推荐厂家
暂无
暂无
第1章 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析概述1.1 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]研究的历史1.1.1 对[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]现象的初步认识1.1.2 技术突破和在分析化学上的应用1.1.2.1 空心阴极灯的发明1.1.2.2 近代常用技术的出现1.2 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的简单介绍1.2.1 复习吸光光度法的原理1.2.2 分光光度计及其基本部件1.2.3 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计1.2.4 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的结构1.2.5 仪器各基本组成部分作用1.3 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法的基础知识和概念1.3.1 光的知识1.3.2 朗伯—比尔定律1.3.3 光谱的分类1.3.4 三种原子光谱分析法的基本光路图对比1.3.5 灵敏度、检出极限、精密度、准确度1.3.5.1 灵敏度1.3.5.2 检出极限CL1.3.5.3 精密度1.3.5.4 准确度1.4 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法的优缺点1.4.1 选择性强1.4.2 灵敏度高1.4.3 分析范围广1.4.4 抗干扰能力强1.4.5 精密度1.4.6 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析法也有如下缺点:1.5 近年研究展望第2章 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析的基本原理 2.1 原子核外电子结构 2.2 原子能级 2.3 跃迁方式 2.3.1 吸收跃迁 2.3.2 自发发射跃迁 2.3.3 受激发射跃迁 2.4 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]的理论分析 2.4.1 吸收光谱的特征波长和吸收线数目 2.4.2 吸收谱线的轮廓 2.4.2.1 自然宽度(Natural width) 2.4.2.2 多普勒变宽效应(Doppler broading)2.4.2.3 压力变宽(碰撞变宽) 2.4.2.4 自吸变宽 2.4.3 吸收谱线的强度 2.5 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]的实际测量 2.5.1 吸收线 2.5.2 积分吸收系数和原子浓度之间的关系瓦尔西峰值吸收法 2.5.3 校正线的形状和影响它的因素 2.5.4 实际的测量 第3章 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]3.1 概述 3.2 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计的类型 3.2.1 单光束系统 3.2.2 双光束系统 3.2.3 双光束双通道 3.3 光源 3.3.1 空心阴极灯 3.3.1.1 空心阴极灯的构造 3.3.1.2 空心阴极灯的发射机理 3.3.1.3 空心阴极灯内的充入气体 3.3.1.4 空心阴极灯的供电 3.3.1.5 空心阴极灯的使用 3.3.2 无极放电灯 3.3.3 连续光源 3.3.3.1 氘灯 3.3.3.2 蒸气放电灯 3.3.4 其它光源 时间分解火花 火焰 3.4 原子化器 3.4.1 原子化器的吸收光路 3.4.2 火焰原子化法 3.4.3 石墨炉原子化 3.4.4 石墨炉原子化反应机理 3.4.5 氢化物发生及其原子化 3.4.6 其他原子化法 金属器皿原子化法 粉末燃烧法 阴极溅射原子化法 电极放电原子化法 等离子体原子化法 激光原子化法 闪光原子化法 应用高频感应加热炉的方法 应用高温炉的方法 l 粉末燃烧原子化法 3.5 样品引入系统 3.5.1 气动雾化器 3.5.2 超声波雾化器 3.6 单色器 3.6.1 立特鲁(Littrow)型和艾伯特(Ebcrt)型光栅单色器 293.6.2 闪耀光栅 3.6.3 单色器的参数指标 3.6.3.1 单色器的色散率 3.6.3.2 单色器的分辨率 3.7 测量和读出装置 3.7.1 检测器 第4章 干扰 4.1 电离干扰4.2 物理干扰 4.3 光谱干扰 4.3.1 在光谱通带内有一条以上的吸收线4.3.2 在光谱通带内有非吸收线存在 4.3.3 谱线重叠 4.3.4 分子吸收 4.3.5 光散射 4.3.6 试样池发射4.4 化学干扰 4.4.1 化学干扰的产生 4.4.2 消除化学干扰的方法 4.4.2.1 化学分离 4.4.2.2 提高火焰温度 4.4.2.3 采用对消干扰效应的方法来消除干扰 4.4.2.4 改良基体 4.4.2.5 加入释放剂 4.4.2.6 加入保护剂 4.4.2.7 加入缓冲剂第5章 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法的分析技术5.1 样品的预处理 5.1.1 样品的溶解 5.1.2 样品的分离和富集5.1.2.1 萃取法5.1.2.2 螯合萃取 5.1.2.3 离子缔合物萃取 5.1.2.4 离子交换法 5.1.2.5 其它富集方法 5.2 测定条件的选择 5.2.1 分析线的选择 5.2.2 狭缝宽度 5.2.3 空心阴极灯电流 5.2.4 原子化条件的选择 5.2.4.1 火焰 5.2.4.2 喷雾器的调节 5.2.4.3 石墨炉原子化法中原子化温度的确定5.3 分析方法 5.3.1 标准曲线法 5.3.1.1 非吸收光的影响5.3.1.2 共振变宽 5.3.1.3 发射线与吸收线的相对宽度 5.3.1.4 电离效应 5.3.2 标准曲线法 5.3.3 标准加入法 5.3.4 稀释法 5.3.5 内标法 5.3.6 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]间接分析法 5.3.7 试样的污染及预防措施第6章 元素各论 6.1 概述 6.1.1 碱金属6.1.2 碱土金属 6.1.3 有色金属 6.1.4 黑色金属 6.1.5 贵金属 6.1.6 稀有和分散元素 6.1.7 难熔元素 6.1.8 间接[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法 6.2 元素各论 6.2.1 铝 6.2.2 锑 6.2.3 砷 6.2.4 钡 6.2.5 硼6.2.6 镉 6.2.7 钙6.2.8 铜 6.2.9 锗 6.2.10 金 6.2.11 碘 6.2.12 铁6.2.13 铅 6.2.14 镁 6.2.15 汞 6.2.16 镍 6.2.17 铂 6.2.18 硅 6.2.19 银第7章 AAS在各个方面的应用 7.1 [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析的应用 7.2 在冶金工业中的应用 7.2.1 钢铁分析 7.2.1.1 试样的前处理 7.2.1.2 各元素的测定举例 7.2.2 铜合金 7.2.3 铝合金 7.2.4 铅合金 7.2.5 锆合金7.3 在化学工业中的应用 7.3.1 水泥分析 7.3.1.1 试样的前处理 7.3.1.2 各元素的测定 7.3.2 玻璃分析 7.3.2.1 试样的前处理 7.3.2.2 各元素的测定 7.3.3 石油分析 7.3.3.1 汽油中的铅 7.3.3.2 润滑油中的金属 7.3.4 电镀液的分析 7.3.5 食盐电解液中杂质的分析 7.3.6 聚合物中无机元素的分析 7.3.7 煤灰的分析 7.3.8 大气污染物的分析 7.4 在地球化学中的应用 7.4.1 水质分析 7.4.1.1 陆水分析 7.4.1.2 海水分析 7.4.1.3 废水分析 7.4.2 岩石、矿物的分析 7.4.2.1 试样的前处理 7.4.2.2 各元素的测定举例7.5 在农业中的应用 7.5.1 植物分析 7.5.1.1 试样的前处理 7.5.1.2 各元素的测定举例 7.5.2 肥料分析 7.5.2.1 试样的前处理 7.5.2.2 各元素的测定举例 7.5.3 土壤分析 7.5.3.1 交换性阳离子的测定 7.5.3.2 微量金属 7.5.4 食品和饲料的分析 7.5.4.1 试样的前处理 7.5.4.2 各元素的测定举例7.6 在生物化学和药物学中的应用 7.6.1 体液和组织 7.6.2 体液成分的分析 7.6.2.1 试样的前处理 7.6.2.2 各元素的测定 7.6.3 内脏和其它试样的分析 7.6.3.1 试样的前处理 7.6.3.2 各元素的测定 7.6.4 药物分析 7.6.4.1 试样的前处理 7.6.4.2 各元素的测定
[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析法在分析过程产生的干扰及其消除方法?
原子吸收光谱法在水质分析中的应用原子吸收光谱法自二十世纪五十年代中期问世以来,在国内、外都得到了迅速的发展,由于其具有方法灵敏、准确、选择性好、抗干扰能力强、快速等优点,而被广泛地应用化学分析的各个领域,并且部分被列为标准分析方法。近年来,原子吸收光谱法在水质检测领域也得到了广泛的重视和应用,众多的基层水质检测部门都已装备了这种仪器,并已成为一种日常惯用的分析手段和方法。水体是河流、湖泊、水库、沼泽和地下水的统称。水质的变化是与污染物在水体、水生物及水系沉淀物之间的分布和迁移转化密切相关。无论生活饮用水、工业给水、农业用水、渔业用水,还是特殊用途用水都有一定的水质要求。在《生活饮用水国家标准》GB5749-2006中,对多种重金属离子限量都有要求。原子吸收光谱法在水质及环境分析中应用广泛,在《饮用天然矿泉水检验方法》GB/T8538-2008中,不少金属离子就是用原子吸收光谱法测定的。如应用于水质及地下水中铜、锌、铅、镉、钾、钠、钙、镁、铁、锰、镍、银、钒、硒、钡等元素的分析。1、样品预处理原子吸收光谱法测定水质样品是否需要采取前处理或者采取何种前处理方法,应该根据样品实际情况而定。例如,对于含较高浓度(ppm级别)的Fe、Mn、Cu、Zn等被测元素的较洁净的水样,可以不进行前处理,将水样直接用原子吸收光谱仪进行测定;对于含较低浓度的Cd、Pb等被测元素的水样,可以进行预富集(如萃取、蒸发等方法)之后测定;氢化物发生器法测定试样中的As、Se、Sn、Ge等元素,所需的氢化物发生过程,可以视为一种样品前处理过程;对于有可能含有某种干扰离子的水质样品,可以加入沉淀剂沉淀该种离子,消除对于其他离子测定的影响。2、测定部分2.1、工作曲线的绘制由于原子吸收法的线性范围窄,因此绘制正确的工作曲线就显的尤为重要。在做工作曲线时要注意以下几点:(1)绘制一条工作曲线至少要取5至7点,并且每一个点要重复测定两次或多次,直到平行样的测定值满足要求后,再进行下一个点的测定。(2)标准样品和待测样品必须使用相同的溶剂系统。(3)工作曲线所选用的浓度范围要包括待测样品的浓度。原子吸收法较理想的线性范围在吸光度的0.1~0.5之内,如浓度再高,标准曲线就显著地弯曲了。所以,原子吸收法只能比分光光度法测定的浓度范围更窄。作为一种补救的方法是在工作曲线开始弯曲的地方多加测几个点,以便绘制正确的工作曲线,也可用一元二次方程绘制工作曲线。2.2、样品稀释原子吸收在水质检测领域中常用到的是火焰原子吸收和石墨炉原子吸收两种分析方法。由于两种方法的灵敏度不同,因此,应根据样品的浓度范围选择相应的分析方法。同一项目不同的仪器其工作范围是不同的。在作样品之前,首先应清楚自己使用的仪器的工作范围。如果,样品的浓度范围不在自己仪器工作范围之内,那么就要考虑稀释样品,使稀释后样品的浓度范围在仪器工作范围之内。值得注意的是:稀释的倍数不易过大,用石墨炉原子吸收进行检测时这一点尤为重要。这是因为石墨炉原子吸收的灵敏度很高,所用的蒸馏水、去离子水及酸中必然含有杂质。 3、结论 总之,利用原子吸收光谱法进行样品分析时,一方面要对仪器的性能有足够的认识;另一方面要在实际中不断总结经验,提高分析技巧。只有这样,才能取得令人满意的分析结果。