隔热型电子吊秤

仪器信息网隔热型电子吊秤专题为您提供2024年最新隔热型电子吊秤价格报价、厂家品牌的相关信息, 包括隔热型电子吊秤参数、型号等,不管是国产,还是进口品牌的隔热型电子吊秤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合隔热型电子吊秤相关的耗材配件、试剂标物,还有隔热型电子吊秤相关的最新资讯、资料,以及隔热型电子吊秤相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

隔热型电子吊秤相关的厂商

  • 杭州大和热磁电子有限公司成立于1992年,是由日本磁性流体技术控股有限公司(Ferrotec Holdings Corporation)在华投资的全资子公司,注册资金93.88亿日元,下设热电、真空、石英三大事业部,主要生产磁性流体、热电半导体制冷材料与器件、精密半导体石英制品、精密真空密封传动装置及大型腔体、电子束蒸发器等产品,广泛应用在集成电路、电动汽车/高铁、家电医疗、显示面板、光纤通信等领域。得益于不断完善的全球营销体系,旗下各事业部产品畅销海内外,获得了良好的口碑。大和热磁传承日本总部的科研实力,与浙江大学等多所知名院校合作,设立了“浙江省博士后工作站”,并建立了稳定的战略合作伙伴关系。立足于特定应用方向,大和热磁深耕半导体材料领域数十年,获得了LAM、TEL、AMAT等多家全球TOP5知名半导体厂商的认证,不断专注产品质量的持续改善与提升,满足并超越客户需求。大和热磁以“满足客户要求,美化地球环境,给社会注入梦想和活力”为宗旨,遵循“勤勉、立志、开拓、创优”的经营理念,坚持“质量为企业生存之根本,质量为企业发展之灵魂;以质量树企业之信誉,以质量赢全球之宾朋”的质量方针,以技术创新为动力,以人才发展为重点,不断招揽大量人才,引进吸收先进生产技术,研制开发具有国际水准的高科技产品,并逐步成为一家多产业协调发展的大型制造企业。
    留言咨询
  • 原厂供应商TESDATA专业生产炉温测试仪器、锡膏测厚仪器,温湿度记录仪、高温隔热盒、炉温跟踪仪及SMT周边产品。
    留言咨询
  • ?????? 上海热策公司自2006年成立,一直都专精于腐蚀耐候环境试验设备的技术,研发创造符合国际规范要求的可靠性环境模拟试验设备。获得了ISO9001-2015质量体系认证,英国皇家UKAS认证,出口欧洲CE安全标准认证,美国FCC认证。 ???????? 上海热策公司与上汽集团,上汽通用,上海泛亚技术中心,中国一汽技术中心、吉利汽车,海马汽车、江淮汽车,上海机动车检测中心,立中集团,徐工集团,华谊集团,模塑集团,凌云股份,中航工业,富士康科技集团,韩华高新材料等大?型企业及技术中心保持长期业务来往。上海热策公司从产品研发到售后服务,每一个环节之间,都以客户的观点与需求作为思考出发点,赢得客户一致好评。公司客户产业遍及汽车,新能源动力电池,航空航天,光电通信等科技产业 ????? ? 上海热策公司2017年产品升级至第5代互联网+系列产品包括:冷凝水试验箱,盐雾腐蚀试验箱,循环腐蚀盐雾箱,车身加速腐蚀试验舱,蒸汽喷射试验箱,高低温交变湿热试验箱,温湿度振动三综合试验箱,步入式温湿度试验?室,冷热冲击试验箱(提篮式、平移式、液体式、三厢式),耐尘试验箱,耐水试验箱等。????? ? 在过去的十一年里,上海热策人披荆斩棘,以不懈的努力一路走来,人员、技术、服务日趋完善。经过长期的积淀和实践,持续的新产品研发、成熟的智?造理念以及对高品质的孜孜以求,让上海热策公司成为腐蚀耐候试验设备领军企业。??????? ? 上海热策使命:打造具有高效创新力的团队,创造具有市场竞争力的产品,塑造具?有国际影响力的品牌,实现员工与企业可持续发展。? ???? ?? 热策人精神:有理想、有担当、有激情、有耐力?? 热策人才理念:人才因企业的成长而成熟、企业因?人才的发展而进步 热策竞争核心:高新的技术、可靠的功能?、合理的价位 热策价值观:先进可靠设计、一丝不苟智造、及时有效服务、永无止境追求?? 热策人愿景:成为具有全球竞争力的环境试验装备公司、为用户创造价值?? 上海热策管理箴言: 思路决定出路。 今日你在疏忽品质 其实你在疏忽机会。? 科技创?造梦想 品牌成就梦想。? 细节构筑品质 品质决定命运。 无私才能无畏,无畏才能创造无限。
    留言咨询

隔热型电子吊秤相关的仪器

  • 智能型建筑隔热材料隔热温差测试系统(JP-AGR800)测试方法:GBT 25261-2018《建筑反射隔热涂料》。产品特点:1.强劲的仪器性能:极其优良的光学系统,先进的电子学系统,高水准的机械系统,保证了0.010%T的超低杂散光,高精度PID温度控制及24位电压数字采样。2.稳定可靠的品质:疝灯等关键器件均用进口件,保证仪器的稳定可靠和长寿命。3.精准的测量:采用进口红外测温探头,进一步降低仪器的杂散光,使仪器分析更加准确。4.轻松高效的人机对话:基于Windows环境设计的中文操作软件,提供了丰富的仪器控制和操作功能,简单易用,灵活高效,轻松满足使用者的分析需求。5.日志记录功能:自动记录用户的操作;日志文件采用更为可靠的数据库格式保存;管理员可对日志进行分类查阅和其他处理。6.质量控制功能:可根据用户的设置对测量数据进行监控;超出控制范围的数据系统将会显示提示信息、进行颜色标记或自动重新测量。7.报告输出功能:可实现与其他系统共享数据的功能;可将测量结果保存为Microsoft Word格式、Microsoft Excel格式、文本文件格式;可对报告格式进行个性化的设置;可提前预览结果报告的打印效果。技术参数:
    留言咨询
  • 建筑隔热涂料等效热阻测试仪(JP-ARZ80)测试方法:DGJ32/J 23-2006《民用建筑节能工程现场热工性能检测》;DGJ32TJ169-2014 江苏省居住区和单位绿化标准;GBT 25261-2010 建筑用反射隔热涂料;JGJT 287-2014 建筑反射隔热涂料节能检测标准;JG/T235-2014《建筑反射隔热涂料》;GB/T9780-2013 建筑涂料涂层耐沾污性试验方法;GB/T16422.3-1997荧光紫外灯(UV)ISO4892-3_1994;GB/T1865-2009/ISO11341:2004 色漆和清漆人工气候老化和人工辐射暴露(滤过的氙弧辐射);GB/T 25968-2010 材料太阳透射比、太阳吸收比试验方法;航天部QJ1954-1999太阳电磁辐射标准;GJB2502.2-2006《航天器热控涂层试验方法》第二部分:太阳吸收比测试,光谱法(绝对法);GJB2502-1996《卫星热控涂层试验方法 光谱法(绝对法210)》。主要特点 :1.强劲的仪器性能:先进的电子学系统,高水准的机械系统,保证了高精度PID温度控制及24位电压数字采样。2.稳定可靠的品质:T型热点偶保证仪器的稳定可靠和长寿命。3.精准的测量:采用工业器件及先进个性化设计,进一步降低仪器的不确定度,使仪器分析更加准确4.轻松高效的人机对话:基于Windows环境设计的JP系列隔热涂料的太阳光反射比、半球发射率、隔热涂料的污染后太阳光反射比变化率、隔热涂料的人工气候老化后太阳光反射比变化率等中文操作软件,提供了丰富的仪器控制和操作功能,简单易用,灵活高效,轻松满足使用者的分析需求。技术参数:
    留言咨询
  • 标准规范FAR Part 25 Appendix F Part VI Airbus AITM 2.0053 Boeing BSS 7365应用范围用于检测隔热隔音材料暴露在标准热辐射源下后,通过明火点燃试样,用于测量材料的燃烧性能和火焰蔓延性能产品介绍FTT的隔热隔音材料燃烧及火焰蔓延测试仪用于检测隔热隔音材料暴露在标准热辐射源下后,通过明火点燃试样,用于测量材料的燃烧性能和火焰蔓延性能。 隔热隔音材料燃烧及火焰蔓延测试仪符合:FAR Part 25 Appendix F Part Vl、Airbus AITM 2.0053、Boeing BSS 7365等国际标准。 特点 ● 辐射板试验箱为密封设备,侧壁、底部和顶部使用纤维陶瓷绝缘材料进行绝缘● 前面板带观测窗,方便用户观察试样。● 窗下配备可滑动平台,用户可实现自动控制试样的进出● 辐射板放置于试验箱中,与试样水平面呈30度夹角。● 辐射板产生的热辐射通量范围分布范围从最大值1.0W/cm2到最小值0.1W/cm2,工作温度高达816°C。● 试验箱温度由热电偶监测,并由25.4 mm的圆柱形水冷、总热流密度型、箔式Gardon热流计测量● 燃烧器为一个轴向不对称的丙烷文式点火可移动装置● 燃烧器火焰作用时间可由电子液晶定时器测量● 数据收集和分析软件● 不锈钢集烟罩和烟测量端口 技术规格 尺寸:1.9m(宽)×1.9m(高)×0.75m(深)机罩:2.5米(宽)×2.0米(高)×1.4米(深) 维护 水 :15-25°C,2.4巴(35磅/平方英寸),200-300毫升/分钟电源:230V交流电下的40A电源气体:商用级丙烷抽提系统:30-85m3/min
    留言咨询

隔热型电子吊秤相关的资讯

  • 耐超高温隔热-承载一体化轻质碳基复合材料取得重要进展
    中国科学院金属研究所热结构复合材料团队采用高压辅助固化-常压干燥技术,并通过基体微结构控制、纤维-基体协同收缩、原位界面反应制备出耐超高温隔热-承载一体化轻质碳基复合材料。近日,《ACS Nano》在线发表了该项研究成果。 航天航空飞行器在发射和再入大气层时,因“热障”引起的极端气动加热,震动、冲击和热载荷引起的应力叠加,以及紧凑机身结构带来的空间限制,给机身热防护系统带来了异乎寻常的挑战,亟需发展耐超高温并兼具良好机械强度的新型隔热材料。碳气凝胶(CAs)因其优异的热稳定性和热绝缘性,有望成为新一代先进超高温轻质热防护系统设计的突破性解决方案。然而,CAs高孔隙以及珠链状颗粒搭接的三维网络结构致使其强度低、脆性大、大尺寸块体制备难,大大限制了其实际应用。国内外普遍采用碳纤维或陶瓷纤维作为增强体,以期提升CAs的强韧性及大尺寸成型能力。然而,由于碳纤维或陶瓷纤维与有机前驱体气凝胶炭化收缩严重不匹配,导致复合材料出现开裂甚至分层等问题,反而使材料的力学和隔热性能显著下降。目前,发展兼具耐超高温、高效隔热、高强韧的碳气凝胶材料及其大尺寸可控制备技术仍面临巨大挑战。 超临界干燥是碳气凝胶的主流制备技术,其工艺复杂、成本高、危险系数大。近年来,热结构复合材料团队相继发展了溶胶凝胶-水相常压干燥(小分子单体为反应原料)、高压辅助固化-常压干燥(线性高分子树脂为反应原料)2项碳气凝胶制备新技术。为了实现前驱体有机气凝胶和增强体的协同收缩,本团队设计了一种超低密度碳-有机混杂纤维增强体,其碳纤维盘旋扭曲呈“螺旋状”,有机纤维具有空心结构,单丝相互交叉呈“三维网状”,赋予其优异的超弹性。该超弹增强体的引入可大幅降低前驱体有机气凝胶干燥和炭化过程的残余应力,进而可获得低密度、无裂纹、大尺寸轻质碳基复合材料。该材料在已知文献报道的采用常压干燥法制备CAs材料领域处于领先水平,可实现大尺寸样件(300mm以上量级)的高效、低成本制备,并具有低密度(0.16g cm-3)、低热导率(0.03W m-1 K-1)和高压缩强度 (0.93MPa)等性能。相关工作在Carbon 2021,183上发表。 在此基础上,本团队以工业酚醛树脂为前驱体,采用高沸点醇类为造孔剂并辅以高压固化,促使有机网络的均匀生长及大接触颈、层次孔的生成,实现了骨架本征强度的提升,同时采用与前驱体有机气凝胶匹配性好的酚醛纤维作为增强体,通过纤维/基体界面原位反应,实现了炭化过程中基体和纤维的协同收缩及纤维/基体界面强的化学结合,最终获得了大尺寸、无裂纹的碳纤维增强类碳气凝胶复合材料。该材料密度为0.6g cm-3时,其压缩强度及面内剪切强度分别可达80MPa和20MPa、而热导率仅为0.32W m-1 K-1,其比压缩强度(133MPa g-1 cm3)远远高于已知文献报道的气凝胶材料和碳泡沫。材料厚度为7.5–12.0mm时,正面经1800°C、900s氧乙炔火焰加热考核,背面温度仅为778–685°C,且热考核后线收缩率小于0.3%,并具有更高的力学强度,表现出优异的耐超高温、隔热和承载性能。相关工作在ACS Nano 2022,16上发表。 此外,上述隔热-承载一体化轻质碳基复合材料还首次作为刚性隔热材料在多个先进发动机上装机使用,为型号发展提供了关键技术支撑。 上述工作得到了国家自然科学基金委重点联合基金、优秀青年基金、青年科学基金、科学中心以及中科院青促会会员等项目的支持。 图1. 轻质碳基复合材料表现出优异的承载能力、抗剪切能力以及大尺寸成型能力图2. 高压辅助固化-常压干燥可实现较大密度范围轻质碳基复合材料的制备,其压缩强度显著高于文献报道的气凝胶和碳泡沫
  • 斯坦福热分析新概念 10原子厚隔热材料用于便携设备
    p    strong 仪器信息网讯 /strong 斯坦福大学教授Eric Pop发表在Science Advances上的最新研究,利用二维材料分层堆叠的方式制造出了10个原子厚的隔热材料,可在未来用于小型化电子设备的隔热设计问题。他们的实验已经证明了,仅用几个原子厚的材料,就可以达到比其厚 100 倍的玻璃可提供的相同隔热效果。 /p p   对于这项研究的独特之处,Pop 说:“我们的研究团队正以一种全新的方式看待电子设备中的热量——将其看作声音。”电线中形成电流,是依靠电子在其中运动形成电子流。当这些电子运动时,就会与它们所经过材料中的原子相碰撞(比如电阻),每发生一次碰撞,就会引起材料中的一个原子振动。电流越大,碰撞也就越频繁,最终可能就会发展为电子像撞钟一样不断敲击原子,而这种“刺耳”的震动远高于人们的听力阈值,所以对于其产生的能量,我们的感觉是热。 /p p   目前,如何更好地隔热是工程师们永恒的话题。如果参考录音室增加或增厚隔音玻璃,去增添隔热材料,那就会阻碍电子产品向着更轻薄的方向发展。所以斯坦福大学的研究人员借鉴了多层玻璃让室内更保暖的技巧(在不同厚度的玻璃之间填充一层空气),设计出一种多层结构的材料薄膜。由于纳米材料的异质结构能够集成各个结构基元的性质,可实现对原子和电子结构的调制,从而获得新的功能。研究团队通过将原子薄厚的二维材料分层堆叠的方式,开发出一种拥有超高隔热性能的超薄异质结构。他们成功地将单层石墨烯、MoS2 和 WSe2 堆叠在一起。在这个“三明治”结构中,石墨烯是单层的,而另外 3 种片状材料均为 3 个原子厚。这样就制成了只有 10 个原子厚的 4 层绝热体。该结构可以很好地抑制原子的热振动,当原子通过每一层时,都会损失大部分能量。这样形成的薄膜材料的热阻是 SiO2 的 100 倍,并且在室温条件下导热效率优于空气。 /p p   对于智能手机、平板电脑等其他电子设备来说,它们是追求散热还是隔热的问题一直困扰着工程师。对于 SoC(System on Chip,系统级芯片)来说,单纯追求隔热,会导致机身内部温度过高,SoC 则需要降频 而如果只追求散热,就会导致机身“烫手”,影响用户的使用体验。而该新型隔热薄膜可能就是平衡上述问题的良方。 /p p   负责人 Pop 对外表示:“作为工程师,我们已经学习了很多关于如何控制电力的知识,我们对光的掌握也变得越来越好。但是我们才刚刚开始了解如何控制在原子尺度上表现为‘热’的高频声音。” /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 183px " src=" https://img1.17img.cn/17img/images/201909/uepic/8e7e24ba-ec78-45de-8e07-afab71dec595.jpg" title=" 拉曼激光.jpg" alt=" 拉曼激光.jpg" width=" 600" height=" 183" border=" 0" vspace=" 0" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zc/34.html" target=" _self" 入射拉曼激光探测下,Gr/MoSe2/MoS2/WSe2 结构的截面示意图 B ~ E. 在SiO2衬底上混合 4 层(B)和 3 层(C 到 E)异质结构的横截面截图,由于碳原子的原子数相对较低,在每个异质结构顶部的单层石墨烯很难被识别出来(图自 Science Advances) /a /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 466px " src=" https://img1.17img.cn/17img/images/201909/uepic/964404f2-023e-4a50-9433-9655e8b8cc04.jpg" title=" SThM 热图.jpg" alt=" SThM 热图.jpg" width=" 600" height=" 466" border=" 0" vspace=" 0" / /p p style=" text-align: center " 4 层结构的扫描热显微镜(SThM)热图,显示出通道内均匀的温度分布,证实了叠层中热层间耦合的均匀性(图自 Science Advances) /p
  • ​KLA科磊快速压痕技术对隔热涂层的测试
    KLA科磊快速压痕技术对隔热涂层的测试什么是隔热涂层?隔热涂层(TBC)是一种多层多组分材料,如下图所示,应用于各种结构性组件中提供隔热和抗氧化的保护功能1。TBC中不同的微观结构特征,如热喷涂涂层的薄膜边界、孔隙度、涂层间界面、裂纹等,通常会极大地增加测试的难度。图 1. (a)多层、多功能的隔热涂层的示意图《MRS Bulletin》(b)隔热涂层的横截面的扫描电镜图KLA Instruments的测试方法利用KLA发明的 NanoBlitz 3D 压痕技术对TBC 涂层进行测试,每个压痕点测试只需不到一秒,可在微米尺度上对涂层和热循环类的样品的粘结层、表层涂层和粘结层—表面涂层的界面区域等进行各种不同范围的Mapping成像,单张Mapping最多可达100000个压痕点。结果与分析粘结层—表面涂层的界面区域是 TBC研究的重点之一,其微观结构及相应力学性能的变化,会影响到TBC 的热循环寿命。该界面处最重要的考量就是热生长氧化 (TGO) 层的形成,TGO是在高温条件下,粘结层的β-NiAl的内部扩散铝与通过表层涂层渗透的氧发生反应而成,TGO 层可防止粘结层和下面的衬底进一步的氧化,但TGO超过一定的临界厚度,又会导致严重的应变不兼容和应力失配,从而使 TBC 逐渐损坏并最终产生剥离2、3。下图显示了典型的等离子喷涂涂层的变化过程,TGO 的厚度会随着热循环次数的增加而增大。对应的硬度和弹性模量Mapping结果也显示出类似的趋势,同时,从硬度mapping图中也可以观察到粘结层一侧的作为铝源的 β-NiAl 相随热循环次数的增加而逐渐耗尽。图 2. (a,第一列)涂层状态下的 TGO 生长状况的硬度和弹性模量 mapping 图;(b,第二列) 5 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;(c,第三列)10 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;以及(d,第四列)100 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图。TGO 生长引起的弹性模量差异会导致失配应力的发展,该失配应力又导致界面之上的表层涂层产生微裂纹,如上图(d,第四列)所示的mapping结果捕捉到了裂纹区域的硬度和弹性模量的降低现象。KLA的“Cluster”算法可以对不同物相的mapping数据反卷积处理并保留它的空间信息,即对相应的力学mapping图进行重构,如下图所示。图(c) 的Cluster的硬度mapping图清晰的展示出三组硬度明显不同的物相:(1)β-NiAl、(2)γ/γ‘-Ni 和(3)内部氧化产生的氧化物。图 3 .五次热循环后粘结层的(a)微结构图,(b)硬度mapping图(c) Cluster 后的结果。总结与结论KLA 的 NanoBlitz 3D 快速mapping技术可适用于隔热涂层的研究:TBC 不同膜层的界面区以及多孔的表面涂层的研究,甚至可以借助mapping技术获得的大量数据来预测 TBC 样品的剩余寿命。如想了解更多产品参数相关内容,欢迎通过仪器信息网和我们取得联系! 400-801-5101

隔热型电子吊秤相关的方案

隔热型电子吊秤相关的资料

隔热型电子吊秤相关的论坛

  • 采用瞬态平面热源法测量几种典型隔热材料的热导率

    采用瞬态平面热源法测量几种典型隔热材料的热导率

    摘要:采用瞬态平面热源法热导率测试系统对硅酸钙隔热材料、纳米超级隔热材料、低密度刚性隔热瓦和纤维增强碳气凝胶隔热材料四种比较典型隔热材料在常温常压下进行了热导率测试,目的是准确确定几种典型隔热材料在常温常压下的热导率数值,同时便于与其它热导率测试方法和测试设备进行对比,对其它测试方法和测试设备测量隔热材料热导率的测试结果做出基本的评判。1. 测试目的通过采用美国国家标准与技术研究院(NIST)的标准参考材料泡沫聚苯乙烯板SRM 1453对瞬态平面热源法热导率测试设备进行校准后,验证了瞬态平面热源法热导率测试设备对于均质低导热材料(热导率0.03W/mK量级)的热导率测试具有很高的测量精度,由此选取了几种典型隔热材料采用瞬态平面热源法进行测量,主要为了达到以下目的:(1)准确确定几种典型隔热材料在常温常压下的热导率数值;(2)便于与其它热导率测试方法和测试设备进行对比,对其它测试方法和测试设备测量隔热材料热导率的测试结果做出基本的评判。2. 典型隔热材料试样所选择的四种典型隔热材料分别为硅酸钙隔热材料、纳米超级隔热材料、低密度刚性隔热瓦和纤维增强碳气凝胶隔热材料。其中每种材料有两块试样,以下是这四种典型隔热材料每块试样的尺寸和密度资料。2.1. 硅酸钙隔热材料图2-1所示为1号试样,长宽厚分别为298×297×25.30mm,重量1720g,密度0.76g/cm3。图2-2所示为2号试样,长宽厚分别为298×298×25.15mm,重量1669g,密度0.75g/cm3。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584375_3384_3.jpg图2-1 硅酸钙隔热材料1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584376_3384_3.jpg图2-2 硅酸钙隔热材料2号试样2.2. 纳米超级隔热材料图2-3所示为1号试样,长宽厚分别为300×310×19.85mm,重量539g,密度0.29g/cm3。图2-4所示为2号试样,长宽厚分别为300×300×19.70mm,重量538g,密度0.30g/cm3。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584377_3384_3.jpg图2-3 纳米超级隔热材料1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584378_3384_3.jpg图2-4 纳米超级隔热材料2号试样2.3. 低密度刚性隔热瓦图2-5所示为1号试样,长宽厚分别为300×300×19.71mm,重量435g,密度0.25g/cm3。图2-6所示为2号试样,长宽厚分别为300×300×16.82mm,重量445g,密度0.25g/cm3。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584379_3384_3.jpg图2-5 低密度刚性隔热瓦1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584380_3384_3.jpg图2-6 低密度刚性隔热瓦2号试样2.4. 纤维增强碳气凝胶隔热材料图2-7所示为1号试样,长宽厚分别为295×290×18mm,重量405g,密度0.26g/cm3。图2-8所示为2号试样,长宽厚分别为295×290×21mm,重量449g,密度0.25g/cm3。 http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584381_3384_3.jpg图2-7 纤维增强碳气凝胶隔热材料1号试样http://ng1.17img.cn/bbsfiles/images/2016/02/201602141214_584382_3384_3.jpg图2-8 纤维增强碳气凝胶隔热材料2号试样3. 测试结果3.1. 硅酸钙隔热材料热导率测试结果将硅酸钙隔热材料的1号和2号试样夹持住瞬态平面热源法探头并采用两个铜块压紧。采用C5501探头进行测量,功率25mW,加热时间40s,室温23℃。探头分别放置在如图3-1所示的八个位置上分别进行测量,每个位置重复测量2次,由此获得试样不同位置处的热导率,取平均后得到这两个试样的热导率平均值,测试结果如图3-1所示。 http://ng1.17img.cn/bbsfiles/images/2016/02/201602141224_584383_3384_3.png图3-1 硅酸钙隔热材料试样不同测试位置示意图和热导率测试结果3.2. 纳米超级隔热材料热导率测试结果及厂家数据对比将纳米超级隔热材料的1号和2号试样夹持住瞬态平面热源法探头并采用两个铜块压紧。采用C5501探头进行测量,功率3mW,加热时间160s,室温22℃。探头分别放置在如图3-2所示的四个位置上分别进行测量,每个位置重复测量2次,由此获得试样不同位置处的热导率,取平均后得到这两个试样的热导率平均值,测试结果如图3-2所示。http://ng1.17img.cn/bbsfiles/images/2016/02/201602141224_584384_3384_3.png图3-2 纳米超级隔热材料试样不同测试位置示意图和热导率测试结果[co

  • 薄织物和隔热材料的热阻及热导率测试中存在的问题

    薄织物和隔热材料的热阻及热导率测试中存在的问题

    [color=#ff0000]摘要:薄的织物和隔热材料的逐渐广泛应用,使得现有各种测试方法已经无法满足这些材料导热系数和热阻准确测试的要求。本文详细介绍了现阶段对这些低导热薄材料热导率测试中存在的错误现象,从测试方法方面分析造成这些问题的原因,为今后准确测量提供参考和借鉴。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000][b]一、问题案例[/b][/color][/size]隔热材料作为有效阻断热量散失材料在各个领域发挥着重要重要,特别是在服装行业,薄的隔热织物越来越得到了重视和发展,为人体保温抗寒提供了更轻便和更舒适的面料。随着低导热薄织物的出现和技术发展,对薄织物的隔热性能,如导热系数和热阻,就提出了严峻的挑战,现有的各种测试方法都无法满足准确测量要求。如国内某机构研制开发了一种新型隔热面料,开发目的是设法采用纳米孔技术来大幅度降低面料的导热系数。面料的厚度为0.75±0.1mm,重量为48±2g/㎡,体积密度为65±11kg/m3,孔隙率为96%以上,闭孔率为95%以上,孔径30~190微米,壁厚为20~180纳米,面料如图1所示。此面料经不同检测机构采用多种测试方法进行了测试评价,导热系数测试结果如图2所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,373]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061135481562_7545_3384_3.jpg!w600x407.jpg[/img][/color][/align][align=center][color=#ff0000]图1 新型隔热面料[/color][/align][align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,221]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136137426_2566_3384_3.jpg!w600x242.jpg[/img][/color][/align][align=center][color=#ff0000]图2 隔热面料导热系数测试结果汇总[/color][/align]从上述多种测试方法的导热系数测试结果可以看出,结果之间相差巨大,甚至出现了数量级的差别。特别是由纺织行业权威检测机构得到的超低导热系数测试结果(0.00824W/mK),严重误导了织物的提供方,织物提供方对这测试结果也表示怀疑,但检测机构也无法对测试的准确性进行核实。如图2所示,该薄织物还采用其他测试方法进行了导热系数测试,尽管没有出现太离谱的测试结果,但测试结果之间还是相差较大,测试结果显示出的是完全不同的隔热能力。鉴于上述混乱的导热系数测试结果,此织物的研发生产机构只能在官网上声明“导热系数是某某材料的核心数据。现有测试仪器和方法,无法测试出材料导热系数的绝对值。使用不同测试方法,供应用单位参考”。这是一个非常典型的无法得到准确测试结果的案例,此现象在纺织行业普遍存在。为彻底解决此问题,本文将针对薄织物的导热系数测试,从测试方法方面分析造成测量不准确的原因,为今后进一步开展新型测试方法研究提供参考和借鉴。[size=18px][color=#ff0000][b]二、薄织物和隔热材料导热系数测试方法分析[/b][/color][/size]在图2所示的导热系数测试结果中,几乎用到了现有的大多数标准测试方法,下面将对现有的已经和可能用于薄织物和隔热材料导热系数测量的各种测试方法进行分析。导热系数测试方法主要分为稳态法和瞬态法两大类,本文分析的具体路线是从稳态法和瞬态法的源头开始,然后延伸到相应的拓展方法,以期对多个测试方法的整体轮廓有一个清晰的概念。[color=#ff0000][size=16px][b]2.1 导热系数和热阻测试稳态法[/b][/size]2.1.1 稳态护热板法和稳态热流计法[/color]对于隔热材料导热系数测试,普遍采用的测试方法是经典的稳态护热板法(GB/T 10294)。稳态护热板法作为一种绝对法具有最高的测试精度,并同时用来校准相对测试方法稳态热流计法(GB/T 10295),其测量原理如图3所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,358]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136309581_831_3384_3.png!w600x391.jpg[/img][/color][/align][align=center][color=#ff0000]图3 稳态护热板法测量原理示意图[/color][/align]为保证测量准确性,GB/T 10294标准文本做出明确规定,规定试件热阻不应小于0.1 m2K/W,规定用此来确定试件最小厚度。如果按照此规定,对于上述薄织物的0.75mm厚度,薄织物相应的导热系数不应大于0.0075W/mK才能符合规定。对于试件最小厚度做出规定,是因为试件太薄后试件内部热流分布不均匀和热场变形,并会造成试件上的温差很小,相应的温度传感器测量精度会在小温差测量上产生很大误差。由此,在标准文本中指出:当试件热阻低于0.1m2K/W时,表面温度的测量需要使用特殊的方法。冷板、中心量热计和护热板的表面应机械加工或切削平整、平行且不能有应力,同时它们的温度均匀性要求很高。这些要求在现实中很难实现或实现造价很高,因此对于厚度小于1mm的薄织物和隔热材料,稳态护热板法并不适合,很难满足导热系数准确测量的要求。对于稳态热流法导热系数测试,相应标准GB/T 10295给出了相同的最小热阻0.1m2K/W规定,同样需要按照此规定来确定试件最小厚度。由此可见,稳态热流计法同样存在温差测量不准确等一系列很难克服的问题,对于厚度小于1mm的薄织物和隔热材料,热流计法同样不适用。当然,在不得已的情况下,可以将多层薄织物叠加成厚试件以增大被测试件热阻来测量薄织物的导热系数。这种多层叠加形式在理论上确实能够测量导热系数,但最大问题是叠加过程中会在被测试件中产生空气隙而引入接触热阻,从而使得被测试件的热阻值变大,导致导热系数测试结果偏小,所以一般情况下不推荐采用多层叠加形式进行稳态法测量,除非被测试件比较柔软。[color=#ff0000]2.1.2 纺织品蒸发热板法[/color]纺织品蒸发热板法是一种上述稳态护热板法的一种变形,其基本原理完全基于稳态护热板法,不同之处是将图3稳态护热板法中的试件用空气层和被测试件来代替,以模拟人体散热和外部空气散热条件。 纺织品蒸发热板法目前执行的标准为GB/T 11048-2018,在具体测试中,通过从测定试件加上空气层的热阻值中减去空气层的热阻值得出所测材料的热阻值。需要特别注意的是,蒸发热板法中的热阻值与稳态护热板法中的热阻值并不能等效,这主要是因为以下不同:(1)蒸发热板法在测试热阻时,试件冷面处于空气对流传热环境;而稳态护热板法测试热阻时,试件冷面处于与冷板的导热传热环境。两种测试方法尽管原理相同,但边界条件和物理意义完全不同,蒸发热板法测试的是模拟环境下的等效热阻,稳态护热板法测试的是纯热传导环境下的导热热阻,在稳态护热板法中,根据此导热热阻和试件厚度,可以准确得到导热系数。(2)蒸发热板法中被测试件是平放在中心量热计上,试件靠自身重量与量热计接触。而稳态护热板法中试件通过上面的冷板加载一定的力与量热计接触,两者所形成的热接触效果完全不同,稳态护热板法中的接触热阻更小,即蒸发热板法中得到的试件热阻含有较大的接触热阻。(3)在蒸发热板法标准GB/T 11048中,只涉及了织物热阻的测量,并未涉及通过厚度和测量得到的热阻来计算获得织物的导热系数。这基本就意味着蒸发热板法不能用来测量导热系数。(4)另外,在蒸发热板法标准GB/T 11048中,规定可测量的最小热阻不能小于2m2K/W,与稳态护热板法和热流计法规定的0.1m2K/W最小热阻相比高了20倍,即蒸发热板法比较适合较大热阻的测量。根据上述分析,我们再来看图2得到的导热系数测试结果,就明显存在以下两大问题:(1)图2中的导热系数测量是依据GB/T 11048-2008,在此版本的蒸发热板法中,规定的热导率为热传导、热辐射和热对流的总和,是存在着三种传热形式的等效热导率,不能用此等效热导率与图2中的其他方法获得的纯导热传热过程的热导率相比较。(2)如果按照图2中的0.00824W/mK导热系数计算结果和0.75mm厚度可以反推出实际测量的热阻值,可得到热阻值为0.09m2K/W。显然此热阻值要远小于GB/T 11048-2008和GB/T 11048-2018中规定的最小可测热阻2m2K/W。从上述分析基本可以得出结论,即蒸发热板法不适合测量薄织物的热阻,更不适合测量纯导热性质的导热系数,这也是GB/T 11048-2018不再提热导率这个参数的主要原因。另外,检测机构出具图2所示的检测结果,也说明相关检测人员对标准方法GB/T 11048的适用范围还缺乏了解。[color=#ff0000]2.1.3 恒定热流法[/color]恒定热流法是上述稳态热流计法的一种变形,其测量原理与稳态热流计法完全相同,同样采用了热流计来测量流经试件厚度方向上的热流密度,不同之处在于采用了独特的技术手段来测量薄试件厚度方向上的小温差,并且可以加载压力以保证较小的接触热阻和准确控制试件厚度。恒定热流计法的相应标准为ASTM D5470,这种方法普遍用于薄型导热胶垫和固态电绝缘板材的导热系数和热阻测量。根据测量原理,恒定热流法应该比较适合薄织物和隔热材料的热导率和热阻的测量,但在具体测试过程中流经薄试件的热流密度很小,这就对热流密度测量精度提出了很高要求,现有执行标准ASTM D5470的测试仪器还无法实现如此小热流的准确测量,需要研发测量精度更高的测试设备以满足低导热薄片样品的测试要求。[color=#ff0000][b]2.2 导热系数测试瞬态法[/b]2.2.1 瞬态平面热源法(HOT DISK法)[/color]在图2所示的薄织物导热系数测试案例中,显示了采用瞬态平面热源法(HOT DISK法)的测试结果。已经有很多研究并报道了这种方法在低导热系数测试中存在测试结果偏高很多的现象,这方面的详细介绍及其解决方案可在网上搜索上海依阳编写的《气凝胶隔热材料超低导热系数测试中存在的问题及解决方案》应用报告。在瞬态平面热源法导热系数测试中,最大的问题是测量准确性无法进行考核。在稳态护热板法和热流计法中可以采用不同厚度标准参考材料来考核热阻的测量精度,而在HOT DISK法中只能测量热导率而无法测量热阻,那么对于导热系数低于标准参考材料数值0.03W/mK的低导热材料,就根本无法考核其测量的准确性。总之,瞬态平面热源法(HOT DISK法)也不适合测试低导热系数的薄织物和隔热材料。[color=#ff0000]2.2.2 闪光法[/color]闪光法作为一种应用最为普遍的绝对法,广泛用于各种固体材料的热扩散系数测量。但闪光法对于薄织物和隔热材料并不适用,主要原因如下:(1)对于低导热的薄织物和隔热材料,隔热性能比较好,热阻比较大,闪光信号很难传输到样品背面,信噪比较差,测量误差较大。(2)薄织物和隔热材料,多为多孔材料且透光,闪光加热很容易穿透被测试件。如果对试件表面进行遮光处理,遮挡涂层很容易进入试件孔隙而改变试件的导热系数。[size=18px][color=#ff0000][b]三、结论和今后工作[/b][/color][/size]通过上述薄织物和隔热材料测试案例和现有各种测试方法的分析,可以得出以下结论:(1)现有的各种导热系数测试方法,不论是稳态法还是瞬态法,都无法满足薄织物和隔热材料导热系数准确测试的需求。各种测试方法都有各自的局限性,没有一种完全适合低导热系数薄试件的测试方法。特别是目前用于纺织品热阻测量的GB/T 11048-2018测试方法,还存在很多问题,其中测量的热阻值应为等效热阻,是多种传热机理的复合作用结果,这很容易误导纺织品的开发人员。有关GB/T 11048-2018测试方法的更详尽研究分析,将在后续专文进行论述。(2)由于缺乏准确的测试方法,给新型织物材料的研究和研制带来的不便和困难,无法通过准确的热导率和热阻测量来调整材料的相应工艺。(3)对于薄织物和隔热材料的热导率测试,需要解决小温差和低热流密度精密测量难题,需要解决材料透光性的影响,这些都是今后工作的主要内容。(4)现有大多数采用稳态法的热阻和热导率测试仪器,所要求的样品尺寸太大,如大多采用面积为300mm×300mm的样品。对于薄织物和隔热材料的热导率测试,如果要实现高精度测量,如此大的样品尺寸势必会增大测试仪器的护热、机加工和热应力变形等方面的技术难度和造价。因此,对于厚度小于1mm的被测样品,完全可以采用小尺寸样品,如50mm×50mm,同样可以保证稳态下的一维热流。(5)对于难度最大的小温差准确测量,可以借鉴闪光法而避开热导率的直接测量,可通过测量热扩散率来间接获得热导率,热扩散率的测量则可以采用频域技术,通过频域技术可以非常准确的将温差信号转换为频域信号。这可能将是今后的一个重要研究方向。(6)另外,表征薄织物的热性能参数中,除了导热系数和热阻之外,还涉及到人体触摸织物的冷感或热感表征参数:吸热系数。最好有新型测试方法能将这些热性能参数进行整体考虑和测试,为织物热性能提供完整的准确测试评价。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 环境试验箱保温隔热层的材质介绍

    环境试验箱保温隔热层的材质介绍

    环境试验箱温度均与度是试验检测的重点,影响均匀度因素有很多,其中保温材质就是一项,保温材质是决定试验箱性能的一大方面。一般行业采用的保温层材料分为两种:一是聚氨酯硬质发泡,二是超细玻璃纤维棉。这两种材质具备很好的保温效果,设备外形是冰冷的不会发热,如果质量要是差些的,外箱就会发烫温度很高影响到试验室内的均匀度。下面我们来详细分析一下这两种材质:[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/03/202103221538562982_5984_1037_3.jpg!w348x348.jpg[/img][/align]  一、环境试验箱硬质的聚氨酯材料塑料泡沫,通称聚氨酯材料硬泡,它在聚氨酯制品中的使用量仅次聚氨酯软泡。聚氨酯材料硬泡多见网膜囊构造,具备隔热好用、重量较轻、强度大、工程施工便捷等优质特点,另外还具备隔音降噪、抗震、绝缘、耐高温、耐低温、耐水洗等特性,普遍用以电冰箱、冷柜的壳体绝热材料、冻库、冷藏运输车等保温隔热材料,房屋建筑、储存罐及保温管道,小量用以非隔热场所,如仿木料、包装制品等。一般而言,较密度低的聚氨酯材料硬泡关键作为隔热保温(隔热保温)原材料,较密度高的的聚氨酯材料硬泡可作为构造原材料(仿木料)。但硬质的聚氨酯材料泡耐受性溫度一般范畴在-40℃~+80℃,溫度高过80℃会使硬质的聚氨酯材料泡结块、隔热保温性减少等特性上的变弱,针对一些更高溫设备不能选用。  二、环境试验箱极细玻璃棉板:极细玻璃棉板的耐火性能好,在许多阻燃材料上都加上有极细玻璃棉板,极细玻璃棉板具备非常高的耐高温、隔热性,一般用以实验自然环境保温隔热材料。在制做环境试验箱的隔热保温层时,极细玻璃棉板的添充全过程较为繁杂且有一定难度系数。这类原材料能够隔绝高溫和低温,融入的溫度范畴范围广,都是环境试验箱制造行业选用较多、实际效果不错的原材料。

隔热型电子吊秤相关的耗材

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制