热敏电阻红外探测器

仪器信息网热敏电阻红外探测器专题为您提供2024年最新热敏电阻红外探测器价格报价、厂家品牌的相关信息, 包括热敏电阻红外探测器参数、型号等,不管是国产,还是进口品牌的热敏电阻红外探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热敏电阻红外探测器相关的耗材配件、试剂标物,还有热敏电阻红外探测器相关的最新资讯、资料,以及热敏电阻红外探测器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

热敏电阻红外探测器相关的厂商

  • 江西鑫越电子有限公司专业生产漆包线热敏电阻,NTC半异体芯片,NTC热敏电阻器,热敏电阻组件,温度传感器,汽车线束等的高新企业。我们不断创新,积极引进吸收国外先进的技术工艺,拥有从日本引进的热敏电阻自动化生产线和检测设备,公司建立了完善有效的品质保证系统。所生产热敏电阻具有精度高,高可靠性,高稳定性,响应时间短,温度范围宽,一致性稳定性好等特点。公司产品广泛为国内外众多客户配套选用,广泛应用于小家电,电池,医疗,汽车,美容美发行业等温控领域。1、我司可以提供规格书与样品让贵司先测试2、在往后的产品使用中我们工程可以为您解答任何的技术问题欢迎各界朋友莅临参观、指导和业务洽谈。
    留言咨询
  • 东莞市嘉乐仕金属探测设备有限公司是一家专业金属探测器,金属探测仪,金属检测仪,金属检测器,食品金属探测器,金属分离器,x光机,x射线异物检测仪的集研发、生产、销售于一体的民营高科技企业.经过多年的经营发展和科技上的不断创新,已成为中国最大的金属探测器生产厂家之一,嘉乐仕凭借优质的产品,卓越的技术和完善的服务,产品遍及祖国各地,并远销美洲,欧洲,非洲,中东,东南亚等国际市场。   东莞市嘉乐仕金属探测设备有限公司以“诚信是我风格,质量是我生命“ 为宗旨,视用户为“上帝”,一贯秉承“质量第一、顾客满意,持续改进,争创一流”的方针,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和质量保证体系,且采取有效的市场保护措施,确保为每个用户提供最优质的产品和最完善的服务。   展望未来,嘉乐仕将一如继往的秉承”敬业,诚信,融合,创新“的企业精神,研制出更好的产品,提供更好的服务,树立更好的形象,愿与各界新老朋友进行更广泛的合作,共创辉煌!   嘉乐仕热忱欢迎企事业单位前来参观考察,洽商合作,愿与您携手共创更辉煌的明天! 联系人:卢生15907693763(微信同号)QQ:2777469253 欢迎来电咨询!官网:www.jls668.net
    留言咨询
  • 深圳市汇成探测科技有限公司始建于2007年是一家专业从事金属探测器研发、生产、销售为一体的企业。公司严格依照ISO9001国际质量标准体系的要求,从产品的研发设计、生产制造到销售及售后服务全过程,已建立一套严谨的品质管理和保证体系。目前公司主营品种齐全有地下可视成像仪、可视地下金属探测器、远程地下金属探测器、探盘式地下金属探测器、手持金属探测器。品质彰显价值,服务缔造信誉。为广大客户提供更优质的服务,公司以“专业、信誉、质量第一、用户至上”为经营宗旨,以高品质的产品与服务满足客户的梦想。追求卓越是我公司致力追求的目标。我们更坚信:有了您的支持和我们不断的努力,我们与社会各界同仁携手并进,开拓创新,共创美好未来。
    留言咨询

热敏电阻红外探测器相关的仪器

  • DPe系列为常温型热释电探测器,适合经济型的测量,专门用于红外波段的光谱测量。热电元件由独特的薄膜热释电PZT材料组成,允许红外辐射被有源区域高效吸收。具有更高的灵敏度、更低的噪声、更好的频率响应以及更好的温度稳定性。热释电探测器使用建议:DPe系列热释电探测器必须配合锁相放大器,推荐使用DCS500PA。DPe系列热释电探测器的响应率与调制频率成反比,最优工作频率在低频(10HZ左右)区域。DPe系列热释电探测器为全波段响应的探测器,实际工作波长受窗口材料限制,可根据实际需要来选择合适的窗口。 频率响应曲线: 窗口透过率曲线: 光谱响应曲线: 常温型热释电探测器型号列表及主要技术指标:型号/参数DPe16DPe22工作区域面积(㎜2)1.65×1.651.65×1.65光敏面直径尺寸(㎜2)3.73.7窗口材料类型A4A3波长范围(μm)2-162-22信号输出模式电压电压响应率(V/W)12.75×1052.75×105典型值D* [cmHz1/2W-1] 14.32×1084.32×108NEP(W/Hz1/2)13.82×10-103.82×10-10反馈电阻(GOhm)1010反馈电容(fF)200±50 200±50 工作电压(V)±2.2~±8±2.2~±8环境温度(℃)-10~+50-10~+50输出信号极性正(P)正(P)备注125℃,10Hz,带宽1Hz黑体T = 500K;E = 38 W / m2不含窗口材料
    留言咨询
  • 仪器简介:■ 硫化铅探测器(PbS)&mdash &mdash &mdash 常温型红外探测器,波长范围:0.8-3.2&mu m技术参数: DPbs2900 DPbs3200光敏面尺寸 mm 1× 5 6× 6波长范围 &mu m 0.8~2.9 0.8~3.2峰值波长 &mu m &ge 2.2 &ge 2.1响应Su V/W &ge 3× 104 &ge 300电阻Rd M&Omega 0.2-2 0.1-0.3D* cm(Hz) 1/2/W &ge 5× 108 &ge 1× 108时间常数 &mu s &le 200 &le 400放大倍数 × 1,× 10,× 100输入端失调电压 µ V <± 1前放输入端的漂移 µ V ± 1频率响应范围 Hz 100&mdash 1000 (推荐400Hz)信号输出模式 电压 电压输出信号极性 正(P) 正(P)主要特点:■ 硫化铅探测器(PbS)&mdash &mdash &mdash 常温型红外探测器,波长范围:0.8-3.2&mu mDPbS2900/3200两种型号,两种探测器室的外观相同(内带前置放大器),其中:◆ DPbS2900内装进口硫化铅探测器(光谱响应度曲线参考图1)◆ DPbS3200内装国产硫化铅探测器(光谱响应度曲线参考图2)硫化铅探测器使用建议:● DPbS2900和DPbS3200硫化铅探测器为光导型红外探测器,使用时必须配合锁相放大器,推荐使用SR830型(Page98)或Model 420型(Page97);● DPbS2900和DPbS3200硫化铅探测器集成了前置放大器,输出信号模式为电压模式,在与DCS103或DCS300PA数据采集系统(Page95)配合使用时,需要选择电压信号采样模式。
    留言咨询
  • 热敏电阻温度传感器 400-860-5168转1401
    仪器简介:PMA2160是用于热敏电阻温度传感器与PMA2100表连接的接口。热敏电阻传感器出厂前都经过了校准,所以可以很简单的进行更换而不会影响其温度精确性。因此一个接口可以同所有罗列的热敏传感器以及购买的新传感器(无需另外校准)连接使用。热敏传感器通过RJ12连接器与PMA2160连接。热敏电阻是根据周围环境温度变化而改变自身电阻的装置。由于热敏电阻的电阻很容易测得,所以通常用作温度传感器使用。他们可以被加工的很小以便降低热容量以及减少响应时间。相关的高温系数也可以达到,这就使得热敏电阻更适于高分辨率测量。热敏电阻的电阻和温度之间的关系是高度非线性的。尽管如此,采用编程至PMA2160中的Steinhart-Hart公式,PMA2100可使这种关系线性化并且计算出的温度精度达到0.35°C。Steinhart-Hart公式在工业界温度计算的应用受到广泛的认可。PMA2160温度传感器家族采用热敏电阻与PMA2160接口以及PMA2100结合的方式进行温度测量。接口和传感器可以作为成套工具购买也可以单独购买,一个接口可以与所有提供的传感器连用。对于表面温度测量,液体,气体测量可以很方便的通过对热敏电阻更换进行。接口包括一个记忆存储器,里面的程序可由PMA2100读取执行。程序包括所有热敏电阻转换成温度的必要信息以及单位转换和所有的设置信息。表面温度传感器(PMA2161)用于实体温度的测量,比如半导体散热器或者监测皮肤温度。对于土壤温度的测量可以采用不锈钢侵入式传感器(PMA2163),空气以及气体测量可以采用不锈钢空气/气体传感器(PMA2164)。对于一般性的温度测量PMA2162和PMA2163就可以满足需要。测量的结果可以有三种形式的表示:°C, °F, 或者K 。三种单位的换算关系如下:T[°C] =T[K] - 273.16T[°F] = 1.8 * T[°C] + 32PMA2161表面温度传感器范围:-40 to +150°C尺寸:0.375" dia., 0.125" highPMA2162微型乙烯基侵入式传感器范围:-40 to +80°C尺寸:0.155" dia., 0.375" longPMA2163不锈钢侵入式传感器范围:-40 to +150°C尺寸:0.125" dia., 6.0" longPMA2164不锈钢空气/气体传感器范围:-40 to +150°C尺寸:0.5" dia., 6.0" long技术参数:温度范围 PMA2161:-40 to +150°C PMA2162:-40 to +80°C PMA2163:-40 to +150°C PMA2164:-40 to +150°C 精确度 ±0.35°C within 0-70°C 稳定性 优于 0.02°C/year 自加热功率小于 100µ W 显示分辨率 0.1°F, 0.1°C, 0.1K 显示单位 °F, °C, K 电缆 4ft (1.2m) 主要特点:特点宽温度范围0.35°C 精确度 卓越的长期稳定性 可更换传感器 适用于多种媒介的传感器 可选单位显示快速响应Fast response 小巧的尺寸 应用实验室以及工业温度测量 环境监测 临床研究 温度传感器校准
    留言咨询

热敏电阻红外探测器相关的资讯

  • 测温仪背后的故事——红外探测器
    一场突如其来的新冠肺炎疫情,成为了2020开年的头等大事。全民防疫的举措让这场没有硝烟的战争不再猝不及防。飞机场、火车站、公司、小区、超市等入口处都能见到防疫工作者的身影。他们是防疫先锋,是公共健康的卫士,是居民区的守护者。而他们的必备神器之一——手持测温仪,也进入了公众的视野,广为人知。今天,我们就来聊一聊测温仪的那些事。受疫情影响,很多人在家办公,出门不是去超市买菜,就是门口取快递。当然,还有不少人在硬核上班。无论出入小区,还是车站进站,现阶段都要经过体温检测。相信大家都有经历过,防疫工作者手持测温仪,对着额头一扫,立刻就显示你的体温数据,非常方便。有很多人对这测温仪都深感好奇,想知道它是怎么工作的。也有人担心它的准确性,担心把自己体温测高了。那么,我们就从测温仪的原理和精确度控制这两点说起。首先,大家都熟悉传统体温计测温的方法,而这种方法显然不适合用于传染性强的新型冠状病毒的防护工作。在这次防疫战中,小巧便携,无需身体接触的手持测温仪就成了急先锋。扫一扫,一秒之内测出体温的测温神器让人们眼前一亮;更令人印象深刻的,还有车站、机场等带有视频的成像测温仪,后者能在快速行进的人流中,辨别每个人的体温,并用保存视频成像。相信你肯定好奇过它们究竟是怎么做到的。接着,我们来一探究竟其中的科学原理。[1] 地铁站检票口的体温监测站(图片摘自人民网)温度和光我们都知道,水银体温计能够测人体的温度,是水银玻璃泡和人体接触后,经过一段时间的热量传递,最终与人体温度达到一致的原理(热平衡)。而测温仪并没有和人体接触,为何能如此快速采集温度信息呢?[2] 水银温度计(图片摘自百度网)答案其实大家也是耳熟能详,那就是---光!没错,就是我们所熟知的那个光!但是这个光,并不是人眼能看到的可见光,而是与可见光相邻的红外光,这里需要科普一下,我们平时所说的可见光实际上是电磁波的一种,电磁波有连续的波谱分布,红外光的波段在红色光之外,因此得名红外光。再简单提一下,除了可见光和红外光,很多电磁波都与大家的生活息息相关,按波长由短到长,有医院CT的X射线,防晒霜防的紫外线,太阳光,灯光,微波炉的微波,电台的射频信号等等,都属于电磁波。[3] 生活中的电磁波(图片摘自NASA Science)说到这里,肯定有人表示,道理我都懂,但是红外光跟人体温度有什么关联呢?关联是必然的,因为人体发射的光,就是红外光!没说错,人体是发光的,而且是无时无刻的在发光。复杂的原理就不赘述了,大家只要记住,任何温度高于绝对零度(零下273.15摄氏度)的物体都会以电磁波的形式向外辐射能量,至于绝对零度(-273.15℃)的物体嘛,大家放心,那是不存在的!红外光和人体温度的关系那么问题来了,既然每人每时每刻都在发射红外光,仪器凭什么就能辨别出正常温度和高烧呢?还能准确读出每个人的温度?这里,我们请一位大佬帮忙解答,他就是与爱因斯坦并称20世纪最重要的两大物理学家,量子力学奠基人之一的马克斯普朗克,他于1900年提出的普朗克黑体辐射定律,完美诠释了温度与辐射的关系。马克斯普朗克简单来讲就是,不同温度的物体发射的光是不一样的,如下示意图, 四条不同的曲线,代表不同温度下黑体辐射的光谱分布,这里的K是热力学温度,数值等于摄氏度+273.15。大家可以看到,温度越高,黑体辐射光的强度就越大,峰值的位置就越靠近紫外区域。那么,答案就呼之欲出了,如果探测到了人体的辐射强度和波谱分布,就完全可以反推出温度T!这就是测温仪测体温的原理。(人体虽不是黑体,却也遵循普朗克定律)。利用红外光探测人体温度究竟准不准?说完测温仪原理的故事,我们再来说说怎么确保每个测温仪都能测得准。上文中,细心的小伙伴发现,普朗克定律图示并没有想象中那么简单,图中展示差异性的谱图都相差了1000℃,人体怎么可能差上1000℃呢?没错,我们人体的温度平均值也就在36℃到37℃之间了,高过37℃的,抗疫期间怕是要去隔离观察了。那么关键点来了,相差几摄氏度的人体辐射谱图中,辐射强度和波谱的差异是非常小的,如何确保测温仪能把握这细小的差异呢?要知道,人体测温的准确性要求是比较高的,特别是在抗疫期间,正常的体温就是大家的通行证。这点上,咱们国家更是不含糊,对于此类测温装置也出台了相应的国家标准来规定精准度。那么,生产厂家是如何确保每台测温仪的准确性呢?下面就让我们来剖析测温仪,探究这里的科学原理。测温仪的"CPU"是什么?我们先从测温仪的构成说起,可以看到下图中,真正与红外光直接相关的,便是红外探测器,顾名思义,这正是测温仪利用红外测温的核心元件,就好比CPU芯片是手机电脑的核心。而它的质量直接决定了测温的准确性。那么,如何判定红外探测器的质量呢?[4] 额温枪(图片摘自网络)这就需要了解红外探测器测红外的细节。简单来说,红外探测器也是由材料构成,红外探测器上的特殊光感材料可以接收外界的红外辐射,并将其转换为电信号,再进行分析计算,最终给出温度值。因此评价红外探测器的好坏,就是评判其将光转换为电信号的能力。在讲红外探测器的评价之前,我们插一句,火车站,机场中带成像系统的测温仪,采用的是更高端的焦平面阵列红外探测器(FPA技术)。[5] 设置在火车站的带成像系统的测温仪(图片摘自包头新闻网)这类成像测温仪就如同照相机或摄像仪,内部感光平面内,分布了很多像素点,焦平面上每一个像素点就是一个红外探测器,这种技术具有二维空间分辨的能力,具备红外成像功能,可以将发高烧的人从人群中辨别出来。如何评价红外探测器,确保其准确性?一般来说,无论是采用单点红外检测器的耳温枪还是FPA焦平面检测器的红外成像测温仪都不需要极快的反应时间或极高的空间分辨率,甚至无需光谱分辨率。所以这类红外检测器的精确度通常是采用激光功率计或热敏电阻等方法来评定的。但是,类似原理的红外探测器还有很多其他的应用领域,尤其是需要FPA焦平面检测器的红外成像仪已经被广泛的应用于军需夜视或热追踪系统、高速热成像、质检或产品研发(针对散热或热工特性)、医疗热成像及红外显微镜等诸多方面。这些应用领域对红外检测器件本身以及对由这些器件组成的测量仪器的性能都有更严苛的要求,比如,需要微秒甚至纳秒级的超短反应时间,需要光谱信息用于化学成像,需要较高的空间分辨率以表征微小物品,需要较高的光谱分辨率,最佳的灵敏度和信噪比,甚至对FPA检测器中每个像素点的均匀一致性都有要求。为了研制和开发这些高端的红外检测器件,科学家们需要用到一种重要的表征方法---傅立叶红外光谱法。实现该法的核心设备就是在科学研究、监测分析领域常见的傅立叶红外光谱仪(简称FTIR红外光谱仪)。FTIR红外光谱仪——表征红外探测器FTIR红外光谱仪是专门应用于红外光谱研究相关的科学仪器,配有标准的红外光源,所发射的红外光经过干涉仪后,经过照射样品,最终到达红外探测器,解析探测器的电信号,并进行FT转换计算,即可得到包含能量强度和波谱分布的红外谱图。科学家们就是把这种检测技术应用到了评价红外探测器材料好坏的研究中,在对光敏度、稳定性等等复杂的研究分析之后,才研发出适合于各种不同应用领域的红外探测器材料,进而工厂将其研究的材料转化为探测器并且大量生产而成为真正实用的商品(包括红外测温仪及其他更为复杂的尖端仪器),发挥了科学家研究的作用。换言之,红外光谱仪对于探测器的表征研究,就好比是一把精准的卡尺,用它来检验每一根直尺的长度是否达到科学家们想要实现的标准。傅立叶变换红外光谱仪以上就是测温仪背后故事的小科普,相信大家对于最近很亮眼的测温仪会有更进一步的了解,对红外探测器精确度的控制以及红外探测器的诸多应用领域也有了更深层次的认知。通过科学家们的努力,和我们生活息息相关的大型红外成像测温仪的准确度、检测能力、检测距离、检出速度和检测区域内的均匀性(即精准度)都会越来越好。所谓工欲善其事必先利其器,实际上并不是所有的红外光谱仪都能做红外探测器的研究与表征,能作为标尺的设备,当然只有技术过硬,具备特殊技能红外光谱仪才能实现!如果您对检测器表征科研课题感兴趣,可以阅读布鲁克的相关应用信息。如果您对红外整体技术感兴趣,长按下方二维码填写产品需求信息表,与我们取得联系。疫情期间,大家做好防护,注意安全。一起为祖国加油!为武汉加油!点击下载布鲁克应用手册——红外检测器表征如果您对我们的红外技术感兴趣,欢迎与我们取得联系,请拨打400热线电话400-777-2600。
  • 海尔欣光电HPPD-M-B探测器性能介绍
    1. 概述MCT 中红外探测器是一种热电冷却光电导 HgCdTe(碲镉汞,MCT)探测器, 这种材料对 2 到 12um 的中红外光谱波段光波敏感。海尔欣的中红外探测器可采用直流或交流耦合输出,直流耦合方便用户实时观测探测器上的光强信号,继而方便系统对光调试;交流耦合输出可以让用户解调微弱的交流小信号,一定程度上避免过高的直流光信号将探测器饱和。探测器与热电冷却器(TEC)相连接, TEC 采用一个热敏电阻反馈电路对探测器元件的温度控制在-30℃甚至更低温度,从而将热噪声和背景辐射对输出信号的影响最小化。为有效地减少电磁噪声对检测输出信号的影响, 探测器外壳采用了铝合金屏蔽壳体制作,同时起到散热的作用。2. 性能• 半导体冷却型碲镉汞红外光电探测器;• 对2~12 um的中红外光谱波段光波敏感;• 内部一体化集成低噪声前置运放+TEC控制单元;• TEC热电冷却稳定 -80℃ 至-30℃ ,极大地降低了热噪声;3. 优势l • 前放+制冷控制一体化,噪声能进一步降低,使用也更为便捷l • 性价比高于同款进口产品,波长覆盖也更宽l • 海尔欣针对红外探测应用自主研发,更适合系统集成,更及时完善的售后服务4 探测器噪声测试l 测试原理待测噪声A,频谱分析仪基底噪声为B,噪声A 接入频谱分析仪后,测得噪声为频谱分析仪总噪声C(探测器放大后噪声A和频谱分析仪基底噪声B)。它们之间关系如下:A2+B2=C2图.1 HPPD-M-B探测器噪声测试系统 由于HPPD-M-B探测器感光单元噪声Ain信号较小,需要对噪声信号Ain进行放大处理,图.1 中间框HPPD-M-B专指探测器前置放大电路,实际探测器芯片已集成到HPPD-M-B探测器产品中。 其中Ain为归一化到探测器输入端的电流噪声密度(单位为pA/√Hz),为我们的待求结果,A0为Ain经探测器HPPD-M-B放大N倍后的信号,Rout为探测器的输出阻抗(Ω),A为频谱分析仪输入端信号,Rin为频谱分析仪的输入阻抗(Ω),B为频谱仪基底噪声(与测量系统基底噪声相同),C为频谱分析仪的频率扫描结果。可以得到系统中存在如下关系:A0=Ain*NA=A0*Rin/(Rin+Rout)A2+B2=C2 注:功率dBm转volts:http://wera.cen.uni-hamburg.de/DBM.shtmlvolts转噪声密度:噪声密度(nV/√Hz)= RMS volts/√RBW故通过频率分析仪测试探测器输出端噪声,便可容易的推算出归一化到探测器输入端的电流噪声密度。l 测试系统参数说明:放大倍数N = 15000V/A,探测器输出阻抗Rout =16Ω,频谱分析仪输入阻抗Rin = 50Ω频率扫描范围0-100 kHz,分辨率带宽RBW = 10Hzl 测试过程:1.短路频谱分析仪的信号输入端口,为频谱仪噪声基底的频率扫描结果得到系统基底噪声B1;2.按图1连接测试系统,将配套SMA转BNC同轴线缆一端连接到探测器的SMA输出端口,另一端连接到频谱分析仪(型号N9320B)的信号输入端口;得到未供电时的测试系统频率扫描结果,为测试系统的噪声基底B,可以发现测试系统的噪声基底B与频谱仪输入端短路时噪声B1相同,如下图2中的曲线V1(该曲线为系统的基底噪声B)。3.系统供电,将配套+5V电源适配器一端插入探测器电源供电口,另一端插入市电插座,拨动电源开关上电,此时风扇将正常工作,探测器开始温度调节,热机约10分钟后,温控指示灯亮,温度稳定于预设值。此时,可得到供电状态下,测试系统的频率扫描结果,如下图2中的曲线V2(该曲线为系统的总噪声C)。注意:测试过程中,探测器感光单元一直为遮光状态。l 计算结果读图:100kHz时,频谱仪基底B =-120dBm,扫频结果C = -117dBm,两者RMS均为10Hz。功率dBm转RMS volts:查表http://wera.cen.uni-hamburg.de/DBM.shtml-120dBm对应RMS volts为223.607nV;-117dBm对应RMS volts为315.853nV。根据RBM volts转噪声密度公式:噪声密度(nV/√Hz)= RMS volts/√RBW计算噪声密度B 为70.71nV/√Hz ,噪声密度C 为99.88nV/√Hz。根据计算公式:A2+B2=C2可以等到A=70.54nV/√Hz根据计算公式 :A=A0*Rin/(Rin+Rout);Rin=50?、Rout=16? 可以得到A0=93.11nV/√Hz 。通过公式:A0=Ain*N其中N为放大倍数15000V/A 可以得到Ain=6.2pA/√Hz。l 附1.探测器芯片的电流噪声密度HPPD-M-B编号:96610,芯片电流噪声 4.7 pA/√Hz5V适配器编号:01191027140测试结果表明,归一化到探测器输入端的电流噪声密度Ain为6.2pA/√Hz,则海尔欣的前置低噪声运放的噪声系数仅为2.4dB。计算方法为:信噪比:信号功率/噪声功率(下述计算提到的功率都以归一化噪声电流同比表示)噪声系数NF = 输入端信噪比/输出端信噪比 噪声系数可由下列式表示:Si为输入信号功率,即为光电流信号;Ni 为输入噪声功率,即为芯片电流噪声 4.7 pA/√HzS0为输出端信号功率,即为S0=Si*NN0为输出噪声功率,即为Ain*N通过上计算可以得到噪声系数NF=Ain/Ni根据上面计算结果可知Ain=6.2 pA/√Hz,Ni=4.7 pA/√Hz则噪声系数NF=1.32,根据噪声系数转换噪声dB公式:dB=20lgNF=2.4可以得到噪声系数为2.4 dB.(关于低噪声前置运放的噪声系数概念,请参考:http://www.ti.com.cn/cn/lit/an/zhca525/zhca525.pdf) l 附2.与进口探测器比较 图.3 VIGO探测器与HPPD-M-B噪声比较V3为HPPD-M-B ,适配器供电(放大15000倍)V2为某进口探测器,本底比HPPD-M-B低是因其放大倍数较低的缘故。 5 结论综合来看,海尔欣的HPPD-M-B型中红外探测器噪声与进口探测器处于同一水平,从功能上来讲没有太大差别。再结合其运放与TEC制冷高度集成的设计,HPPD-M-B型探测器极大地方便了用户的使用和系统集成,是一款小巧、出色的制冷型单像素红外探测器。
  • 大连化物所研制出可用于非接触人机交互系统的高灵敏长波红外探测器
    近日,大连化物所二维热电材料研究组(DNL2104组)陆晓伟副研究员、姜鹏研究员、包信和院士团队在高灵敏、低功耗人体红外热辐射探测器研制及其在非接触人机交互系统中的应用方面取得新进展。人体自发热辐射主要位于长波红外(8至14 μm)波段,呈现出光子能量低(~0.1 eV)、光强弱(~5 mw/cm2)等特点。实现人体红外热辐射的高灵敏探测,对构建低功耗、非接触人机交互系统具有重要意义。作为一种热敏型探测器,光热电探测器是基于光热转换、热电转换两个能量转换过程,具有光谱响应范围宽、无需制冷、功耗低等优点。目前,商业的光热电探测器通常采用分立式的热电堆结构,需要复杂的MEMS微机械加工制备工艺,且在探测人体热辐射时,其输出电压相对较小(数十至数百微伏),需要额外的高信噪比信号采集电路。本工作中,该研究团队突破传统热电堆材料和构架的限制,构建了基于SrTiO3-x/CuNi异质界面结构的一体式热电堆。该异质界面结构一方面将SrTiO3-x高的Seebeck系数(-737 μV/K)与CuNi高的电导率(5×105 S/m)协同耦合,在降低器件内阻的同时,可保持高的电压输出;另一方面,通过结合声子共振吸收和自由载流子吸收,该异质结展现出优异的吸光能力,其在长波红外波段的吸光率最高可达98%。结合这些优势,基于SrTiO3-x/CuNi的热电堆在探测人体辐射时展现出高灵敏度、低噪音、高稳定性等特征,其输出电压最高可达13 mV,相比商业热电堆有数量级的提升。通过进一步构建热电堆阵列,团队还实现了实时手势识别、非接触式数字/字母输入等功能。该研究为开发低功耗非接触人机交互系统提供了新思路,在人工智能技术、公共卫生安全领域具有广阔的实际应用价值。相关研究成果以“SrTiO3/CuNi Heterostructure-based Thermopile for Sensitive Human Radiation Detection and Noncontact Human-machine Interaction”为题,发表在《先进材料》(Advanced Materials)上。上述工作得到国家自然科学基金、中国科学院创新交叉团队、大连化物所创新基金等项目的资助。

热敏电阻红外探测器相关的方案

热敏电阻红外探测器相关的资料

热敏电阻红外探测器相关的试剂

热敏电阻红外探测器相关的论坛

  • NTC热敏电阻工作原理

    NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料, 采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000Ω,温度系数-2%~-6.5%。NTC热敏电阻器可NTC热敏电阻器广泛用于测温、控温、温度补偿等方面。 NTC负温度系数热敏电阻构成 NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料. NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数。 NTC负温度系数热敏电阻历史 NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了NTC热敏电阻器. NTC负温度系数热敏电阻温度范围  它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.  负温度系数热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量.

  • NTC热敏电阻工作原理

    NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料, 采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000Ω,温度系数-2%~-6.5%。NTC热敏电阻器可NTC热敏电阻器广泛用于测温、控温、温度补偿等方面。 NTC负温度系数热敏电阻构成 NTC(Negative Temperature Coefficient)是指随温度上升电阻呈指数关系减小、具有负温度系数的热敏电阻现象和材料.该材料是利用锰、铜、硅、钴、铁、镍、锌等两种或两种以上的金属氧化物进行充分混合、成型、烧结等工艺而成的半导体陶瓷,可制成具有负温度系数(NTC)的热敏电阻.其电阻率和材料常数随材料成分比例、烧结气氛、烧结温度和结构状态不同而变化.现在还出现了以碳化硅、硒化锡、氮化钽等为代表的非氧化物系NTC热敏电阻材料. NTC热敏半导瓷大多是尖晶石结构或其他结构的氧化物陶瓷,具有负的温度系数。 NTC负温度系数热敏电阻历史 NTC热敏电阻器的发展经历了漫长的阶段.1834年,科学家首次发现了硫化银有负温度系数的特性.1930年,科学家发现氧化亚铜-氧化铜也具有负温度系数的性能,并将之成功地运用在航空仪器的温度补偿电路中.随后,由于晶体管技术的不断发展,热敏电阻器的研究取得重大进展.1960年研制出了NTC热敏电阻器. NTC负温度系数热敏电阻温度范围  它的测量范围一般为-10~+300℃,也可做到-200~+10℃,甚至可用于+300~+1200℃环境中作测温用.  负温度系数热敏电阻器温度计的精度可以达到0.1℃,感温时间可少至10s以下.它不仅适用于粮仓测温仪,同时也可应用于食品储存、医药卫生、科学种田、海洋、深井、高空、冰川等方面的温度测量.文章来源:http://www.firstsensor.cn/

  • 红外线及探测知识

    红外测温仪光电仪器的核心部件之一 —— 红外探测器红外线探测器是把入射红外辐射能量转变为其他形式能量(一般为电能)的一种转换器或传感器.它是各种红外仪器最重要的关键元件,可分为热敏探测器和光子探测器两大类.1.热敏探测器1,1:热敏电阻探测器热敏电阻器是电阻值对温度极为敏感的一种电阻器,也叫半导体热敏电阻器。它可由单晶、多晶以及玻璃、塑料等半导体材料制成。这种电阻器具有一系2列特殊的电性能,最基本的特性是其阻值随温度的变化有极为显著的变化,以及伏安曲线呈非线性。 热敏电阻器种类繁多,一般按阻值温度系数可分为负电阻温度系数(以下简称负温系数)和正电阻温度系数(以下简称正温系数)热敏电阻器;按其阻值随温度变化的大小可分为缓变和突变型;红外测温仪按其受热方式可分为直热式和旁热式;按其工作温度范围可分为常温、高温和超低温热敏电阻器;按其结构分类有棒状、圆片、方片、垫圈状、球状、线管状、薄膜以及厚膜等热敏电阻器。热敏电阻器的主要特点是对温度灵敏度高,热惰性小,寿命长,体积小,结构简单,以及可制成各种不同的外形结构。因此,随着工农业生产以及科学技术的发展,这种元件已获得了广泛的应用,如温度测量、温度控制、温度补偿、液面测定、气压测定、火灾报警、气象探空、开关电路、过荷保护、脉动电压抑制、时间延迟、稳定振幅、自动增益调整、微波和激光功率测量等等。随着近代军事技术、特别是空间技术的发展,对热敏电阻器除了要求高可靠、长寿命、超高温和超低温外,还需要灵敏度更高、不需致冷、性能优良的测辐射功率的热敏器件

热敏电阻红外探测器相关的耗材

  • ST-100热敏电阻温度传感器
    ST -100热敏温度传感器是一种热敏电阻安装在一个密封的结构装置里,它适合于测量空气和土壤的温度,并且在零度以上时测量精度可以达到0.1℃以上。 技术参数:传感器尺寸:7mm(长), 0.6mm(直径)自热: 最大=0.084℃(在5℃时,2.5V连续的电压激发)精度: ±0.1℃(0~70℃) ±0.2℃(-25~0℃) ±0.1℃(-50~-25℃)操作环境: -50℃~70℃ 0~100%的相对湿度 防水 专业设计户外使用重复性: ±0.02℃响应时间: 1s平衡时间: 30s输入电压: 2.5V电缆: 5M的双绞线,可延长其倍数金属箔屏蔽重量: 传感器和线共60g 产地: 美国
  • 碲镉汞(MCT)中红外光电探测器,带放大,带TEC
    碲镉汞(MCT)中红外光电探测器,带放大,带TECMCT-12-4TE放大探测器是一种热电冷却光电导HgCdTe(碲镉汞,MCT)探测器。这种材料对2.0到12 μm的中红外光谱波段光波敏感。半导体制冷片(TEC)采用一个热敏电阻反馈电路对探测器元件的温度控制在-30 °C,从而将热变化对输出信号的影响最小化。为了获得最佳效果,我们推荐将输出电缆(不附带)与一个50欧姆的终端连接。由于探测器是AC偶合的,因此它需要一个脉冲或斩波输入信号。 交流耦合探测器不会看到未斩波的直流信号,因为它们对只对强度变化而不是强度的绝对值敏感。产品特点 ● 可探测的中红外光波波段为2.0 - 12 μm● 低通滤波器带宽高达160 kHz● 高频截止频率:10MHZ● 内置半导体制冷片提高灵敏度 ● 1 mm x 1 mm的热电冷却探测元件● SM1(1.035英寸-40)内螺纹● 附带符合当地区域使用的电源适配器 产品应用● 中红外气体分析● 中红外激光探测技术参数响应光谱调制线性度测试(采用MCT-12-4TE 中红外MCT探测器测试)封装及尺寸安装举例咨询电话:021-64149583、021-56461550、021-65061775公司邮箱:info@microphotons.com公司网址:http://www.ideal-photonics.com公司地址:上海市杨浦区黄兴路2077号蓝天大厦21F
  • 激光传感器组件 红外探测器
    液氮制冷红外探测器具有灵敏度高、空间分辨率好、动态范围大、抗干扰能力强以及能在恶劣气候下昼夜工作等特点。液氮制冷红外探测器经过制冷,设备可以缩短响应时间,提高探测灵敏度。液氮制冷红外探测器的信号带宽最高可以达到50MHz ,波长响应范围2~14μm,光敏面积典型值为1×1mm2,也可以按照需求进行定制,窗片材质可选ZnSe或CaF2,可以应对不同波长和使用环境的需求,如有特殊需求欢迎来电咨询。液氮制冷红外探测器各种杜瓦设计可供选择,提供楔形窗以消除干涉的影响。 液氮制冷红外探测器的优点:? 液氮制冷的制冷方式可以达到更低的温度,更稳定,极大地降低了热噪声;? 响应波长范围广,对2~14μm的中红外光谱波段光波敏感;? 高性价比,我们可以提供高速频率带宽定制服务。液氮制冷红外探测器工作原理:液氮制冷红外探测器参数指标:响应波长范围2~14μm峰值响应度典型值100~100000V/W光敏面积典型值1×1mm2(定制可选)信号带宽最高50MHz输出阻抗20~100ΩD*(cmHz1/2W-1)≥2.0E+10,最高≥1.0E+11窗片材质ZnSe或CaF2供电电压±5VDC(探测器模块);220VAC(电源模块) 各种杜瓦设计可供选择,提供楔形窗以消除干涉的影响。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制