推荐厂家
暂无
暂无
[font=&][color=#666666]针对目前国家标准分析检测水质多参数方法存在的科学与技术问题,提出了一种基于超声-微纳米气泡(US-MNB)辅助技术、连续光谱法和顺序注射分析法(SIA)的可变光程水质多参数检测新方法。设计水质多参数检测系统,通过检测总磷(TP)、化学需氧量(COD)、氨氮(NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N)和六价铬(Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666])四种水质参数,验证了新方法的可行性。系统设计的核心是基于超声与微纳米气泡相结合的消解室以及具有可变光程功能的光谱扫描检测室,可达到快速消解和稳定检测的目的。同时系统基于国家水质检测标准,优化了水质多参数联合检测流程,并利用分光光度法和顺序注射分析技术对四种水质参数的含量进行连续光谱检测。首先,在常温常压下采用US-MNB辅助技术结合强氧化剂对TP进行消解,同时对检测室中NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N参数显色反应后的化合物直接进行光谱扫描测定,消解后,再进行TP的测定。同理,消解COD的同时,对检测室中的Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]参数显色反应后的化合物直接进行光谱扫描测定,消解后,再进行COD的测定。整个检测过程所用时间大幅降低,可在短时间内自动完成水质多参数的测定,显著地提高了检测的效率。以上述四种水质参数为测定对象,利用最小二乘法构建回归模型,拟合回归方程并计算相关系数,并绘制各参数的浓度-吸光度标准工作曲线。结果表明:TP标准工作曲线拟合系数≥0.984 5,且浓度与吸光度成正相关,重复性(RSD)为3.05%~3.62%,加标回收率为97.8%~103.6% COD标准工作曲线拟合系数≥0.998 7,且浓度与吸光度成负相关,重复性(RSD)为2.12%~2.74%,加标回收率为98.7%~104.7% NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N标准工作曲线拟合系数≥0.995 3,且浓度与吸光度成正相关,重复性(RSD)为3.41%~3.59%,加标回收率为99.2%~102.4% Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]标准工作曲线拟合系数≥0.993 8,且浓度与吸光度成正相关,重复性(RSD)为3.51%~3.92%,加标回收率为98.9%~109.3%。系统可准确测定水样中TP、 COD、 NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-N和Cr[/color][/font][font=&][size=12px][color=#666666]6+[/color][/size][/font][font=&][color=#666666]的含量,且具有良好的稳定性与可靠性。基于超声-微纳米气泡辅助技术的可变光程水质多参数检测方法研究,对于拓宽光谱法在水质多参数快速检测领域的应用以及提升检测效率等方面的研究具有重要作用。 [/color][/font]
一项由澳大利亚墨尔本大学(University of Melbourne)William Ducker和张学华(Xuehua Zhang,音译)进行的最新研究,直接证实了纳米气泡(nanobubble)的存在。这篇名为“一种纳米尺度的气体状态”(A Nanoscale Gas State)的研究论文,发表在近期的《物理评论快报》(Physical Review Letters)上。长期以来,许多科学家怀疑在气体和液体的分界面上存在一种特殊的气体状态——纳米气泡,但一直没有直接的证据来证实这一推测。此外,许多理论证据甚至表明,这种气体状态并不存在。即使存在,这些纳米气泡也会在一秒钟内消失,不会有实际应用价值。因此,当澳大利亚墨尔本大学教授William Ducker开始对纳米气泡进行研究时,他想到的结果也只有这两个:直接证明纳米气泡不存在,要么存在但很不稳定。然而,结果却让人大吃一惊,以致于Ducker甚至要承认他的实验是“错误”的。纳米气泡不但存在,而且还比之前想象的稳定得多,可以持续数天。Ducker表示,实验证据如此确凿,他不得不改变之前的观点。Ducker和张学华是利用红外光谱技术,测定了分子的旋转运动状态,证实了其符合气体的运动规律。除此之外,研究小组还测定了纳米气泡的内部压力。Ducker表示,之前的理论认为纳米气泡内压很大,足以使其瞬间破裂消失。但是此次的研究表明,纳米气泡的内部压力并没有想象的那么大,大概与大气压相当,因此,气泡能够维持几天的时间。对于纳米气泡未来的应用,Ducker认为,在工业上,纳米气泡将节省利用管道抽水时的能量消耗。将同样的纳米气泡布满水管的内壁,将可以减少抽水时的摩擦,从而节省能量和成本。同时,纳米气泡可以被用于日常生活中。Ducker解释说,许多人造产品和自然资源是物质混合形成的,一些情况下我们希望这些物质保持混合,还有些情况我们需要分开它们。这时,我们就可以利用纳米气泡使油性物质和水融合稳定的时间更长。此外,纳米气泡还可以使从油砂中分离出油更加经济和有效率。Ducker表示,下一步将制造更多统一、密集、持久的纳米气泡覆层材料,从而能够找到一些更有价值的应用
[font=仿宋_GB2312][size=19px]将待分离粉末加入到电磁筛分部分最上部,承筛部分放置筛孔为微米的筛网(如10、20微米)。[/size][/font][font=仿宋_GB2312][size=19px]筛网层上面有机玻璃盖,通过管路联接到微纳米物质分离捕集器。这是一款内置双层粗孔片和超细滤膜的配件,可将微纳米微粒和大于上层筛孔直径的物料分离。[img=,554,283]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011653556947_148_1812435_3.png!w554x283.jpg[/img][/size][/font][font=仿宋_GB2312][size=19px]捕集器另一端联接真空泵。工作时,真空泵提供负压传输到筛分仪,筛分仪超声装置可将原料粉团聚体打开,并将堵塞的筛孔打开,有利于三维震动的筛分部分将物料快速筛下,扬起微细粒颗粒的作用,空气和纳微米颗粒由筛分仪向真空泵运移,纳微米颗粒最终在捕集器中分离富集[/size][/font][font=宋体][size=19px]。[img=,156,409]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011654144101_1924_1812435_3.png!w156x409.jpg[/img]本装置特点:[font=Wingdings]u [/font][font=宋体]电磁驱动,清洁能源[/font][font=Wingdings]u [/font][font=宋体]三维抛掷筛分,速度快,重复性高[/font][font=Wingdings]u [/font][font=宋体]操作简便,功率、振幅可调节[/font][font=Wingdings]u [/font][font=宋体]独有S型压盘设计,可快速拆卸筛子,筛分效率高[/font][font=Wingdings]u [/font][font=宋体]采用单向夹具,可快速压紧[/font][font=Wingdings]u [/font][font=宋体]连续、精微、间断三种震动模式可选[/font][font=Wingdings]u [/font][font=宋体]干法、湿法筛分可选[/font][/size][/font]