔内新的物理和化学性质:聚脂薄膜内表面的羧基可以通过两步质子化使薄膜内带负电荷、呈中性、带正电荷三种状态。该工作打破了近十年的传统观念,以前认为薄膜内表面只能具备带负电荷、呈中性两种状态。表面羧基(COOH)是由NaOH刻蚀聚脂薄膜PET产生的,在中性溶液中薄膜内表面带负电荷(COO-),在溶液pH 下降到3 或更低时,电流电压曲线发生反转。要通过电流电压曲线观测到这个现象,需在比较宽电压范围内扫描。图12. 不需要生物化学修饰的离子整流器。(A)锥形纳米孔图,(B)薄膜表面电荷性质发生变化。(六)将二维纳米孔折叠成三维微米器件,用于细胞培养和药物释放目前基于纳米孔的分析检测都是在体外进行,要想将更加先进的检测技术运用到体内,必须和能用于体内的其他智能化的微小器件相结合。该团队曾经把二维的纳米通道折叠成三维的微米器件(Nano, 2009, 4, 1-5)。这种立体盒子的每个面都带有纳米孔,可以进一步功能化。该立体盒子(微米)可以用作细胞存放的容器,譬如能产生胰岛素的细胞。盒子的每一面的纳米孔都能感知周围的环境,根据需要用于营养成分的交换,保证盒内的细胞正常生长,并且在体内为患者提供源源不断的胰岛素。还可以把其他的药物分子放入微米器件内,为患者提供帮助。该工作只是初步的把纳米孔和其他先进器件相结合,后续的应用还需要更多的研究工作。图13. 三维纳米孔器件(七)小分子功能化的纳米孔通道可以调控离子流在家禽业中滥用金刚烷胺(ADA)及其衍生物作为兽药,可能会给人类带来严重的健康问题。因此,迫切需要开发一种快速、廉价、超灵敏的ADA检测方法。该团队建立了一种灵敏的锥形纳米通道传感器,利用主客体竞争的独特设计快速定量检测ADA。该传感器使用对甲苯胺类对纳米通道表面进行功能化来构建,然后用葫芦素(Cucurbit[7]uril,CB[7])组装而成。当ADA加入时,由于主客体的竞争,它会占据CB[7]的空腔,使CB[7]从CB[7]-p-甲苯胺类络合物中释放出来,导致纳米通道的疏水性发生明显变化,这可由离子电流确定。在最佳条件下,该策略允许在10-1000 nM的线性范围内灵敏检测ADA。基于纳米通道的ADA传感平台具有高灵敏度和良好的重复性,检测限为4.54 nM。该文首次利用纳米通道系统实现了基于主客体竞争的非法药物快速、灵敏的识别,并详细阐述了该方法的原理和可行性。该策略为将主客体系统应用于小分子药物检测纳米通道传感器的开发提供了一种简单、可靠、有效的方法(Talanta, 2020, 219, 121213)。全部工作在广州大学完成。图14. 葫芦素调控的纳米孔检测三维金刚烷胺(ADA)(八)核酸纳米结构作为纳米孔信号传导载体检测病毒基因片段运用纳米孔直接检测小分子或者其他目标对象挑战性非常大,如果把对目标对象的检测转化成对核酸纳米结构的检测,可以解决很多以前不能解决的问题(Analyst, 2022, 147, 905-914)。特别是,具有明确三维纳米结构的DNA四面体是用作信号传感器的理想候选。该团队展示了在反应缓冲液中检测HPV18的L1编码基因作为测试DNA靶序列,其中连接DNA四面体到磁珠表面的长单链DNA被靶DNA激活的CRISPR-cas12系统切割。DNA四面体随后被释放,可以通过玻璃状纳米孔中的电流脉冲进行检测。这种方法有几个优点:(1)一个信号传感器可以用来检测不同的目标;(2)孔径比目标DNA片段大得多的玻璃状纳米孔可以提高对污染物和干扰物的耐受性,避免纳米孔传感器性能的降低。图15. 纳米孔结合CRISPA-cas12 检测病毒片段王家海教授简介王家海,广州大学化学化工学院教授、研究生和博士后导师,2008年5月美国University of Florida化学系毕业,师从Charles R. Martin;2008年5月至2009年1月,美国约翰霍普金斯大学化学生物工程系博士后,从事微纳米器件加工课题,致力于智能器件的设计及其应用性能的探讨;2009年1月至2014年8月,分别在中科院苏州纳米所和长春应用化学研究所任副研究员,从事体外诊断纳米孔检测相关的技术开发。2014年10月加入山东大学,任研究员,从事氢能源催化剂材料的开发。2017年至今加入广州大学,百人计划教授。入选中国科学院首批促进会会员,广州市高层次青年后备青年人才,全球顶尖十万科学家之一。目前团队研究方向包括能源催化材料、锂电池、生物化学传感器、纳米孔单分子计数器和5G通讯。代表性成果发表在Advanced Materials、Biosensor and Bioelectronics、J. Am. Chem. Soc.、Nano Letters 等国际著名期刊上。精彩会议预告:点击图片免费报名参加“第五届基因测序网络大会”

马弗炉整流器相关的方案

马弗炉整流器相关的资料

马弗炉整流器相关的试剂

马弗炉整流器相关的论坛

  • 【资料】电解抛光知识:整流器选择建槽规格及成本核算

    电解抛光知识:整流器选择建槽规格及成本核算 一.电化学抛光理论: 1.电化学抛光定义(即什么是电解?): 以被抛工件为阳极,不溶性金属为阴极,两极同时浸入到电解槽中,通以直流电而产生有选择性的阳极溶解,从而达到工件表面光亮度增大的效果。 2.电解原理: 电解原理现在世界各界人士争论很多,被大家公认的主要为黏膜理论。 工件上脱离的金属离子与抛光液中的磷酸形成一层磷酸盐膜吸附在工件表面,这种黏膜在凸起处较薄,凹处较厚,因凸起处电流密度高而溶解快,随黏膜流动,凹凸不断变化,粗糙表面逐渐被整平。 3.电解抛光优点: ⑴内外色泽一致,光泽持久,机械抛光无法抛到的凹处也可整平。 ⑵生产效率高,成本低廉。 ⑶增加工件表面抗腐蚀性。

  • 马弗炉的分类

    马弗炉根据其加热元件、使用温度和控制器的不同有以下几种分类: 1)按加热元件区分有:电炉丝马弗炉、硅碳棒马弗炉、硅钼棒马弗炉; 2)按使用温度来区分一般分为:1000度以下箱式马弗炉,1100度~1300度马弗炉(硅碳棒马弗炉), 1600度以上用的是硅钼棒马弗炉; 3)按控制器来区分有如下几种:PID调节控制马弗炉(可控硅数显温度控制器),程序控制马弗炉(电脑时温程控器); 4)按保温材料来区分有:普通耐火砖马弗炉和陶瓷纤维马弗炉两种。

马弗炉整流器相关的耗材

  • 哈氏槽专用整流器
    SR系列电镀整流器电源,输出电压从0伏起连续可调,稳定可靠,输出电流任意选择稳流,并具备限流保护和长时间短路保护功能。本整流电源输出电压纹波系数低,效率高,操作简单,可靠性强,而且还能作为恒流源使用。技术参数:1.输入电压:AC220V±10 50-60Hz2.输出电压:DC 0-15V连续可调。3.输出电流:5A`10A`15A`20A`30A`40A`50A`100A 连续可调,稳流或恒流。4.纹波系数:≤1% A级。5.电压显示精度:指针表±2%;数字表±1%±1个字。6.电流显示精度:指针表±2%;数字表±1%±1个字。7.保护性能:电流限制保护,短路保护。8.jue缘电阻:2MΩ9.高压耐压:1分钟3000V10.使用环境:-10℃—40℃,相对湿度<90%
  • 马弗炉专用莫来石样板
    马弗炉专用莫来石样板可直接放置于炉子底部,也可使用氧化铝支柱架起,作为样品架使用。 产品型号马弗炉专用莫来石样板技术参数1、最高工作温度:1400℃2、尺寸:2500mm×180mm×8mm
  • 美诚陶瓷纤维马弗炉专用热电偶
    美诚陶瓷纤维马弗炉专用热电偶共有K型、B型和S型三种型号。K型偶:镍铬—镍硅材料,主要配备TM系列1000,以及TF10系列陶瓷纤维管式炉。S型偶:铂铑10—铂,俗称单铂铑,主要配备TM系列1200和14000,以及TE0912、TE0914陶瓷纤维马弗炉、TF12系列陶瓷纤维管式炉。B型偶:铂铑10-铂铑6,俗称双铂铑,主要配备TM系列1700,以及TE0917陶瓷纤维马弗炉。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制