流化床催测试仪

仪器信息网流化床催测试仪专题为您提供2024年最新流化床催测试仪价格报价、厂家品牌的相关信息, 包括流化床催测试仪参数、型号等,不管是国产,还是进口品牌的流化床催测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合流化床催测试仪相关的耗材配件、试剂标物,还有流化床催测试仪相关的最新资讯、资料,以及流化床催测试仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

流化床催测试仪相关的厂商

  • 400-860-5168转0264
    环球分析测试仪器有限公司(UATIL)成立于1982年,总部设在香港,是国外多家知名的高新科技仪器生产制造商在中国的独家总代理。主要产品电化学仪器:电化学工作站、光电化学测试设备 化学合成仪器:全自动反应系统、反应量热仪、超声波结晶系统、平行合成仪、高温高压釜、流动化学系统 萃取及纯化仪器:超临界萃取仪、快速制备色谱、固相萃取、溶剂蒸发仪、气体纯化系统 生命科学仪器:生物反应器、发酵罐、冷冻干燥机、移液工作站、离心浓缩仪 乳品分析仪器:乳品成分分析仪、体细胞计数器、奶牛生产性能测试仪 材料测试仪器:网格应变测试仪、杯凸试验机 惰性环境仪器:手套箱 微流控仪器:单细胞测序、细胞包裹、微流控芯片、微流泵、液滴微流控系统、3D芯片打印机
    留言咨询
  • 山东领创测试仪器有限公司是集试验机、分析仪器等仪器仪表研发、制造、销售、服务于一体的高科技创新型企业。山东创领与山东省科学院强强联合,凭借着强大的技术研发团队,每年都有十几项新产品推出,现产品涵盖电子万能试验机、液压万能试验机、材料分析仪器 、无损检测仪器、生命科学仪器 、计量校验仪器、环境监测仪器 、石油化工检测仪器等八大系列500多个品种。并成为国内外许多知名检测仪器品牌的山东代理。山东领创测试仪器有限公司借助雄厚的技术实力,可以承接实验室整体设计及资质认定咨询。山东领创一流的产品质量、周到的售后服务得到了国内外知名院所和各界企业的信赖与支持,并与山东大学、山东省科学院、中国科学院工程研究所、中国建筑科学研究院等多家科研院所建立了长期的战略合作关系。山东领创以“诚信为本、引领创新”为宗旨,全面贯彻科学的管理体系,并成为国内为数不多的高精度仪器仪表生产及代理企业之一。公司秉承“专业创造品质、服务传递价值”的经营理念,不断对产品进行完善、创新,最大限度满足客户需求。公司谨遵“接到故障信息1小时内回应,2小时提供解决方案,专业工程师24小时内到达现场”的服务承诺,可随时为客户提供全方位的服务。山东领创测试仪器有限公司愿与社会各界朋友精诚合作,共展宏图!
    留言咨询
  • 400-860-5168转4077
    上海华龙测试仪器有限公司是智能化、数字化、自动化试验机产品专业生产企业,是经国家批准授权的“中华人民共和国进出口企业”。 1999年通过 ISO9001(1994版)国际质量体系认证,2002年通过 ISO9001(2000版)中国和美国国际质量体系认证。2000年被上海市政府认定批准为“上海市高新技术企业”。2008年被国家科学技术委员会等部委认定批准为“国家高新技术企业”。2002年起连续被上海市浦东新区质量技术监督局授予企业 “质量管理先进集体”称号。2007公司研发中心年被上海市浦东新区人民政府认定批准为“浦东新区企业技术开发机构”和2004-2006年度“浦东新区先进集体”,被上海市政府授予2004-2006年度“上海市劳模集体”, 2007年公司被浦东新区人民政府考核评定为“浦东新区科技创新基地”在全国各省区重点城市设置26个营销技术服务中心,在美国、法国、西班牙、新加坡、马来西亚、香港设立了国外营销代理机构。产品广泛应用于航空航天、国防军工、机械制造、车辆船舶、钢铁冶金、电线电缆、塑料橡胶、建筑建材、大专院校、科研院所、商检质检等国民经济各领域,对各类金属、非金属、构件、成品、新材料的各项物理力学性能测试、分析和研究。企业现有员工300余人,其中大专以上学历员工为161人,16年来,企业共研发完成79大系列800余个产品种的试验机,先后有四大系列产品荣获“上海市重点新产品”,两大系列产品荣获“国家重点新产品”,八大系列产品被市科委评定为“上海市高新技术成果转化项目”。产品遍布国内各省区,并远销美国、德国、西班牙、南非、韩国、巴基斯坦、巴布亚新几内亚、马来西亚、泰国、新加坡等国际市场。上海华龙测试仪器有限公司位于上海市浦东新区川沙经济园区,企业占地23500 m2,建筑面积16800m2,绿化面积3800 m2,企业资产总计9600余万元,具有科研办公大楼、电装调试楼、工装工艺楼、总装车间、机加车间、下料车间、冷作车间、计量室、样机室等齐全的生产和办公设施。本公司拥有大型精密镗床、微控线切割、龙门刨床、数控铣床、卧式数控车床、高精外圆磨床、平面磨床、数控氩弧焊、剪板机、折弯机等各类精密加工设备和检测设备386台套。企业年产试验机生产能力可达1500余台。我公司研发的所有产品均具独立自主知识产权,拥有38项“中华人民共和国专利”。在提高产品质量,提升品牌价值的同时,公司注重工艺、工装设计,提高标准化、系列化、规范化能力,将产品研制生产的全过程纳入ISO9001质量体系,全面进行受控管理。公司将竭诚为国内外客户,为世界计量检测工作的发展,做出新的贡献。
    留言咨询

流化床催测试仪相关的仪器

  • 流化床反应器 400-860-5168转0273
    仪器简介:Parr生产的流化床反应器广泛应用在工业化的化学反应过程中。流化床反应器的特点是利用向上的气流托起颗粒状固体层而使固体颗粒处于悬浮运动状态,便于固体催化剂的连续进料和出料,便于固体层的转移和替代,同时可以实现系统的高通量和高转化率。该反应器的另外一个特点是具有非常好的导热性和匀混性。技术参数:反应器主要包括以下重要组成部分: 1)气体控制和混合子系统,用于混合和调节反应气体到反应器底部的流量。 2)反应器,大约长1m,内径2.5cm。反应器下部配有易拆卸的多空金属气体过滤板,   反应器顶部变宽形成一个流化床脱扣区。可分离加热器用来对主反应器和脱扣区进行  加热,多点式热电偶可以测量反应器内部不同地点的温度情况。 3)加热式旋风分离器或者过滤器直接作用于反应器下游,用于捕获由于粒子磨损而产生的粉末。 4)反应产物被冷凝器冷却并收集到体积为600mL的产品接收器中。 5)系统内压力由背压阀来调节。 6)系统的所有功能和参数都由Parr 4871过程控制器控制和保持。主要特点:流化床反应器在化学反应过程中有着非常重要和广泛的应用,其扩散性和导热性是它的主要设计参数。与固定床(填充床)反应器相比,流化床有着显著的优点:如控温均匀,没有过热点,利于催化剂的均匀分布以及延长催化剂的使用寿命。使用流化床能够实现固体和悬浮液的良好混合。 流化床技术重要的商业应用涉及的几乎都是气-固两相系统,包括费-托合成反应、碳氢化合物和大分子的石油组分的催化裂化反应等等。
    留言咨询
  • ● 多功能反应实验装置介绍:多功能反应实验装置由反应釜、固定床反应器、流化床反应器、预热器、产品冷凝器、液体泵、气体流量计、温度传感器、冷凝系统和电控系统组成,能够实现在流化床反应器、固定床反应器、釜式反应器中的气固相催化反应。加热炉开合方便,能更换不同的反应器,采用程序控温,控温精度准确可靠。 ● 可完成以下知识点教学:1、学生可通过此装置同时了解气固相催化固定床、流化床、釜式反应器结构和工艺流程;2、掌握利用不同反应器进行催化剂评价实验;● 装置特点:多功能反应实验装置适用于化工类专业,装置总占地面积1.28平方米,高度1.9米,整体采用欧标铝型材框架,高品质铝合金框架带移动脚轮,具有耐用性。设备配备超温超压报警等安全措施,保证实验运行的本质安全。配套智能学习系统,通过预习视频、3D仿真、在线考评测试等,培养学生自主学习意识,激发学生学习兴趣,减轻教师教学压力。提供6年质保,解决用户的后顾之忧。
    留言咨询
  • PPOMETHEUS 流化床原子层沉积系统粉末包覆可有效提升材料性能与使用寿命,如锂电正极或负极材料,经过表面包覆处理后在放电性能及循环使用寿命方面都有明显提升,但目前工业的包覆手段以机械混合的干法为主,该方法包覆均匀性较差,性能提升有限。ALD 技术可实现高精度及均匀包覆,是理想的包覆手段。Forge Nano 针对粉末类材料比表面积大的特点,采用流化床技术实现粉末材料的流化,从而保证前驱体与粉末实现充分的接触。P 系列是 Forge Nano 针对工业包覆研发的粉末 ALD 负载系统,可实现 kg 级粉末批量包覆,是工业生产前最理想的研发工具。产品规格1. 前驱体通道:2-8 2. 腔室容量:0-600ml3. 反应器温度:450℃4. 最高工艺温度:200℃5. 振动流化床反应器6. 模块:流化辅助,质谱,臭氧发生器,等离子体发生器产品特点P 系列是 Forge Nano 专为粉末 ALD 开发的研发级工具,可轻松实现 kg 的粉末包覆。使用流化床技术可保证粉末在反应器中的分散,有利于前驱体扩散。流化辅助粉末在长时间存放或流化不充分时容易出现团聚,导致无法形成理想的流化态。因此利用流化辅助模块,高剪切气流以及振动反应器的设计可冲散团聚颗粒,确保分散效果。分区加热所有前驱体源均可独立加热,保证最佳运输条件,这对于部分低蒸汽压的前驱体以及敏感的基底材料非常重要。P 系列也拥有独特的阀门控制系统,可以实现多通道前驱体输运。在线监测P 系列配置了气体在线分析系统,对 ALD 工艺的改善有较大帮助,使用者可通过气体成分判断反应的完成度。应用锂电池:锂电正极或负极材料的包覆可有效提升其放电性能及使用寿命。常见的 NCM 与磷酸铁锂,在表面包覆 Al2O3 等氧化物薄膜后,在经过多次放电后,仍可保持较高的能量密度。3D 打印:3D 打印粉末存在腐蚀及表面氧化的问题,会影响最终器件的性能。通过表面涂层改性,可有效延缓氧化及腐蚀。传统的包覆方式是在器件表面进行 ALD 沉积,但对于 3D 打印粉末,直接对原材料粉末改性无疑是更有效的手段。催化:催化反应大多数是发生在材料表面的界面反应,因此对于催化剂材料进行表面构筑改性是有效的性能提升手段。利用 ALD 可以直接在粉末,纤维材料表面生长高活性纳米涂层,另一种方法是利用模板法结合 ALD 在表面构筑特定结构,暴露活性位点。此外,也可以在特定的颗粒表面进行表面包覆,防止催化剂烧结团聚。
    留言咨询

流化床催测试仪相关的资讯

  • 微型流化床反应动力学分析仪研制成功
    近日,过程工程所许光文研究员主持的中科院重大科研装备研制项目“微型流化床反应动力学分析仪研制”通过验收。   化工、冶金、能源、材料、环境等领域涉及大量气固反应,通常通过热重分析仪测试其反应特性,推导反应动力学参数。但是,热重分析不能在线供给固体反应物,升温速度缓慢,受气体扩散影响严重。因此,许光文研究员于2006年提出利用微型流化床作为反应器的气固反应动力学测试思想,以克服上述热重分析方法的弊端,通过检测反应生成气的典型组成随反应时间的变化,测试任意温度下的气固反应速度,分析推导反应动力学。   在中国科学院仪器研制专项资金的支持下,许光文研究员的课题组通过与国产热重分析仪专业企业——北京恒久科学仪器公司合作,经过两年多的努力工作,成功研制了微型流化床反应动力学分析仪(MFBK: Micro Fluidized Bed Kinetic analyzer)的样机(见图),并实现与在线微型质谱检测仪的联用,经系统试验,获得了系列新型测试结果,展现出它的优点和应用潜力。   MFBK适用于颗粒物料参与及颗粒催化剂催化的所有气固反应,包括化工(化学品分解、氧化、还原、加氢) 冶金(矿石还原、焙烧) 能源(煤/生物质热解、燃烧、气化、碳化) 材料(发射药/炸药分解、爆炸) 环境(固废热解/燃烧/气化、废气吸收/氧化/吸附)。它有效克服了热重分析的升温速度慢、扩散影响大等弊端,通过在线颗粒反应物供给,实现了任意温度下气固(颗粒)反应速度的测试,并提供了分析反应参数、揭示反应机理,特别是适合于快速颗粒反应测试的功能。   MFBK作为一种新型固体(颗粒)反应测试仪器,具有快速升温、趋近颗粒反应本征、易于操作,结果准确,重复性好等优点。其良好的功能及其与质谱的匹配性,引起了美国AMETEK质谱分析仪制造公司的兴趣。双方为此签订了合作研发协议,研制偶联AMETEK在线质谱分析仪的集成化微型流化床反应分析仪器,北京科技大学于2009年4月订购了该仪器。
  • “微型流化床反应分析方法与分析仪”鉴定会在京召开
    仪器信息网讯 2010年4月10日下午,中国科学院对过程工程研究所自主研发的“微型流化床反应分析方法与分析仪(MFBRA)”组织了成果鉴定会。鉴定专家委员会由北京化工大学刘振宇教授、北京科技大学郭占成教授、北京市科学技术研究院张经华研究员、北京石油大学孙国刚教授等10名来自国内知名高校、研究机构的专家组成,鉴定会由中科院计划财务局成果专利处处长杨兴宪博士主持,仪器信息网作为特邀媒体参加了此次鉴定会。 鉴定会现场   鉴定程序包括项目负责人做研究技术报告、仪器演示、专家宣读测试报告、用户做使用报告、专家质疑、专家委员会讨论鉴定意见及宣读鉴定意见。与会专家认真听取了过程工程研究所许光文研究员所作的工作报告和技术报告,并严格审核了该项目的科技查新材料、用户使用报告及证明、商业化推广情况报告等材料,并对“微型流化床反应分析仪”整套仪器进行了现场考察。 项目负责人许光文研究员做研究技术报告 专家组现场考察   经过鉴定委员会专家的质询与充分讨论,一致形成以下鉴定意见:   1、研发单位提供的鉴定材料齐全,翔实可靠。   2、该成果首次利用微型流化床作为反应器构建了气固反应分析方法与分析仪。同时,利用流化床反应器有效抑制扩散影响,实现了反应物快速加热 通过微型流化床反应器和集成脉冲微量反应物进样,实现了流化床中气固反应的等温微分化,研发了定点温度下的气固反应动力学参数的等温微分测试方法与仪器,填补了快速升温下等温微分反应测试仪器的空白,所求算的气固反应动力学参数更加趋近本征反应特性。   3、研制的微型流化床分析仪紧凑实用、操作性强,配置合理。测试表明:性能稳定、数据重复性好。   4、该分析仪器弥补了以热重为代表的气固反应分析仪加热速率低、扩散影响大等不足,丰富了气固反应分析手段,可广泛应用于化工、冶金、能源、材料、环境、生物等领域。   专家组还建议,该成果创新性强,研制的仪器属国内外首创,达到国际领先水平,应尽快加强该仪器的集成和产业化。   微型流化床分析仪(MFBRA)是中国科学院过程工程研究所自主研制的新型气固反应测试与分析仪器。该仪器填补了气固反应等温微分测试方法与测试仪器的空白,具有快速升温、测试结果趋近反应本征、易于操作,重复性好等特点。在2010年“第八届中国国际科学仪器及实验室装备展览会”(CISILE 2010)上,微型流化床分析仪(MFBRA)荣获了自主创新金奖,并受到了业界的广泛关注与支持。 微型流化床反应分析仪(MFBRA)荣获自主创新金奖   先进能源关键技术与仪器装备亟需强化——访中科院过程工程研究所许光文研究员   中国科学院过程工程研究所多相复杂系统国家重点实验室
  • 流化床颗粒制备过程多传感器融合测试技术研究获进展
    流化床颗粒制备反应器具有结构简单、传热传质速率高、能耗低和能够实现连续化生产的优点,提升了生产效率和产品质量,广泛应用于化工、医药以及农业领域中的催化剂、药品和化肥等颗粒的制备过程。由于流化床颗粒制备过程通常涉及气、液、固三相掺混,反应器内部的流动呈现出时空非稳态和多尺度效应。流化床颗粒制备过程的关键参数在线监测和过程诊断是国际多相流测量领域的热点与难点,而现有的在线监测技术多基于单一传感器,获取的信息有限,且受到运行条件的限制,难以用于解析流化床反应器内部复杂多相流动的特性以及为过程调控提供数据支持。   针对流化床颗粒制备过程在线测量面临的挑战,中国科学院工程热物理研究所开发了结合电容层析成像(Electrical Capacitance Tomography,ECT)、高速摄像(CCD)、声发射(AE)和压力传感器的非侵入式多模态融合测量技术,提出了多传感器数据融合分析方案(图1)。该团队开发了新型组合电极ECT传感器,实现了流化床反应器的高质量断面成像和内部参数分布信息的获取。进而,该研究将ECT断面图像信息、颗粒流高速摄像数字图像分析和压力信号时频域分析相结合,基于信息互补和相互验证,准确识别了正常喷动和加湿-干燥过程中的典型流态以及流态转变,揭示了不稳定喷动产生的原因(图2)。   为获取更多颗粒流动微观尺度信息,科研人员将ECT断面图像信息与高频声发射(AE)信号时频域、递归分析相结合,实现了流化床颗粒制备过程中颗粒团聚现象的识别以及颗粒流动性变化、失流演变过程的准确监测。该研究同时结合ECT和CCD图像信息和原始数据,基于pSNN神经网络,提出了颗粒湿度分级预测模型(图3)。与传统方法相比,颗粒湿度的预测精确度明显提升。该研究为流化床颗粒制备过程在线测量技术的工程应用奠定了重要基础。   相关研究成果发表在Chemical Engineering Science、Industrial & Engineering Chemistry Research上,并在首届多相传输及能源转化利用国际会议上作了报告。研究工作得到国家自然科学基金和中国科学院对外重点国际合作项目的支持。上述成果由工程热物理所、北京航空航天大学、清华大学深圳研究生院和英国曼彻斯特大学合作完成。

流化床催测试仪相关的方案

  • 使用Agilent 490 微型GC 对循环式流化床中生物质生成气体的监测
    生物质被认为是一种潜在的可再生和可持续的能源。Delft 科技大学对木本和农业生物质在循环式流化床反应器中的气化过程进行了研究。该研究使用Agilent 490 微型GC 对产物气体进行分析,使用COX 色谱柱分离永久性气体,使用CP-Sil 5CB 分离BTX 化合物。
  • 优化循环流化床喷雾系统所采用的选择性非催化还原脱硝(SNCR)效率研究
    High-level Nitrogen oxides (NOx) released to the atmosphere cause health and environmental hazards. Conventional power plants are required to have NOx emission control systems to abide by local environmental regulations. Com-mon post-combustion techniques include selective non-catalytic reduction (SNCR) or selective catalytic reduction (SCR) techniques. SNCR is a proven technology that can be implemented virtually without affecting existing indus-trial operations with low capital cost. SNCR is a method involving either aqueous ammonia or urea as the reagent injected into flue gas in the boiler/furnace within specific temperature range. This method commonly reduces the emission of NOx by 30-50%. However, high reductions can be achieved by system optimization. Placement within the proper temperature window, distribution within the cross section and residence time of reagent significantly in-fluence performance of an SNCR system. Therefore, spray lance and nozzle design is crucial for assurance of oper-ating efficiency and ammonia utilization.In this paper, an SNCR system in a circulating fluidized bed (CFB) boiler was studied with using Computational Fluid Dynamics (CFD) simulations, as it relates to spray technology. The simulation solves Navier-Stokes equa-tions with heat and mass transfer using ANSYS Fluent SNCR model with Lagrangian multiphase models and spe-cies transport model. CFD was used to diagnose the gas phase behavior and thermal distribution, to determine opti-mal spray placement and maximum penetration. The focus of this work was the parameters of the injection, which were determined based on test data acquired through in-house laboratory equipment. Temperature profile, pollutant reduction, ammonia slippage and wall impingement were used from the CFD results to assist determining the best spray design to achieve the greatest efficiency.
  • 致密气体流化床的实验和直接数值模拟研究
    We report our study on fluidization of 5000 spherical particles in a pseudo-2D gas-fluidized bed by direct numerical simulations (DNS) and experiments as well. DNS are performed using an immersed boundary method, together with the methodology developed in our earlier work for accurate prediction of gas-solid interactions at relatively low grid resolutions. Experimental measurements of solids mean motion are conducted using a combined particle image velocimetry (PIV) and digital image analysis (DIA) technique. Furthermore, the PIV technique is extended and applied for instantaneous measurements of the particle granular temperature, which is a key characteristic of particle velocity fluctuations.This paper presents a detailed direct comparison between IBM simulation results and experimental data for realistic gas fluidization, which has not been reported before in literature. The comparison reveals a good agreement with respect to the time-averaged solids motion, as well as the fluctuations of the pressure drop over the bed. The granular temperatures calculated from the simulations also agree very well with the experimental data measured by the extended PIV technique.

流化床催测试仪相关的资料

流化床催测试仪相关的试剂

流化床催测试仪相关的论坛

  • 【原创大赛】流化床制粒发展现状

    [align=center][size=16px][b]流化床制粒[/b][/size][size=16px][b]发展现状[/b][/size][/align]药品是人们常备的不可或缺的日常用品。近年来,随着国民生活水平的提高,人们对药品质量和药物安全问题广泛关注,制药领域也随之越来越多的进入到我们的视野中。长期以来,制药行业都采用传统的方式进行生产,无论是自动化、信息化水平还是认知观念水平都与其他行业存在着一定的差距。“十三五”规划以来,国家大力发展智能制造,制药行业作为制造业的一部分,需要紧跟发展潮流,朝着信息化、智能化方向发展。固体制剂是目前最常见的剂种之一,其生产过程是将原料通过一系列操作包括粉碎、混合、制粒、包衣及压片等过程转化成药物制剂。无论是制作胶囊还是压片,制粒都是非常重要的关键步骤。制粒是将药物粉末与相关的辅料进行混合,待混合均匀后再喷入润湿剂或者粘合剂,在设备中制成具有颗粒形态的过程。干法制粒和湿法制粒是目前固体制粒中最常用的两种方法[font='calibri'][size=13px][1][/size][/font]。干法制粒不需要使用粘合剂,常用于对水分比较敏感的制剂;湿法制粒是常用的制粒方法,在混合均匀的粉末中喷入粘合剂,将粉末表面打湿,粉末通过粘合剂的媒介作用聚结在一起可以慢慢形成颗粒。流化床制粒是常见的湿法制粒方法之一。流化床制粒过程中使用的工艺参数较少、且操作方法简单,广泛应用于固体制粒中。然而,目前的流化床制粒大多依靠于人工经验,对于制粒过程中颗粒的质量属性的变化都是离线进行分析,严重滞后于生产过程。制粒过程信息不透明,对制粒过程影响因素不能准确把握,容易导致药物疗效达不到预期甚至造成制粒批次的失败。随着计算机信息技术、人工智能、传感器技术的发展,及时获取流化床制粒过程工艺参数与颗粒的关键质量属性,通过数据挖掘出工艺参数变化对于流化床制粒过程的影响,通过质量属性的变化及时调整工艺参数,从而可以大大提高制粒成功率,打破国外技术封锁,实现连续化、智能化生产的目标。针对流化床制粒信息化、自动化水平低,数据采集困难等问题,合理改造设备以及通过机器学习等人工智能算法了解工艺参数的内部机理,达到准确调控,对流化床制粒连续化、智能化生产具有重要指导意义。流化床制粒技术只在一个腔体中就可以完成整个制粒过程。药物粉末和辅料等一次性的投入到密封的腔体中,在腔体内进行混合,直至腔体内的各种物料都混合均匀,接着从底部通入热空气,药物粉末在从下方而来的热空气作用下能够保持悬浮,从而达到理想的流化状态。接着将按照一定比例配成的黏合剂液体在蠕动泵和一定压力的压缩空气作用下,以雾化的形式从喷枪中向流化层喷入,使药物粉末聚结成颗粒。在整个制粒过程中,颗粒只受到流化床内部气流的作用,上下流动,因此形成的颗粒之间的粘合度较低,颗粒密度比较小,粒度比较均匀,并且有较好的可压缩性和流动性。流化床制粒设备的整体情况都大同小异,主要的不同在于雾化的粘合剂喷入的方式。按照喷嘴所在位置的不同,可以大体将流化床分为顶喷式、底喷式和流化床三类,这三类流化床的示意图如下图1-1所示。顶喷式流化床是将喷枪从腔体外部伸入到制粒室中,从流化层的上方自上而下进行喷液。颗粒通过气流的作用上升至喷嘴的位置,雾化的粘合剂从喷嘴喷出并将颗粒包裹起来,颗粒上升到一定的高度后回落,如此往复,顶喷式流化床一般用于制粒。底喷式流化床是喷枪中粘合剂的喷洒方向与进风气流的方向一致,侧喷式流化床的喷嘴安装在制粒室的内壁上,最明显的特点是在其底部安装有布风板,底喷式流化床和侧喷式流化床一般用于包衣。[align=center][font='times new roman']图[/font][font='times new roman']1-[/font][font='times new roman']1 [/font][font='times new roman']制粒[/font][font='times new roman']流化床[/font][font='times new roman']分类[/font][/align][font='times new roman'][size=16px][b]流化床制粒技术研究现状[/b][/size][/font]1959年,美国的Wurst首先提出了流化床技术,该技术以其工艺简单,操作时间短,劳动强度低等特点广泛应用于固体制药领域。我国于上世纪八十年代才引入流化床制粒设备,相对于国外来说起步较晚,因此对于流化床制粒技术的研究也相对较少。石海涛[font='calibri'][size=13px][3][/size][/font]等人使用流化床制粒技术解决了采用传统的湿法制粒批次间颗粒质量属性差异大,制粒终点难以把握的缺点,制出崩解性能良好的甲磺酸吉米沙星片。申楼[font='calibri'][size=13px][4][/size][/font]等人把颗粒的流动性、表面性状和崩解时限作为衡量颗粒质量的标准,采用正交试验的方法确定出流化床制粒的最佳工艺参数。东北大学的王正松[font='calibri'][size=13px][5][/size][/font]以颗粒的粒度为研究对象,建立并验证了流化床制粒最终颗粒粒度的机理模型,并且建立了预测颗粒粒度的回归模型。浙江大学的周家辉[font='calibri'][size=13px][6][/size][/font]针对流化床制粒室温度难以控制的问题,分析了流化床制粒温度影响因素,对流化床进行了热力学分析,并且设计了温度控制器。在国外近几年的研究中,Neugebauer[font='calibri'][size=13px][7][/size][/font]等人针对流化床分层制粒过程中颗粒形成干燥区的问题,提出了一种用于研究各种工艺参数对粒子动力学和工艺稳定性的影响的模型。Hayashi[font='calibri'][size=13px][8][/size][/font]等人对流化床造粒过程中颗粒生长和破碎的机理进行了研究,提出了一种基于离散元法和计算流体动力学相结合的粒子碰撞频率函数的粒子平衡模型。Heidari[font='calibri'][size=13px][9][/size][/font]等人考虑液滴蒸发过程引起的体积变化等因素,综合考虑粘合剂粘性与液滴表面张力的平衡力,建立了流化床制粒过程中液滴蒸发的力学模型,利用该模型研究了不同温度、蒸汽压力、接触角和液滴直径条件下蒸发速率对液滴扩散时间的影响。Teixeira[font='calibri'][size=13px][10][/size][/font]等人研究了提高姜黄素溶解度的多种策略并且以姜黄素为原料,采用流化床制粒法,制备姜黄素颗粒。国外的流化床技术已经取得了一定的成就,然而国内的流化床制粒领域中相关的文献报道却比较少,这种现状对于我们来说既是机遇也是挑战。通过文献可以看出,越来越多的学者都针对流化床制粒工艺进行研究,这也必将会是未来研究流化床制粒技术的一个趋势。

  • 【原创大赛】流化床在线设备改造

    【原创大赛】流化床在线设备改造

    [align=center][size=16px][b]流化床在线设备改造[/b][/size][/align]常规的顶喷式制粒流化床的主要组成系统分为温度控制系统、喷雾系统以及其他控制系统等。主要的结构有底锅、喷嘴、空气进出口、滤袋、取样口等,需要调整的工艺参数比较少,因此操作比较简单。在制粒过程中,粘合剂在蠕动泵和压缩空气的作用下经过喷嘴喷到处于流化状态的物料上,使得粉末在粘合剂的作用下和周围粉末聚并成粒子核,粒子核与粒子核之间慢慢形成比较大的颗粒。继续向流化床内部喷入粘合剂,使得颗粒和颗粒之间,颗粒与粒子核之间发生聚并作用形成更大的颗粒。同样,粘合剂喷入量过少,在进风量和温度等工艺参数的影响下,聚并的颗粒也会破碎,变成小颗粒和小的粒子核。颗粒生长过程如下。[img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031750279617_8904_3890113_3.jpeg[/img]本实验采用的是山东新马制药装备有限公司的实验型流化床(LGL 002),设备实物图如上图。此流化床设备操作简单方便,但是缺乏信息采集装置,不能及时准确地得到颗粒的水分含量,而且制粒过程中需要进行操作的实时工艺参数数据也不能够及时记录,这样就无法对每一时刻的工艺参数数据与颗粒的水分含量进行关联分析,影响颗粒水分含量的关键工艺参数不能掌握,对制粒工艺也就不能有更为充分的理解。为了及时获取相关的颗粒水分信息和工艺参数信息,需要对流化床进行改造。安装[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]为了获得流化床制粒过程中颗粒的实时水分数据,需要在流化床设备上添加[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]用于实时在线获取颗粒的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]数据。NIRS在线分析光谱采集方式主要有接触式和非接触式两种,非接触式主要通过从流化床的视镜进行对颗粒的采谱,接触式是将近红外探头安装到流化床底锅内部,直接与颗粒接触进行采谱。本文选用微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](MicroNIR PAT-U)在流化床制粒过程中采集颗粒的光谱数据进行水分含量的在线监测。与传统的近红外仪器相比,MicroNIR PAT-U体积较小、方便携带、质量较轻,对生产过程不会产生太大影响,因此在实际生产中适合用来对颗粒进行监测。温度对近红外仪器具有较显著的影响[50],同一个仪器在不同的温度条件下采集到的光谱也会所差异。流化床内温度比较高,并且随着实验过程物料温度在不断变化,如果直接将近红外探头与物料进行接触,采集到的光谱会有较大的误差,对实验结果的准确性也会产生影响。因此,为了尽可能地减少温度对近红外仪器的影响,将MicroNIR PAT-U外接探头,让近红外仪器不与物料直接接触,从而可以采集到较为稳定和准确的光谱数据。MicroNIR PAT-U与探头的连接方式为螺纹连接,在距离探头顶端与底锅厚度相同的地方安装材料为聚四氟乙烯的密封圈,保证采集光谱过程中的密封性与可靠性。MicroNIR PAT-U和探头的整体安装图如下图所示。为了采集颗粒的光谱,要将近红外探头伸入流化床内部,这就需要在流化床的底锅上进行打孔,孔的直径要比探头的直径大0.2~0.3mm,使得生产过程中探头不会发生晃动,保证光谱采集位置的一致性。孔的位置要尽量与取样口保持在同一条水平线上,这样可以减小近红外仪器采集的光谱数据与物料离线测量的数据在外部环境条件下的差异,尽可能减少采集数据的误差。探头具体的安装位置如下图所示。近红外探头吹扫装置在物料未成粒之前,粉末状的物料具有很强的粘附性,随着实验的进行,粉末会粘附在近红外探头上,从而对光谱的正确性产生严重的影响。这就要求在制粒过程中及时地清除掉粘附在探头上的粉末以消除这种不利影响。然而,频繁地把探头拿出来手动擦净不但会影响探头地使用寿命,而且由于光谱地采集是一个连续的过程,这样做反而会更加影响光谱数据的准确性。因此,流化床上安装近红外探头吹扫装置是非常有必要的。上节已经提到,近红外探头伸入流化床的长度与底锅的厚度一样,因此,近红外探头与底锅内壁是平行的。在近红外探头孔内径的下方孔壁上开一个直径为5mm的小孔,设计一个端部带螺纹的空心装置,外部接上吹入压缩空气的橡胶管,用于在制粒过程中对探头的吹扫,使物料尽量少的粘附在探头上。吹扫装置的原理示意图及安装实物图如图所示。吹扫装置要设置适当的吹扫频率和吹扫时间,并不是频率越快、时间越长越好。吹扫频率太快,每次吹扫时间过长,可能在探头采集光谱的时间段,刚好物料被吹扫装置吹跑,使得近红外探头实际采集的为空气的光谱,这会对结果造成较大的误差。近红外探头采集光谱的时间大约在2s左右,因此设置吹扫装置的脉冲频率设置在15s吹一次,每次吹1s为最适宜频率。工艺参数采集装置流化床制粒过程中使用的工艺参数比较少,因此每个工艺参数都对颗粒质量属性产生重要的影响。在制粒过程中,流化床的主要工艺参数有雾化压力、蠕动泵流量、进风温度、排风温度、进风量和物料温度。为了获取这些工艺参数数据,需要在流化床的相应位置上安装风量传感器、温度传感器、流速计、压力表等。流化床工艺参数采集装置的原理示意图如下图所示。进风温度、排风温度、风量的传感器,流量计和压力表都是安装在流化床系统内部,只有物料温度传感器需要在制粒的过程中将传感器加入到流化床内部。物料温度传感器采用热电偶式,为了测量流化床制粒过程中物料的温度,也需要在底锅上进行打孔,使温度传感器伸入到流化床内部,通过与物料直接接触的方式感受物料的温度并转换成可用于输出的信号。传感器孔的位置尽可能与近红外测量的位置在同一水平线上,保证测量的物料温度与近红外探头测量的物料是同一状态下的。物料温度传感器如下图所示。 [img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031750281516_7229_3890113_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/09/202009031750284280_7065_3890113_3.png[/img]物料温度传感器暴露在外部,容易受外部环境的影响。为了确保传感器的稳定性和可靠性,保证在制粒过程中传感器不会发生晃动,需要对物料温度传感器增加固定装置。采用管夹作为温度传感器的增固装置,如上图所示。

  • 【原创大赛】流化床生产工艺影响因素及研究现状

    [font='times new roman'][size=16px][b]流化[/b][/size][/font][font='times new roman'][size=16px][b]床[/b][/size][/font][font='times new roman'][size=16px][b]生产[/b][/size][/font][font='times new roman'][size=16px][b]工艺影响因素及研究现状[/b][/size][/font][font='times new roman'][size=16px][b] [/b][/size][/font][font='times new roman'][size=16px][b]流化[/b][/size][/font][font='times new roman'][size=16px][b]床生产[/b][/size][/font][font='times new roman'][size=16px][b]工艺影响因素概述[/b][/size][/font]流化床生产过程的内部机理比较复杂,很多因素都会影响制得颗粒的质量属性。其中,设备、工艺、处方等因素通常会对制粒结果有较大影响。设备因素主要是由于流化床本身造成的,不同的流化床制得的颗粒有所不同;工艺因素是与生产过程中实际操作的工艺参数相关;处方因素是指使用的原辅料性质和粘合剂的性质等有关。(一)设备因素在流化床制粒中,容器材料和形状影响比较大,容器的形状会对粒子的运动轨迹产生影响。流化床设备不但要使得物料可以达到流化状态,还要保证不会黏附在容器内壁上,这样可以使得在制粒过程中避免产生不规则的颗粒以及大量的细粉[font='times new roman'][size=16px][11][/size][/font]。流化床锅体的主要形状是圆锥体,上面比较宽,下面部分比较窄,其样式和内部结果如下图所示。[align=center][font='times new roman'][size=16px] [/size][/font][/align][align=center][font='times new roman'][size=16px]图[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]流化[/size][/font][font='times new roman'][size=16px]床锅体图[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]图[/size][/font][font='times new roman'][size=16px]1-[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]流化[/size][/font][font='times new roman'][size=16px]床锅体内[/size][/font][font='times new roman'][size=16px]部图[/size][/font][/align]锅体一般是用低碳钢304作为材料,并且在锅体内部进行抛光处理。锅体的最底端是进风口,分流板就安装在进风口处,并且在分流板上固定一层不锈钢筛网。Borne等人提出,分流板不会对物料粉末粒子的运动产生影响。(二)工艺因素流化床的工艺因素主要有进风温度、进风量、雾化压力、粘合剂的流速等。流化床的进风温度要保持在合理的范围内,一般设定在25°C~55°C之间。如果进风温度过低,粘合剂不能够及时蒸发从而使得颗粒湿润过度,这样流化床内壁上就会黏附部分物料粉末,从而不能达到较好的流化状态,粒子容易粘成一团;如果进风温度过高,会使得颗粒上的粘合剂过早的被干燥,颗粒上附着的粘合剂变少,从而达不到良好的制粒效果。流化床的进风量也是一个很重要的影响因素之一,合适的风量可以使得物料能够处于很好的流化状态,对使粉末形成颗粒比较有利,提高进风量有利于大颗粒的形成[font='times new roman'][size=16px][13][/size][/font]。若进风量过大,细小颗粒中的粘合剂挥发过快,不能达到良好的粘合作用,使得颗粒的粒度分布比较宽,细粉相对来说也比较多;若进风量较小,颗粒不能够被很好的吹起来形成流化状态,在粘合剂的作用下容易形成粒径很大的颗粒,从而形成很大的一团,造成塌床。雾化压力可以影响喷雾雾滴的大小,雾化压力过低,形成的喷雾的雾滴变大,喷雾范围变小,造成粘合剂在物料中分布不均匀;雾化压力过高则喷雾的雾滴过小,不利于物料良好的流化状态,不能很好的制粒。粘合剂的流速跟流化床制粒室内的湿度有关系,粘合剂流速过高,颗粒不能够被及时干燥,容易有塌床的风险;流速过低时,喷入的粘合剂过少,则会使颗粒的粒径过小,粉末较多,导致制粒效率低下。(三)处方因素物料主要有疏水性和亲水性两种。疏水性物料一般采用干法制粒;亲水性物料由于亲水性的不同也会产生差异。亲水性越强的物料越不容易被粘合剂润湿,因此成粒难度较大,需要提高粘合剂喷入速度[font='times new roman'][size=16px][14][/size][/font]。粘合剂的种类和浓度也会影响粉末的成粒,是流化床制粒中比较重要的工艺[font='times new roman'][size=16px][15][/size][/font]。合适的粘合剂与物料之间具有较高的粘合力,有利于颗粒的形成。粘合剂浓度较高可以有较高的粘合力,制得的颗粒较大;浓度较低则会使得粘合力不够,导致制粒速度变慢,细粉增多。[font='times new roman'][size=16px][b]流化[/b][/size][/font][font='times new roman'][size=16px][b]床生产[/b][/size][/font][font='times new roman'][size=16px][b]工艺研究现状[/b][/size][/font]质量源于设计(Quality by Desigh, QbD)在药物制剂研究中常用的研究方法,通过对生产工艺的理解来对过程进行控制[font='times new roman'][size=16px][16][/size][/font][font='times new roman'][size=16px][17][/size][/font]。在流化床制粒过程中,如果采用不同的工艺参数,则制备出来的颗粒的尺寸、粒径分布、含水量、流动性、可压性和溶解特性等质量属性都会有所不同,从而影响制成的颗粒的最终品质[font='times new roman'][size=16px][18][/size][/font]。已经有不少国内外学者在流化床制粒工艺方面进行了研究。宋顺宗[font='times new roman'][size=16px][19][/size][/font]等人采用正交试验的方法研究了进风温度、雾化压力和包衣液流速等工艺参数对包衣颗粒完整度、效率和成品率的综合影响。余楚钦[font='times new roman'][size=16px][20][/size][/font]等人以进风温度、进风参数、粘合剂流量、雾化压力为自变量采用正交试验的方法,考察这些工艺参数对颗粒的粒度、流动性、表面性状及崩解时限的影响。比利时布鲁塞尔自由大学的Rambali [font='times new roman'][size=16px][21][/size][/font]等人研究制粒过程的进风温度、进风速度、喷雾速率和进风湿度等工艺参数,确定了颗粒的理论含水率和液滴尺寸的测量方法,并且用这些工艺参数作为变量,建立了与粒径尺寸的回归模型。Aleksić [font='times new roman'][size=16px][22][/size][/font]等人采用响应面分析、多层感知机神经网络和偏最小二乘法对流化床制粒过程进行了数值模型来设计工艺参数的调节范围,研究表明,粘合剂的粘度会在很大程度上影响颗粒的形状。Bellocq[font='times new roman'][size=16px][23][/size][/font]等人研究了流化床制粒在不同工艺条件下对团聚体结构和功能的影响。Ehlersa[font='times new roman'][size=16px][24][/size][/font]等人在粘合剂流速、流量和进风温度恒定的条件下,研究脉冲喷雾和雾化压力在顶喷式流化床中对颗粒粒径大小的影响,结果表明,雾化压力对粒径的影响取决于入口空气的相对湿度,脉冲喷雾的占空比对最终产品的质量至关重要。目前为止,流化床制粒工艺主要依靠工人的经验,具有较强的主观性,缺乏对工艺参数和质量属性之间的深入理解,很少考虑制粒过程中质量属性的变化,缺乏有效的实时监控手段,同时还有很多的不确定性因素。因此,实施过程监控手段,实时测量流化床制粒过程中的关键质量属性对理解工艺参数对颗粒质量属性的影响具有重要作用。

流化床催测试仪相关的耗材

  • 医药包装物理性能测试仪PMT-05普创paratronix
    产品介绍: PMT-05 医药包装物理性能测试仪是针对医用材料物理性能测试开发的一款多功能集成仪器,可进行器身密合性检测(预灌封注射器密合性检测)、铝塑瓶盖开启力、安瓿瓶折断力、胶塞穿刺力、注射针刚性、针座结合牢度、铝箔板材拉伸以及定力值和定位移测试。扩展还可进行其他项目测试。本仪器应用于注射剂瓶和输液瓶铝盖、丁基胶塞、铝塑组合盖、聚丙烯组合盖、薄膜、复合膜、药用铝箔、PVC硬片、预灌封注射器、一次性注射器等药品包装材料,进行接桥链接力、穿刺力、滑动性、开启力、拉伸强度、热合强度、人体内导管导丝摩擦力等试验。 医药包装物理性能测试仪采用进口品牌高精度传感器,测试结果精确稳定,无极调速可满足不同实验对试验速度的要求。仪器支持多种试验模式,配合不同试验夹具可满足不同实验要求,夹具更换方便快捷。广泛应用于药检机构、药包材生产企业、制药企业、医疗器械生产企业等单位。 产品特点:● 进口微型计算机控制技术,开放式结构,友好人机界面操作,使用简单方便● 多种操作模式任意选择,增加定力值、定位移模式,操作更简单方便● 精密丝杆传动,优质不锈钢导轨及合理布局,确保仪器运行平稳● 采用进口高精度测力传感器,测量精度为 0.5 级● 采用精密微分电机驱动,传动更平稳,噪音更低,定位更准确,测试结果重复性更好● 液晶中文显示,全自动测量,具有测试数据统计处理功能● 高速微型打印机输出,打印快速,噪音低,不需更换色带,更换纸卷方便● 内置专用校准程序,便于计量、校准部门(第三方)对仪器进行校准● 高清彩色大屏幕显示曲线、文字,视觉更清晰● 可配备电脑软件,双向操作 技术参数:测量范围 5kg 25kg 50kg (任选一个或多个)测量单位 N kg ib测量精度 0.5 级试验行程 1000mm测试模式 开启力测试、折断力测试、穿刺力测试、拉压力测试、针管刚性测试、定力值测试、定位移测试、剥离力测试、活塞滑动性能测试、器身密合性测试、人体内导管导丝摩擦力测试试验速度 1-600mm/min 无级变速外形尺寸 470(L) X 450(B) X 970(H) mm重 量 约 90kg电 源 AC220V±22V,50Hz标准配置 主机 、拉伸夹具选购配置 开启力夹具、穿刺夹具、折断力夹具、滑动性能夹具、电脑软件、电脑设置标准:YBB00242004-2015、YBB00402003-2015、 YBB00042005-2015、YBB00052005-2015、 YBB00332004-2015 、YBB00332002-2015、YBB00112004-2015、GB-14232.1-2004、GB-15811-2016、GB-15810-2001、GB/T-1962.1-2001、GB-2637-1995、ASTM D882医药包装物理性能测试仪PMT-05普创paratronix 医药包装物理性能测试仪PMT-05普创paratronix
  • 硬度测试仪配件
    硬度测试仪配件和欧洲进口的便携式硬度测试仪,使用高硬度的金属平台代替了传统的玻璃平台,有效避免了玻璃平台易碎的缺点,硬度测试仪配件结构更紧凑、合理,操作简单。 硬度测试仪配件特点 专用于配套SHORE A,SHORE D型橡胶硬度计, 其测试原理更科学,结构更紧凑、合理,使测试的稳定性和准确度进一步得到提高 使用高硬度的金属平台代替了传统的玻璃平台,有效避免了玻璃平台易碎的缺点 。 硬度测试仪配件参数 E A/C型橡胶硬度计组合成专业的试验机; 外形尺寸: 100*212*250(mm) 便携式硬度测试仪参数 可选配SHOR结构更紧凑、合理,操作简单 净重:10 Kgs 孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括硬度计,硬度测量仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。 我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。 关于便携式硬度测试仪参数,硬度测试仪参数的更多消息,孚光精仪将在第一时间更新并呈现,想了解更多内容,关注孚光精仪等你来体验!
  • 溶出度测试仪配件
    溶出度测试仪配件是一款自动药物溶出度仪,用于测量药物或化学物质在设定温度下的溶解情况,溶出度测试仪配备了蠕动泵和分光光度计,是领先的进口自动溶出度测试仪。溶出度测试仪配件特点六杯六杆,桨杆等采用进口SUS316不锈钢。数字读取提供连续更新的精确轴速度。水浴温度可设定到所需温度。旋转度可无限变化,可设定到任意所需速度。水浴温度均匀。全自动智能化控制温度、转速及时间三个参数。可以随意预置参数;分时显示预置值和实时值。溶出度测试仪配件应用用于药片,胶囊,药丸,固体剂型以及各种药品的溶出度测试,药品质量控制,研发。适合科研院所和制药企业的实验室使用。溶出度测试仪配件参数转速:10-250rpm电力:220V/50Hz安全功能:低水位,过热,防漏电温度:数字温度控制系统加热器:900W重量:62kg孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括溶出度测试仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品.我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务,确保中国用户以极低的成本享受进口优质产品的良好体验。关于溶出度测试仪参数,溶出度测试仪应用,溶出度测试仪特点的更多消息,孚光精仪将在第一时间更新并呈现,想了解更多内容,关注孚光精仪等你来体验!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制