时间相关光子计

仪器信息网时间相关光子计专题为您提供2024年最新时间相关光子计价格报价、厂家品牌的相关信息, 包括时间相关光子计参数、型号等,不管是国产,还是进口品牌的时间相关光子计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合时间相关光子计相关的耗材配件、试剂标物,还有时间相关光子计相关的最新资讯、资料,以及时间相关光子计相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

时间相关光子计相关的厂商

  • 400-860-5168转2482
    鼎信优威光子科技有限公司专业从事光谱,生物与物理影像及相关应用的科学仪器的销售,目前我们代理多家国外仪器、设备及系统产品均为各自领域内的技术领先产品。美国PRINCETON INSTRUMENTS公司:科研级CCD,红外CCD,各种研究型光谱系统。 德国 Becker & Hickl GmbH 公司: TCSPC单光子计数器 ,弱信号处理产品, 荧光寿命影象系统 , 多波长荧光寿命影象分析系统。美国ISS公司:瞬态/稳态荧光磷光光谱分析系统,荧光关联光谱分析系统。我们还代理光纤超快激光器,脉冲可调光纤激光器,宽光谱激光器,显微镜宽光谱光源,LED光源。美国 Semrock公司:高性能荧光滤光片, 喇曼滤光片,激光反射镜,窄带滤光片。 美国ANDOVER公司:荧光滤光片,窄带滤光片,衰减片等。我们可以根据用户的具体要求,提供完整的系统解决方案,包括集成、设计等。 我们的商务人员具有丰富国际贸易经验,力争让用户在最短的时间内收到订购的仪器。
    留言咨询
  • 成立于1953年的日本滨松光子学株式会社(简称滨松公司),是具有高科技水平、高市场占有率的光科学、光产业公司。滨松集团的光电产品被广泛的应用在医疗生物、高能物理、宇宙探测、精密分析、工业计测、民用消费等领域,其中滨松的光电倍增管、光电半导体产品曾三次助澜诺贝尔物理学奖的诞生,为中微子、希格斯波色子的探测做出重要贡献。滨松公司于1988年与北京核仪器厂共同投资兴建了北京滨松光子技术有限公司(简称北京滨松),现为国内著名的光产业基地。为了进一步贡献于中国光产业,并应对中国国内需求的不断扩大,于2011年10月在北京成立全资子公司“滨松光子学商贸(中国)有限公司”(简称滨松中国),次年滨松中国上海分公司成立,2017年深圳分公司成立滨松中国全面负责滨松公司产品以及北京滨松部分产品在中国的销售、技术支持、售后服务等市场活动,为中国客户提供更好、更贴近的服务。发展的原点滨松光子学株式会社(简称滨松公司)的发展原点,需要追溯到一个非常重要的人物,那就是滨松创始人的恩师——“日本电视机之父”高柳健次郎先生。高柳先生曾说,当他在开发为未来10年乃至20年社会服务的技术时,脑海中偶尔会浮现出一个有着前额留海的美丽幸运女神。他认为,为了抓住幸运女神,就必须在她前面一步等着她追上来,然后转身抓住她的留海。而技术的发展也是如此,当技术应用的机会来临时,技术应当已经领先一步并做好了准备。而这样的精神也被滨松公司传承至今,致力于光子技术的发展,探索未知未涉,为机遇随时做好准备。左:高柳健次郎先生 右:1926年高柳先生的课题组成功地在世界首个电视机屏幕上产生了一个日本字符。(图片展示了在滨松科学博物馆里再现这个字母的装置)名字的由来 最初滨松公司的社名为“滨松电视株式会社(Hamamatsu TV)”。当时创始人堀内平八郎受教于恩师高柳先生,走进了探索光科学和光子技术的大门。在当时,老师的名字就是“电视机”的代名词,所以堀内先生希望以此命名来使人们铭记和纪念高柳先生。有意思的是,这个名字常常被误解为是电视台,并且不时会有受到一些电视人物、艺人的拜访,或者常收到家用电视的维修请求。公司直至1983年才更名为如今的“滨松光子学株式会社(Hamamatsu Photonics K. K)”滨松电视株式会社抓住机遇 创立的前两年时间里,只是一个街道工厂级别的小公司。不过在艰难的境地中,抓住了一个政府资助项目的机会。在该项目中,滨松进行了闪烁体测量放射性的试验研究,虽然是一个刚刚起步的公司,但是凭借技术实力最终轻松通过了测试,并获得了研究经费用,这也为滨松的初期发展提供了很好机会。“滨松电视大人” 在光电探测器件里,光电倍增管具有极其优异的性能。1955年初,滨松已经可利用光电倍增管来生产化学分析仪器,同时日本国内对光电倍增管的需求也日益扩大。当时一个客户说:“如果滨松电视能生产光电倍增管,那我们将尊称它为‘滨松电视大人’(浜松テレビ様,“様”是日本人对高地位人的敬称)”。客户的话促使了我们对光电倍增管研发的投入,并将这种意志渗透到项目执行里。在经历了无数试验和磨难后,终于开发出了远远优于其他公司同类产品的光电倍增管,而第一支用于分析仪器的侧窗光电倍增管R105也于1969年诞生。光电倍增管的开发为滨松成长为一个光电技术公司打下了坚实的基础。滨松生产的用于分析仪器的第一支光电倍增管R105 沾满黄色粉末的日子 持续不断开发电子管技术的滨松,同时也进入了光电半导体的研发中。硫化镉(CdS)则是其进入半导体市场的第一个产品。负责产品开发的铃木左喜雄每天埋头试验,满身都沾满了黄色的硫化镉粉末,最终成功开发了硫化镉元件。1958年末的一天,滨松获得了每月1000支的硫化镉元件订单,用于调整电视机阴极射线管的亮度。作为一个之前一直小批量生产的公司,这是第一次接到如此大规模的订单。半导体技术的积累和员工的辛勤带了硫化镉元件的丰硕成果,也为今后滨松光电半导体的发展奠定了基础。硫化镉元件开发制造团队 昼马循环 滨松的前任社长——昼马辉夫对于滨松的发展影响深远,他认为培养创造新Science的能力十分重要。人类通过对未知未涉领域的探求,利用新的并且正确的知识孕育出了Science。将这个知识按科目分类形成了新科学后,与现有的技术相结合,这样新技术就诞生了。接下来就是如何在实践中应用新技术。如果它符合社会需求,就会被社会所接受而形成新的市场。这个市场经过逐渐扩大便会成为新的产业固定下来。然而,新市场和新产业虽然降生了,但也不能因为在一段时间内找到了赚钱的途径而沾沾自喜,否则这个技术仅仅是企业和经营者赚钱的一个手段而已。产业应该赋予新技术以新的生存方式。通过新的生存方式,可以诞生出了新的价值观,而后又可以诞生出了新的Science,这个的循环意味着“真正的价值观存在于新的并且正确知识中”。昼马社长的理论被其友人归纳,并命名为“昼马循环”,这样的思想也为滨松公司所秉承:昼马循环大事件(主要于分析应用相关):1948 东海电子实验室(滨松公司前身)创立1953 滨松电视株式会社成立1958 硫化镉(CdS)元件投放市场1959 侧窗型光电倍增管投放市场1967 电子倍增管投放市场1969 美国成立美国滨松1970 空心阴极灯和氘灯投放市场1973 西德-滨松电视联合欧洲公司成立1978 微通道板(MCP)、镓砷磷光电二极管和硅PIN光电二极管投放到市场1983 更名为“滨松光子学株式会社(Hamamatsu Photonics K. K)”1984 氙灯投放市场1985 筑波研究所创立、法国分公司成立1988 英国和瑞士分公司成立;“北京滨松光子技术股份有限公司”成立1990 中央研究所成立,光电倍增管在中国投产1996“超级神冈实验”的11200个20-英寸光电倍增管的供应完成2001 中国上海办事处成立2002东京大学小柴昌俊教授获诺贝尔物理学奖,小柴昌俊教授“中微子”实验所用的20英寸光电倍增管是由滨松光子学株式会社提供的2008 超小型的微型光谱仪开发完成2010 滨松光子欧洲有限公司成立2011 滨松光子学商贸(中国)有限公司成立2012 下一代微型光电倍增管(μ-PMT)投放市场2013 Francois Englert和Peter W.Higgs教授因成功预测“希格斯玻色子”被授予诺贝尔物理奖。滨松的光电半导体、光电倍增管产品助澜了“希格斯玻色子”的研究的欧洲大型强子对撞机实验;世界上第一个基于MEMS、与超小型FTIR引擎集成的MEMS-FTIR研发成功;指尖大小微型光谱仪投放市场2014 用于中微子探测的滨松20英寸光电倍增管被授予“IEEE里程碑”荣誉2015 指尖大小微型光谱仪C12666MA获SPIE国际光学“棱镜奖”(Prism Award)
    留言咨询
  • 400-860-5168转3429
    公司简介筱晓(上海)光子技术有限公司成立于2014年,是一家被上海市评为高新技术企业和拥有“上海市专精特新企业称号”的专业光学服务公司,业务涵盖设备代理以及项目合作研发,公司位于大虹桥商务板块,拥有接近2000m² 的办公区域,建有500平先进的AOL(Advanced Optical Labs)光学实验室,为国内外客户提供专业技术支持服务。公司主要经营光学元件、激光光学测试设备、以及光学系统集成业务。十年来,依托专业、强大的技术支持,以及良好的商务支持团队,筱晓的业务范围逐年增长。目前业务覆盖国内外各著名高校、顶级科研机构及相关领域等诸多企事业单位。筱晓拥有一支核心的管理团队以及专业的研发实验室,奠定了我们在设备的拓展应用及自主研发领域坚实的基础。公司自成立以来,始终遵循行业领先、诚信发展、探索创新、务实致远、以质取胜的服务理念,并在产品开发和销售中贯彻到底。公司自始至终秉承着国际标准的质量安全保障。多年来,公司一直致力于光学设备的设计开发,以及知识产权的保护。我们将不断完善管理机制和技术水平,为客户提供更安全环保的产品以及更优质的服务。应用领域医学医用相关产品分类:Wasach OCT光栅、 SLD 二极管、高速扫频激光器、SOA 放大器、光纤延迟线,OCT光谱分析仪光纤通讯与传感相关产品分类: 波分复用器、光纤放大器、高速光电探测器、锁频半导体可调谐激光器、强度/相位调制器、特种光纤、超窄线宽稳频激光器模块、光通讯DFB激光器......微波光子相关产品分类:20G信号发生器、高速电光调制器、高速光电探测器、高频相位/强度电光调制器、高速示波器 、任意波形发生器......气体分析相关产品分类:单模声光调制器 、超高反射率反射镜、光电探测器模块 、小型化气室、中红外气体吸收池、激光气体分析综合控制器、DFB激光二极管、中红外超连续谱光源、高精度波长计......量子计算相关产品分类: 外腔半导体激光器、空间光隔离器 、电光调制器、高精度波长计 、高精度光谱分析仪......激光雷达相关产品分类:窄线宽稳频激光器模块、FMCW DFB激光器、ns级超快光开关,光电平衡探测器......半导体分析相关产品分类:激光光束分析仪、激光芯片LIV测试系统、近红外相机、六轴位移台、光束匀化..机械视觉相关产品分类:经济型荧光近红外数字相机、低成本近红外InGaAs铟镓砷相机,中红外高性能非制冷相机、UV CMOS/CCD紫外波段相机、 SWIR镜头(C-mount)......先进光学实验室半导体综合分析实验室:半导体激光器光谱分析,功率测试,光束质量测试,线宽测试,各种光无源器件的测试,光纤放大器等等近红外产品的测试。目前我们在半导体测试,TDLAS激光法气体分析检测,CRDS腔衰荡系统,DTS高温传感以及DVS等项目研究开发领域有着深厚的积累,能够为客户提供更加精准的器件方案支持。未来前沿光学综合实验室:负责公司未来前沿科学的相关应用支持。其中包括:自适应光学,量子计算,微波光子,太赫兹,微纳光学等技术学习与推广应用,自适应光学:波前分析仪,可变形镜,近红外CCD相机;微波光子:是德科技20G矢量网络分析仪,25G信号发生器,20G高速调制器,22G光电接收器,光谱仪AQ6375B、771B-MIR波长计等测量设备 太赫兹:300G太赫兹发生器,太赫兹功率计,太赫兹时域光谱仪分析仪;微纳光学:微纳光纤制作平台,光学显微镜,2-4.5um超连续谱光源;量子计算:(在建中)-
    留言咨询

时间相关光子计相关的仪器

  • [ 产品简介 ]多光子成像与全息光刺激系统 DeepVision是神经科学、肿瘤免疫和药物代谢等相关研究领域进行活体显微成像的理想平台。DeepVision核心技术来自于复旦大学脑科学转化研究院李博团队及工程与应用技术研究院董必勤团队的多年研发成果。系统采用了创新的设计理念和先进技术,能够实现双光子、三光子快速深层成像,并可拓展实现单细胞精度的三维双光子全息光遗传操控。[ 产品特点 ]&bull 更大的样品空间:龙门架式结构,可放置猕猴等非人灵长类动物或搭载小动物VR装置,实现小鼠跑球等行为学实验。&bull 更深的成像深度:三光子成像深度最大超过1500 μm,能记录到活体小鼠海马区神经元钙信号。&bull 多脑区同步成像:同一视野下可对多个脑区同步成像或刺激,实现多脑区互作神经环路研究。&bull 同步高精度光遗传刺激:对分布在三维空间中的多个目标神经细胞进行单细胞精度的全息光遗传学操控。&bull 无荧光标记谐波成像:利用二次谐波(SHG)或三次谐波(THG)进行无需荧光标记的谐波信号成像。[ 应用领域 ]&bull 活体脑(鼠/猴等)深层成像、神经元功能钙成像、光遗传实验&bull 各类模式生物(果蝇/斑马鱼/线虫)活体深层成像、神经元功能钙成像&bull 多色样品深层成像、谐波成像&bull 各种类器官和血管深层成像、谐波成像&bull 行为学实验中的神经元功能钙成像 活体小鼠海马区神经元钙信号成像(复旦大学脑科学转化研究院李博实验室)小鼠活体皮层三维双色成像,绿色:小胶质细胞;红色:皮层血管 ((复旦大学脑科学转化研究院李博实验室))脑类器官三光子三次谐波(THG)信号成像,无需荧光标记 (复旦大学脑科学转化研究院李博实验室)在三维空间中的多个目标神经细胞进行单细胞精度的光遗传学操控(复旦大学脑科学转化研究院李博实验室)
    留言咨询
  • 时间相关单光子计数相机——宽场荧光寿命成像FLIM姓名:谷工(Givin) 电话: 邮箱:光子计数是获得尽可能多的光所带来的信息的方法。在这里,我们提出的时间相关单光子计数相机系统不仅可以检测单个光子的到达时间,而且可以像相机一样直观地定位。单光子计数相机LINCam可以将任何简单的广域显微镜扩展成强大的荧光寿命成像系统。时间相关单光子计数相机LINCam是一种解决无扫描时间相关的单光子计数问题的相机。这款时间相关单光子计数相机可以精确地分辨单个光子的X和Y位置,拥有1000*1000像素的CCD和50ps的精确时间分辨能力。与脉冲光源配合时,时间相关单光子计数相机LINCam使任何传统的荧光显微镜成为一个强大的寿命测量仪器。带有现成光学元件的单光子计数相机LINCam也是激光雷达等宏观应用的解决方案。应用领域:宽视场荧光寿命显微成像FLIM光照明3D FLIM时间相关拉曼显微时间飞行测量弱光观测宽场TCSPC荧光寿命显微成像FLIM谷百合样本荧光寿命成像的示例:强度图像(a)是获得光子的位置的直方图。荧光寿命分析揭示了四个组成部分:τ1=0.19ns;τ2=0.67ns;τ3 = 1.95ns;τ4 = 3.75ns。所得到的叠加图像(b)显示了强度图像和平均寿命。数据采集处理:采集系统集成了时幅转换器TAC、模数转换器ADC、电源供应、参考信号恒比鉴别器CFD等功能。技术参数:
    留言咨询
  • 武汉东隆科技为德国PicoQuant的中国区独家代理,欢迎您来电垂询!MultiHarp 160是一款即插即用型多通道事件计时器及时间相关单光子计数(TCSPC)系统,并且针对需要多通道、高速且高精度计时通道的应用进行了优化处理。产品特点多达64个独立输入通道,时间分辨率为5 ps通过16通道的扩展单元进行扩展高达1.2 GHz同步速率的共用同步通道超短死区时间(650 ps),各通道无死时间串扰通过FPGA接口对数据流进行硬件访问White Rabbit计时网络接口用于自定义编程的驱动程序和演示代码主要应用MultiHarp 160主要应用于各种需要时间标记、并且具有大量同步输入要求,而不会影响时间分辨率和数据吞吐量的应用中,例如:符合相关量子通讯线性光学量子计算量子纠缠扩散光学层析成像TD-fNIRSLIDAR/Ranging/SLR时间分辨荧光光电子设备的时间响应特性时间分辨磷光(TRPL)荧光寿命成像(FLIM)磷光寿命成像(PLIM)多色寿命成像荧光相关光谱(FCS)荧光寿命相关光谱(FLCS)单分子探测/光谱学TRPL成像输入及同步通道每个通道都含有定比鉴别器(CFD),可用软件调节具体数值探测通道数量 (不包含共用同步通道)16 (主机) 32 (主机+ 第一扩展单元) 48 (主机+ 第一和第二扩展单元) 64 (主机+ 第一、第二和第三扩展单元)输入信号电压范围-1200 mV 到 1200 mV输入信号最大电压范围 (损伤阈值)±2500 mV触发位置上升或下降,软件可调触发脉冲宽度范围 0.4 ns时间-数字转换器最小时间通道宽度5 ps计时精度* 45 ps rms计时精度 / √2* 32 ps rms死时间 650 ps (可以通过软件以1 ns的步长增加至160 ns)单个通道延时调节范围±100 ns, 5 ps分辨率微分非线性误差 10 % peak, 1 % rms (全量程范围)最大同步率(周期性脉冲序列)1.2 GHz柱状图模式计数深度32 bit (4 294 967 295 counts)满量程时间范围328 ns到 2.74 s (根据所选时间通道宽度:5, 10, 20, …, 41 943 040 ps)最大时间通道数65 536每通道峰值计数率1.5 × 109 counts/sec@ 2048事件可持续最高数据通量(所有通道总和)166 × 106 counts/sec每行的8个输入通道TTTR模式T2 模式时间分辨率5 psT3 模式时间分辨率5, 10, 20, …, 41 943 040 psFiFo 缓冲深度(records)256 Mevents (million events)每通道峰值计数率1.5 × 109 counts/sec@ 2048事件可持续最高数据通量(所有通道总和)**80 × 106 counts/sec,USB 3.0接口FPGA 数据接口T2/T3 模式数据吞吐量200 × 106 counts/secRAW 模式数据吞吐量150 × 106 counts/sec 每行的8个输入通道 +150 × 106 counts/sec SYNC输入触发输出周期0.1 μs 到1.678 s (0.596 Hz到10 MHz)可编程脉冲宽度10 ns典型值.基线电平幅值0 V典型值触发电平幅值 (脉冲峰值)-0.5 V典型值 (50 Ohm)外部标记信号输入数量4输入规格LVTTL, 50 ns 上升/下降时间, 50 ns 到波峰或波谷 (最大 5V,1 μs), hold-off时间软件可调外部同步Ref IN/OUT10 MHz 50欧姆 AC耦合, 1V PPPPS IN1 s, LVTTLWhite Rabbit接口SFP模块连接器操作参数电脑接口类型USB 3.0电脑配置要求双核CPU, 最小 2 GHz CPU clock, 最小 4 GB内存容量操作系统Windows 8/10能耗150 W*为了确定计时精度,必须重复测量时间差并计算这些测量的标准偏差(均方根误差)。这是通过将来自脉冲发生器的电信号进行分束,并将两个信号分别输入到单独的输入通道来完成的。计算出脉冲到达时间的差值以及相应的标准偏差。后一个值是均方根抖动,用于指定时间精度。但是,计算这样的时间差需要两次时间测量。因此,根据误差传播定律,通过将先前计算的标准偏差除以√(2),可以获得单通道均方根误差。我们还在此指定此单通道均方根误差,以便与其他产品进行比较。** 可持续最高数据通量受限于电脑的配置和性能。据我们所知,这里所提供的所有信息均是有效可靠的。但对于可能出现的不准确或遗漏,概不负责。规格及外观如有更改,恕不另行通知。
    留言咨询

时间相关光子计相关的资讯

  • 时间相关光子计数探测器研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 109" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 549" colspan=" 3" p style=" line-height: 1.75em " 时间相关拉曼-荧光光谱仪关键部件--时间相关光子计数探测器 /p /td /tr tr td width=" 109" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 549" colspan=" 3" p style=" line-height: 1.75em " 北京师范大学 /p /td /tr tr td width=" 109" p style=" line-height: 1.75em " 联系人 /p /td td width=" 132" p style=" line-height: 1.75em " 韩德俊 /p /td td width=" 95" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 322" p style=" line-height: 1.75em " djhan@bnu.edu.cn /p /td /tr tr td width=" 109" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 549" colspan=" 3" p style=" line-height: 1.75em " □正在研发 √已有样机 □通过小试 □通过中试 & nbsp & nbsp □可以量产 /p /td /tr tr td width=" 109" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 549" colspan=" 3" p style=" line-height: 1.75em " √技术转让 □技术入股 □合作开发& nbsp & nbsp □其他 /p /td /tr tr td width=" 658" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/d2651cc2-003a-47d8-8c21-0404be413e72.jpg" title=" 样机图片 时间相关拉曼-荧光光谱仪关键部件--时间相关光子计数探测器.jpg" width=" 350" height=" 229" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 229px " / /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp 本项目研究了基于独创的外延层体电阻淬灭硅光电倍增器(SiPM)的时间相关光子计数探测器技术,验证以这种探测器为关键部件的一种新的光谱仪--时间相关拉曼-荧光谱仪的可行性和先进性。 br/ & nbsp & nbsp & nbsp 采用我们独创的外延层体电阻淬灭SiPM作为光子计数探测器,能够在较宽光强范围内对光脉冲进行光子计数测量,其时间分辨率高于CCD(包括ICCD)或光电倍增管(PMT)。 br/ & nbsp & nbsp & nbsp 采用我们提出基于SiPM的时间相关光子计数(TCPC)法,既能测量一个脉冲仅包含一个光子的情况,也能测量一个脉冲包含多个光子的情况。能够克服一般时间相关单光子计数(TCSPC)法测量效率较低、测量速度较慢的问题。 br/ & nbsp & nbsp & nbsp 研制出基于条形SiPM的时间相关光子计数探测器(TCPC)样机。其时间分辨率优于100皮秒,暗计数率低于200kHz,峰值探测效率大于15%。验证该新型光谱仪能够克服一般拉曼光谱仪存在荧光背底干扰以及一般荧光光谱仪不能测量荧光寿命的问题。 br/ /p /td /tr tr td width=" 658" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 一台以本项目研制的探测器为关键部件的低成本时间相关拉曼-荧光光谱仪的功能和应用范围好于或相当于现有拉曼光谱仪、荧光光谱仪以及荧光寿命测量仪三台仪器之和,而其制造成本只与这三种仪器中的一种相当。并且,能够克服一般拉曼光谱仪存在荧光背底或高温样品存在热辐射干扰以及一般荧光光谱仪不能测量荧光寿命的问题。预期在环境监测、食品安全及公共安全等领域,乃至单分子光谱、激光测距以及飞行时间(TOF)测量等方面都将有重要的应用。 /p /td /tr tr td width=" 658" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 开发研制出时间相关光子计数探测器(TCPC)样机,由条形SiPM探测器和前置放大器组成的探头,以及给SiPM和前放供电的电源组成。 br/ & nbsp & nbsp & nbsp 韩德俊、王慎远、苗泉龙,“拉曼散射光谱的测量装置及拉曼散射光谱仪”,专利申请号:201510394150.X,申请日:2015年7月7日。 /p /td /tr /tbody /table p br/ /p
  • 时间相关单光子计数器quTAG软件界面简介
    时间相关单光子计数器quTAG软件界面简介摘要在刚开始拿到设备的时候,往往不知道从哪里开始使用设备;本文主要介绍软件上常用的几个模块,并做简要说明,帮助读者快速熟悉设备。正文quTAG是一款时间-数字转换器,它测量电信号并记录相关时间标签。这种时间标签流可以用于各种各样的应用——测量范围从皮秒到几天。通用时间标记方法可用于相关测量(互相关、自相关)、寿命测量(start - stop)以及一次测量中的更多可能性。保存的时间标签流包含重建每次测量和分析所需的所有信息。1、软件安装。从附带的U盘中拷贝Daisy@QUTAG-V1.5.3.exe软件到目标目录下。正常完成软件安装。2、设备连接。将电源线与连接到设备背面110~230V交流接口。使用附带的USB 3.0线缆与PC连接。打开设备,启动Daisy.exe软件。3、切换到Detector Parameter标签下,在该界面可以使能通道,选择测试信号类型,计数器的甄别阈值,信号延时等参数;其中,如果信号输入但是计数器没有检测到信号,那么很有可能是阈值设置太大,获取信号幅值太小;每个通道的输入信号从-3.3V~+3.3V。4、在Counts界面,显示在积分时间Exposure Time下每个通道的计数率,其中Exopsure Time设置积分时间,在此界面以图、数值的方式显示每个通道的计数值,还可以以文件的形式保存数据;5、在Coincidence标签界面如下图,在此界面与Counts界面的显示类似;如果没有设置合适的Coincidence Window也不会出现计数值的;同样的,在此界面也可以保存每个符合通道的计数值。6、在Histogram标签界面如下图,在此图中可以测量start-stop模式下的时间信息、计数信息,以及start-(multi)stop模式下的时间、计数信息;所有通道还是在Integrate Time下显示的计数值;Input Channals决定了信号来源于那几个通道;Timetag Processing用于处理多个stop通道的时间差;在后面的选择框可以设置以及显示当前界面的分辨率、计数率等;其中Bin Width以1ps时间为基准。您可以通过我们的官方网站了解更多的产品信息,或直接来电咨询。
  • 8212万 南开单光子时间分辨成像光谱仪器专项获批
    日前,科技部下发了&ldquo 科技部关于2013年度国家重大科学仪器设备开发专项项目立项的通知&rdquo ,南开大学牵头的&ldquo 单光子时间分辨成像光谱仪研发与应用&rdquo 获得正式立项。   &ldquo 单光子时间分辨成像光谱仪研发与应用&rdquo 由南开大学作为项目牵头单位,联合中国科学院空间科学与应用研究中心、北京理工大学、北京东方锐镭科技有限公司等13家单位合作承担。项目起止时间为2013年10月至2018年9月。批复项目预算总经费8212万元,其中国家重大科学仪器设备开发专项经费5952万元。   项目的总体目标是通过一系列关键技术攻关、系统集成、软件开发和应用开发,形成具有自主知识产权的单光子时间分辨成像光谱仪。项目验收后3年内,建立单光子时间分辨成像光谱仪整机生产基地,形成整机批量生产能力,为我国材料科学和生命科学研究提供测试技术支撑。

时间相关光子计相关的方案

  • 利用高品质量子点单光子源构建量子计算原型机
    中国科学技术大学潘建伟教授及其同事陆朝阳等在量子计算机研究方面取得了里程碑式的突破,相关研究结果被国际权威学术期刊《自然光子学》接收。在光学体系,我国科学家团队次实现利用高品质量子点单光子源构建了量子计算原型机,并且演示了其超越经典电子计算机(ENIAC)与晶体管计算机(TRADIC)的计算能力,向真正的“量子计算霸权”时代迈出了重要的一步。
  • 小鼠肠道组织切片“全息”成像--拉曼光谱多光子成像
    采用RMS1000共聚焦显微拉曼光谱仪的多光子显微成像技术,可以对小鼠肠道切片样本进行成像。RMS1000配备一个外部飞秒激光器和TCSPC,用于先进的光谱和时间分辨的多光子成像技术,如2PEF和SHG,增强了拉曼成像的核心能力。
  • 光子晶体的显微光谱角度分辨
    光子晶体样品的显微角分辨谱光子晶体是指具有光子带隙(PhotonicBand-Gap,简称为PBG)特性的人造周期性电介质结构,有时也称为PBG光子晶体结构。光子晶体具有能带特性,其不同方向的光学性质不同,呈现各向异性。研究光子晶体材料的光谱性质必须使用角分辨设备。 复享显微共焦角分辨光谱仪是微纳光子结构研究领域的重大突破,它能够针对微小样品进行角度分辨光谱测量,是研究微纳光学结构、光子晶体纳米纤维的利器。复享为您提供两种规格的配置,一种介于商用显微镜,另一种基于定制显微镜。使用定制显微镜,可以达到更加宽泛的光谱范围,该设备是目前在显微角分辨光谱测量领域唯一的成熟商业化设备。

时间相关光子计相关的资料

时间相关光子计相关的论坛

  • 用于光子相关纳米粒度仪的数字相关器

    用于光子相关纳米粒度仪的数字相关器

    用于光子相关纳米粒度仪的数字相关器动态光散射原理(光子相关普法PCS和光子交叉相关普法pccs)的纳米激光粒度仪的关键技术是提取悬浮液在溶液中的纳米颗粒的散射光的自相关函数或互相关函数,计算纳米颗粒的扩散系数,从而分析颗粒粒度。数字相关器是基于动态光的散射原理(光子相关光谱法PCS和光子交叉相关普法pccs)的粒度测试技术中提取散射光信号的自相关函数和互相关函数的装置。目前,国内应用较多此类装置主要是进口美国Brookhaven公司BI-9000AT、BI-9010AT和Turbocorr数字相关器,这些装置只能完成自相关运算而无法进行互相关运算,因此只适合用于pcs法测试纳米颗粒粒度,而无法适用于PCCS法测试纳米颗粒粒度,从而对测试环境、所测样品浓度以及测试稳定性等方面具有较大的局限性,只有制作专用大规模集成电路(ASIC),或基于DSP技术,或多片芯片及联组成,不但有很大的局限性,而且价格昂贵。另外,国内有人尝试采用软件的方式实现数字相关器,即先用光子计数器将散射光光子计数并储存在存储器中,然后根据计算计算机软件将其数据从存储器中读出进而进行相关运算,虽然这样能计算出散射光强的相关函数,但由于软件所需的处理时间内的光子丢失造成计算的相关函数偏差较大。因此,采用软件的数字相关器实时性很差,不能满足颗粒粒度分析的要求。微纳专利的用于光子相关纳米激光粒度仪的数字相关器,是一种基于动态光散射原理测试纳米及亚微米颗粒粒度测试技术中用于获得散射光信号自相关函数和互相关函数的数字相关器。本专利发明实现了光子脉冲技术、自相关运算、互相关运算以及与计算机通讯功能,具有采样速度快、延迟时间范围广、相关通道多的特点,完全满足纳米颗粒粒度测试中获取高速变化的动态散射光信号的自相关函数和互相关函数的高难度需求。 winner802 纳米激光粒度仪http://ng1.17img.cn/bbsfiles/images/2015/12/201512030937_576113_3050076_3.jpg产品简介:Winner802是我公司最新推出的基于动态光散射原理的纳米激光粒度仪,同时也是国内首款采用数字相关器的纳米激光粒度仪。本款仪器采用我公司自主研制的高速数字相关器和高性能光电倍增管为核心部件,具有操作简便、测试快捷、分辨率高等特点。适用范围:Winner802适用于各种纳米级、亚微米级固体颗粒与乳液。技术参数:规格型号Winner802执行标准 GB/T 19627-2005/ISO 13321:1996 GB/T 29022-2012/ISO 22412:2008测试范围1-10000nm(与样品有关)浓度范围0.1mg/ml--100mg/ml(与样品有关)准确度误差1%(国家标准样品D50值)重复性误差1%(国家标准样品D50值)激光光源光纤半导体激光器,λ= 532nm, 探测器光电倍增管(PMT)散射角90o样品池体积4mL温控范围5-40 ℃(精确到0.1℃)测试速度5 Min体积480mm×270mm×170mm重量12Kg数字相关器主要参数自相关通道:256 基线通道:4最小分辨时间:6ns 延迟时间:100ns-10ms(可调) 运算速度:162M/S产品特点和优势:先进的测试原理采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动速度测定颗粒大小。大小颗粒运动速度不同,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。 极高的分辨能力使用PCS技术测定纳米级颗粒大小,必须能够分辨纳秒级信号起伏。本仪器的核心部件采用我公司研制的CR256数字相关器,具有识别8ns的极高分辨能力和极高的信号处理速度。 高灵敏度和信噪比采用专业级高性能光电倍增管(PMT),对光子信号具有极高的灵敏度和信噪比。 超强的运算能力采用自行研制的高速数字相关器CR256进行数据采集与实时相关运算,其数据处理速度高达162M,从而实时有效地反映颗粒的动态光散射信息。Winner802光子相关纳米激光粒度仪是国家科技型中小企业创新基金的项目成果,也是过内首款采用动态光散射原理的纳米粒度仪。其测量原理建立在液体颗粒布朗运动基础之上,颗粒越小,运动速度越大,运动速度越慢。它采用HAMAMATSU高性能光电倍增管和由微纳自主研发的高速数字相关器作为核心部件,通过测试某一角度的散射光的变化并求出自相关函数(即扩散系数),根据Stokes-Einstein方程计算出颗粒粒径及分布,它具有快速、高分辨率、重复及准确等特点,同时还是纳米颗粒粒度测试的首先产品。

  • 动态光散射中光子相关谱测量系统的空间相干性问题

    动态光散射中光子相关谱测量系统的空间相干性问题

    动态光散射中光子相关谱测量系统的空间相干性问题王少清娄本浊陶冶薇任中京(济南大学理学院济南250022)提要:利用光干涉的简化模型讨论了动态光散射中光子相关谱测量系统的空间相干性要求的物理本质。利用相干面积概念对光子相关谱测量系统空间相干性判据的几种常见表述进行了规范。提出了一种具有普遍意义的简明判据。关键词:光子相关谱;动态光散射;空间相干性;相干面积;信噪比On the Spatial Coherence Problem of a photon Correlation Spectrum Measurement System in Dynamic Light ScatteringWang Shaoqing Lou Benzhuo Tao Yewei Ren Zhongjing(Science School of Jinan University Jinan 250022)Abstract:Using a simplified model of light interference,we discussed the physical essence of the spatial coherence demand on a photon correlation spectrum measurement system in dynamic light scattering.By using the concept of “coherence area”,we standard-ized three familiar statement about the spatial coherence criterion on a photon correlation spectrum measurement system.In the end,we brought forward a general and compendious criterion.Key words:photon correlation;dynamic light scattering;spatial coherence;coherence area;signal-noise ratio动态光散射是研究大分子和亚微米颗粒在液体中动态行为的最有效方法。通过测量悬浮液中散射粒子产生的散射光中的微小频移和角度依赖性,可以获得表征高分子结构的丰富信息,也可以获得纳米微粒的平均流体力学半径和粒度分布。随着激光、微电子和计算机技术的发展,动态光散射技术得到了广泛的应用。由于散射光的频移很小(1-106Hz) ,用传统的光谱分析法难以分辨,所以在动态光散射实验中采用光子相关谱法来获得散射光的频移。图1给出光子相关谱测量的基本实验装置。由激光器1发出的激光经聚焦后照射在样品池2中的散射粒子上,粒子的散射光经光学系统3后进入PMT(光电倍增管) 4 ,PMT 的光电脉冲经过甄别/ 放大系统5 进入相关器6 ,由相关器对光电脉冲进行相关处理后将相关数据输入计算机7 进行数据处理,得所需的信息。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281050_441881_388_3.jpg在光子相关谱测量中,PMT 输出信号1的信噪比(输出信号中涨落部分与噪声部分之比) 大小是测量成功与否的关键因素。而PMT 输出信号的信噪比大小又主要由测量系统的空间相干性来决定。对于光子相关谱测量系统空间相干性优劣的判别标准,不同的文献有各种不同的表述。其中比较有代表性的几种表述分别为:(1)PMT的接受面积为一个相干面积;

时间相关光子计相关的耗材

  • TPX3Cam用于纳秒光子时间戳的单光子快速光学相机 (1.6ns时间分辨高速成像光学相机)
    总览荷兰ASI出品的TPX3Cam是一款用于光学光子时间戳的快速光学相机。它基于一种新型硅像素传感器,并结合了Timepix3 ASIC和读出芯片技术,适用于电子、离子或单光子等需要时间分辨成像的各种应用。TPX3Cam可以很容易地集成在桌上型研究装置中,也可以集成在同步加速器或自由电子激光环境中。使用TPX3Cam,可在速度映射成像设备中测量电子和离子。纳秒级的时间分辨率和数据采集速率使我们能够以前所未有的方式进行测量。TPX3Cam能够在400至1000 nm波长范围内以高量子效率同时对超过1000个光子的闪烁光进行成像和时间戳记。它可以在VMI(速度映射成像)装置中高效地记录撞击在MCP(微通道板)上的离子。 MCP耦合到一个快速P47磷光体屏,该屏产生响应离子撞击MCP的闪烁光。TPX3Cam放置在真空之外,能检测来自磷光体屏的闪光。在TPX3Cam中,所有单个像素都可独立工作,且能对伴随发生的' 事件' 进行时间戳记。 这就将成像传感器变成了快速数字转换器阵列,具有并行作用的空间和时间分辨率,因此可以同时记录多个离子种类,允许进行符合测量和协方差分析。 工作波长400-1000nm 技术参数优点光敏硅传感器波长范围:400 - 1000nm每像素的同时检测时间(ToA)和强度(ToT)时间分辨率1.6ns,有效帧率 500 MHz无噪声、数据驱动读数,高达80 Mhits/s (10Gb/s)灵活光学设计 下图:TPX3CAM能够同时对超过1000个光子进行成像和时间标记,在400到1000 nm波长范围内具有高量子效率。它可以在VMI(速度图成像)配置中有效地记录撞击在微通道板上的离子。MCP与快速P47荧光粉耦合,当离子撞击MCP时,该荧光粉会产生闪光。TPX3CAM,放置在真空之外,可以检测荧光粉的闪光。“在TPX3CAM中,所有单个像素都独立工作,能够对‘事件’进行时间标记。这将成像传感器转变成一个快速数化器阵列,具有空间和时间分辨率,同时发挥作用,因此可以同时记录多个离子种类,从而进行重合和协方差分析。"应用离子和电子成像TPX3CAM的应用包括飞行时间质谱中离子的空间和速度图成像;离子和电子的符合成像,以及其他时间分辨成像光谱类型。TPX3CAM能够以1.6 ns的时间分辨率检测离子撞击并对其进行时标记,从而可以同时记录所有碎片离子的离子动量图像。这种单检测器设计简单、灵活,能够进行高度差分测量。右边的图像显示了CH2IBr的离子TOF质谱,该质谱是在德国汉堡同步加速器的闪光光源下,用TimepixCam(TPX3CAM的之前型号)记录的,在强激光脉冲强场电离后,以及每个探测器的图像在TOF光谱中的峰值。单光子成像强化版TPX3CAM可以是单光子敏感的。在这种配置中,检测器与现成的图像增强器结合使用。应用包括宽场时间相关单光子计数成像(TCSPC),磷光寿命成像和任何需要时间分辨单光子成像的应用。 图像(a): 通过TimepixCam获得,TimepixCam是TPX3CAM的前一个模型。图像(b):对于(a)中所示的A1-A4区域,强度是时间的函数(磷光衰减),磷光衰减和拟合的残差具有单指数拟合。 规格传感器材料光敏性增强的硅波长范围400 - 1000 nm探测范围~1000光子/每像素 光学传感器活动区域14.1 x 14.1 mm2类型C型接口成像专用集成电路类型Timepix3像素间隔55 µm像素数量256 x 256阈值数量1吞吐量10 Gb/s 的情况下,高达80 Mhits/s1 Gb/s的情况下,高达15 Mhits/s停滞时间读数停滞时间为0时间分辨率1.6 ns有效帧速率 500 MHz像素击中停滞时间~1 µs读出模式数据驱动,通过每像素ToA和ToT检测同步时间和强度其他参数计算机接口1 Gb/10 Gb外部快门控制 有外部信号时间戳260 ps重量2.2 kg尺寸(长x宽x高)28.8 x 8 x 9 cm冷却空气采集软件Windows/ Linux/Mac的图形用户界面
  • 超低暗计数(< 0.01cps)超导单光子探测器
    超低暗计数(0.01cps)超导单光子探测器所属类别: ? 探测器/光子计数器 ? 单光子计数器 所属品牌:俄罗斯Scontel公司 产品简介超低暗计数(0.01cps)超导单光子探测器 超低暗计数超导单光子探测器 ----最低暗计数低于0.01cps,是量子密钥分发应用的最理想选择! 俄罗斯SCONTEL公司作为世界领先的超导单光子探测器制造商,其开发出的超低暗计数超导纳米线单光子探测器彻底颠覆了常规超导单光子探测器的技术指标,最低暗计数低于0.01cps,是量子密钥分发单光子探测的理想选择。超低暗计数单光子探测器,超导单光子探测器, SSPD, 超导单光子计数器, 俄罗斯Scontel公司, Superconducting Nanotechnology,红外单光子计数器,高灵敏度单光子计数器;超导纳米线单光子探测器,SNSPD,超导纳米线,低温超导单光子探测器 超导纳米线单光子探测器应用: 超导纳米线单光子探测器技术优势:光量子计算 超低暗计数:0.01cps光子相关性测量 高探测频率:100MHz-500MHz量子密码 超高时间分辨率: 25ps-45ps自由空间通信 死时间: 2ns-10ns激光雷达 超宽探测范围:600nm~1700nm时间分辨荧光寿命测量 无后脉冲单量子点/单分子荧光特性 1~4通道可选皮秒级集成电路检测分析 全程服务支持光学断层摄影 超低暗计数超导纳米线单光子探测器的冷却系统有两种类型: a.外接低温液氦杜瓦瓶 b.闭合循环冷藏室 相关产品 超高量子效率超导单光子探测器(65%@500~1700nm) 纠缠光子对发生器(纠缠光子源) 超导单光子探测器(SSPD) 400~1700nm 时间相关单光子计数器(TCSPC)
  • 光子晶体光纤_微结构光纤(PCF)
    光子晶体光纤/微结构光纤(PCF)所属类别: ? 光纤/光纤器件 ? 其他特种光纤/光子晶体光纤 所属品牌: 产品简介 昊量光电提供各种定制型光子晶体光纤(PCF,微结构光纤)! 光子晶体光纤(Photonic Crystal Fibers,PCF)又称为微结构光纤(Micro-Structured Fibers, MSF),这种光线的横截面上有较复杂的折射率分布,通常含有不同排列形式的小孔,这些小孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在低折射率的光纤芯区传播。昊量光电提供各种光子晶体光纤。 关键词:光子晶体光纤,Photonic Crystal Fibers, PCF,微结构光纤,Micro-Structured Fibers, 结构光纤 光子晶体光纤(Photonic Crystal Fibers,PCF)又称为微结构光纤(Micro-Structured Fibers, MSF),这种光线的横截面上有较复杂的折射率分布,通常含有不同排列形式的小孔,这些小孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在低折射率的光纤芯区传播。 光子晶体光纤(微结构光纤)按照其导光机理可以分为两大类:折射率导光型(IG-PCF)和带隙引导型(PCF)。 折射率引导型光子晶体光纤(微结构光纤,PCF)具有无截止单模特性 、大模场尺寸 /小模场尺寸和 色散可调特性等特性。广泛应用于色散控制 (色散平坦,零色散位移可以到800nm),非线性光学 (高非线性,超连续谱产生),多芯光纤 ,有源光纤器件(双包层PCF有效束缚泵浦光)和光纤传感等领域。 空隙带隙型光子晶体光纤(微结构光纤,PCF) 具有易耦合,无菲涅尔反射,低弯曲损耗、低非线性和特殊波导色散等特点被广泛应用于高功率导光,光纤传感和气体光纤等方面。光子晶体光纤的发展为光纤传感 开拓了广阔的空间,尤其是在生物传感和气体传感方面为光纤传感技术带来新的发展。昊量光电提供各种光子晶体光纤及光子晶体光纤的定制化服务, 昊量可以提供的产品及服务:材料:石英或硫化物提供各种定制服务可提供各种套管,接头及相应光线器件各种解决方案设计及模拟 主要产品: 1,基于石英的各种有源及无源光纤: 保偏型光子晶体光纤,定制色散型光子晶体光纤,光子晶体光纤预制棒空气包层、双包层光子晶体光纤,LMA空心光纤,光子带隙光纤掺杂光子晶体光纤多心光子晶体光纤 2,基于硫化物的光子晶体光纤超高非线性光纤(50,000/W*km)中红外光子晶体光纤定制化服务 3,各种解决方案基础研究传感激光器光谱学 主要应用:高功率低损耗近红外激光传输脉冲整形脉冲压缩非线性光学光纤传感超连续激光产生可调谐光纤耦合器多波长激光器光纤耦合 指标参数: 常规产品: 相关产品 覆盖紫外波段超连续激光器(320~1750nm) FROG 超短脉冲测量仪 啁啾布拉格光栅
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制