离子束

仪器信息网离子束专题为您整合离子束相关的最新文章,在离子束专题,您不仅可以免费浏览离子束的资讯, 同时您还可以浏览离子束的相关资料、解决方案,参与社区离子束话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

离子束相关的资讯

  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • 精工盈司聚焦离子束「SMI4050」发售
    提高了加工速度、加工精度、观察精度 精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:新保雅文,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。提高了加工速度、加工精度、观察精度的聚焦离子束的新产品「SMI4050」于8月30日开始销售。 聚焦离子束 SMI4050 聚焦离子束(FIB仪器)是使用数纳米细的离子束对样品表面进行扫描,可实现纳米级别的(1)蚀刻加工、 (2)堆积加工、 (3)显微镜观察的仪器。通过这些功能的组合,可进行半导体设备的布线变更、缺陷评价、断面加工・ 观察以及透射电子显微镜(TEM)用的样品薄片的切除加工、金属材料的结晶粒观察等,对以半导体为开端的电子部件和高功能材料的开发・ 改良具有重大贡献。 SIINT从1986年在日本首次销售通用FIB仪器以来,作为拥有世界领先水平技术的FIB仪器厂商,一直致力于二维电子图像分辨率的提高等以高性能化和自动化为首的高功能化。近年来,伴随关各种材料和半导体设备等对生产量的要求变高,也要求FIB仪器的离子束光学系统的高分辨率化和样品台的高精度化。另外,随着市场的扩大,对电子部件和复合材料等的断面加工时间的缩短化要求也增加了。 SMI4050配合有对应大电流的新型离子束光学系统和具有优良再现性的高精度样品台,可用这一台仪器对各种样品进行大面积加工和分辨率和显微镜观察。并且,对以往的操作性进行改良,断面加工和TEM样品制作更加自动化,可获得不依赖于操作员的熟练度的更准确的数据。 此次,通过发布SMI4050,可对应各领域的广泛研究开发的要求,可使FIB仪器应用得更广。 【SMI4050的主要特征】1. 通过大电流离子束,大幅缩短加工时间以前,数百微米的大尺寸断面制作加工需要很长时间,通过采用新型离子束光学系统,离子束电流约为以往机型的2倍,大幅缩短了加工作业时间。 2. 通过极低加速电压,制作高品质的样品TEM样品制作需要低加速电压下的精加工,SMI4050能达到低至0.5kV(选配设定时)的加速电压,可制作更高品质的TEM样品。同时通过提高低加速电压时的二维电子图像分辨率,实现了正确并且确实的加工。 3.提高二维电子图像分辨率世界领先水平的SMI系列的二维电子图像分辨率,以往的加速电压在30kV时的二维电子图像分辨率还是不变,即使设定0.5kV(选配)的极低加速电压时也可得到清晰的图像。 4.采用高精度样品台通过采用高精度机械5轴自动倾斜修正样品台, 对于样品观察时的位置对准和连续TEM样品自动加工也可实现高精度的坐标位置指定。 5.优越的操作性以「操作简单且高精度」为关键字,实现了TEM样品的自动制作等高精度且无需熟练掌握的自动加工。 【SMI4050的主要规格】FIB二次电子分辨率 :4nmFIB加速电压 :1~30kV (选配设定时:0.5~30kV)探针电流范围 :0.15pA~90nA最大探针电流密度 :50 A/cm2样品台 :高精度机械5轴自动倾斜修正样品台样品尺寸 :50mm×50mm 【价格】 7,000万日元~(不含税) 【销售目标台数】 10台(年度) 本产品的咨询方式中国:精工盈司电子科技(上海)有限公司TEL:021-50273533FAX:021-50273733MAIL:sales@siint.com.cn日本:【媒体宣传】精工电子有限公司综合企划本部 秘书广告部【客户】精工电子纳米科技有限公司BT营业部 BT 营业一科TEL: 03-6280-0074http://www.siint.com/
  • 7月26日网络主题研讨会|日立聚焦离子束(三束)应用
    网络会议大会介绍2022年7月26-29日,仪器信息网与中国电子显微镜学会将联合主办“第八届电子显微学网络会议(iCEM 2022)”。iCEM 2022将围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家线上分享精彩报告。会议预告电子显微学技术及应用进展专场报告日期:7月26日上午 9:30-10:00报告题目:日立聚焦离子束(三束)应用报告人简介:日立科学仪器产品经理 张希文2012年8月加入日立高新技术(上海)国际贸易有限公司北京分公司,担任日立电子显微镜售后服务技术支持工作,并于同年赴日本工厂进行为期半年的生产技术培训;2013年回国后继续担任日立电镜售后服务技术支持工作,并同时担任日立电镜产品售前技术支持工作。2016年开始负责日立聚焦离子束的技术支持工作,并负责日立聚焦离子束在中国的推广工作。2021年公司整合,继续在日立科学仪器(北京)有限公司负责日立聚焦离子束的技术支持工作。END公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。

离子束相关的方案

离子束相关的论坛

  • 【求助】关于离子减薄的离子束

    最近要买离子减薄仪,有些公司说他们的离子束是平行的,有些说是聚焦离子束,这两种有什么区别呢?难道只在减薄的效率上有区别吗?请大家指教!

  • 急!!四极杆粗细对束缚离子束的影响

    如题,四极杆直径的大小对束缚离子束质量的大小有什么影响。我看的文献上说直径越大,越不利于束缚大质量的离子束。那为什么我们实验室买的四极杆很粗,却能束缚大质量的离子束呢?

  • FIB 聚焦离子束分析

    [b]FIB介绍[/b][font=inherit]聚焦离子束技术[/font](Focused Ion beam,FIB)是利用电透镜将离子束聚焦成非常小尺寸的离子束轰击材料表面,实现材料的剥离、沉积、注入、切割和改性。随着纳米科技的发展,纳米尺度制造业发展迅速,而纳米加工就是纳米制造业的核心部分,纳米加工的代表性方法就是聚焦离子束。近年来发展起来的[font=inherit]聚焦离子束技术[/font](FIB)利用高强度聚焦离子束对材料进行纳米加工,配合扫描电镜(SEM)等高倍数电子显微镜实时观察,成为了纳米级分析、制造的主要方法。目前已广泛应用于半导体集成电路修改、离子注入、切割和故障分析等。、[b]应用领域[/b](1)线路修改-在IC生产工艺中,发现微区电路蚀刻有错误,可利用FIB的切割,断开原来的电路,再使用定区域喷金,搭接到其他电路上,实现电路修改,最高精度可达5nm。(2)产品表面存在微纳米级缺陷,如异物、腐蚀、氧化等问题,需观察缺陷与基材的界面情况,利用FIB就可以准确定位切割,制备缺陷位置截面样品,再利用SEM观察界面情况。(3)微米级尺寸的样品,经过表面处理形成薄膜,需要观察薄膜的结构、与基材的结合程度,可利用FIB切割制样,再使用SEM观察。[align=center][img=FEI V400,227,227]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8711.png[/img]FEI V400[/align]使用设备:FEI V400可以针对14nm,16nm,28nm, 40nm, 45nm, 65nm, .13um, .18um, .25um, .35um 制程进行线路改造。适用的封装形式BGA, QFN, CSP, WLBGA, Die and board Level, 8” wafer, packaged “flip-chip”[table][tr][td=2,1,568]FIB典型照片[/td][/tr][tr][td=1,1,279]观测[/td][td=1,1,288]线路修改[/td][/tr][tr][td=1,1,279][img=,227,209]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8712.png[/img][/td][td=1,1,288][img=,240,218]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8713.png[/img][/td][/tr][tr][td=2,1,568]FIB配合TEM进行复杂操作[/td][/tr][tr][td=2,1,568] [img=,554,254]http://www.zenh.com/wp-content/uploads/2017/05/%E5%9B%BE%E7%89%8714.png[/img][/td][/tr][/table]文章引用自正衡检测官网欢迎各位莅临正衡检测网站讨论咨询[url]http://www.zenh.com/[/url]

离子束相关的资料

离子束相关的仪器

  • Arctis 冷冻等离子体聚焦离子束专为自动化冷冻电子断层扫描成像样品的制备而设计。用户可以稳定地在原位制备厚度约为 200nm 或更薄的冷冻薄片,同时避免产生镓 (Ga) 离子注入效应。与目前市场上的其他 cryo-FIB-SEM 系统相比,Arctis Cryo-PFIB 可显著提高样品制备通量。与冷冻透射电镜和断层成像工作流程直接相连通过自动上样系统,Thermo Scientific&trade Arctis&trade Cryo-PFIB 可自动上样、自动处理样品并且可存储多达 12 个冷冻样品。与任何配备自动上样器的冷冻透射电镜(如 Thermo Scientific Krios&trade 或 Glacios&trade )直接联用,省去了在 FIB-SEM 和透射电镜之间的手动操作载网和转移的步骤。为了满足冷冻聚焦离子束电镜与透射电镜应用的低污染要求,Arctis Cryo-PFIB 还采用了全新的高真空样品仓和经过改进的冷却/保护功能。Arctis 冷冻等离子体聚焦离子束电镜的主要特点与光学显微镜术关联以及在透射电镜中重新定位"机载"集成宽场荧光显微镜 (iFLM) 支持使用光束、离子束或电子束对同一样品区域进行观察。 特别设计的 TomoGrids 确保从最初的铣削到高分辨率透射电镜成像过程中,冷冻薄片能与断层扫描倾斜轴始终正确对齐。iFLM 关联系统能够在电子束和离子束的汇聚点处进行荧光成像。无需移动载物台即可在 iFLM 靶向和离子铣削之间进行切换。CompuStage的180° 的倾转功能使得可以对样品的顶部和底部表面进行成像,有利于观察较厚的样品。TomoGrids 是针对冷冻断层扫描工作流程而特别设计的,其上下2面均是平面。这2个面可防止载样到冷冻透射电镜时出现对齐错误,并始终确保薄片轴相对于透射电镜倾斜轴的正确朝向。 利用 TomoGrids,整个可用薄片区域都可用于数据采集。厚度一致的高质量薄片Arctis 冷冻等离子体聚焦离子束扫描电镜可在多日内保持超洁净的工作环境,确保制备一致的高质量薄片。等离子体离子束源可在氙离子、氧离子和氩离子间进行切换,有利于制备表面质量出色的极薄薄片。等离子体聚焦离子束技术适用于液态金属离子源 (LMIS) 聚焦离子束系统尚未涉及的应用。例如,可利用三种离子束的不同铣削特性制备高质量样品,同时避免镓注入效应。系统外壳的设计考虑到了生物安全,生物安全等级较高的实验室(如生物安全三级实验室)可选用高温消毒解决方案。Arctis 冷冻等离子体聚焦离子束扫描电镜的紧凑型样品室专为冷冻操作而设计。由于缩小了样品室体积,操作环境异常干净,最大限度减少水凝结的发生。通过编织套管冷却样品及专用冻存盒屏蔽样品,进一步提升了设计带来的清洁度,确保了可以进行多日批量样品制备的工作环境。 自动化高通量样品制备和冷冻断层扫描连接性自动上样器可实现多达 12 个网格(TomoGrids 或 AutoGrids)的自动上下样,方便转移到冷冻透射电镜,同时最大限度降低样品损坏和污染风险。通过新的基于网络的用户界面加载的载网将首先被成像和观察。 随后,选择薄片位置并定义铣削参数。铣削工作将自动运行。根据样品情况,等离子体源可实现高铣削速率,以实现对大体积材料的快速去除。自动上样系统为易损的冷冻薄片样品提供了受保护的环境。在很大程度上避免了可能会损坏或污染样品的危险手动操作样品步骤。 自动上样器卡槽被载入到与自动上样器对接的胶囊中,可在 Arctis 冷冻等离子体聚焦离子束扫描电镜和 Krios 或 Glacios 冷冻透射电镜之间互换。
    留言咨询
  • 高性能与高灵活性兼备“Ethos”采用日立高新的核心技术--全球领先的高亮度冷场发射电子枪及新研发的电磁复合透镜,不但可以在低加速电压下实现高分辨观察,还可以在FIB加工时实现实时观察。SEM镜筒内标配3个探测器,可同时观察到二次电子信号的形貌像以及背散射电子信号的成分衬度像;可非常方便的帮助FIB找寻到纳米尺度的目标物,对其观察以及加工分析。 另外,全新设计的超大样品仓设置了多个附件接口,可安装EDS*1和EBSD*2等各种分析仪器。而且NX5000标配超大防振样品台,可全面加工并观察最大直径为150mm的样品。 因此,它不仅可以用于半导体器件的检测,而且还可以用于从生物到钢铁磁性材料等各种样品的综合分析。*1Energy Dispersive x-ray Spectrometer(能谱仪(EDS))*2Electron Backscatter Diffraction(电子背散射衍射(EBSD)) 核心理念1. 搭载两种透镜模式的高性能SEM镜筒HR模式下可实现高分辨观察(半内透镜)FF模式下可实现高精度加工终点检测(Timesharing Mode)2. 高通量加工可通过高电流密度FIB实现快速加工(最大束流100nA)用户可根据自身需求设定加工步骤3. Micro Sampling System*3运用ACE技术(加工位置调整)抑制Curtaining效应控制离子束的入射角度,制备厚度均匀的薄膜样品4. 实现低损伤加工的Triple Beam System*3采用低加速(Ar/Xe)离子束,实现低损伤加工去除镓污染5. 样品仓与样品台适用于各种样品分析多接口样品仓(大小接口)超大防振样品台(150 mm□)*3选配
    留言咨询
  • JEOL高精度FIB JIB-PS500i的简介:1)超高分辨率:0.7nm(15kV);1nm(1kV)2)超大束流至500nA3)离子束分辨率:3nm4) 离子束束流至100nA5)自动软件6)与透射电镜连接顺畅等
    留言咨询

离子束相关的耗材

  • 聚焦离子束SW离子枪专用抑制极
    SUPPRESSOR,SW CONSUMABLE抑制极极电极,用于原厂聚焦离子束设备SW型号的离子枪,抑制极是聚焦离子束加载抑制极电压的电极,与拉出极配合,可对聚焦离子束的发射电流进行调节。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。
  • 聚焦离子束离子枪专用电镜光阑
    STRIP,TOMAHAWK,#02光阑条,用于原厂聚焦离子束TOMAHAWK型号的离子枪,光阑条是一个条状薄片上有多个不同孔径的圆孔,通过不同的孔径限制离子束的电流强度。以实现不同离子束电流间的切换。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。
  • 聚焦离子束离子枪专用拔出极
    EXTRACTOR ASSY,HT-SW拉出极电极,用于原厂聚焦离子束设备HT-SW型号的离子枪,拉出极是聚焦离子束加载拉出极高压的电极,用于将液态金属镓离子化,形成离子束。大束科技(北京)有限责任公司成立于2018年,是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。电子显微镜属于高端精密仪器,密集应用于我国的基础教学、科研平台、高科技项目研发等领域。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。

离子束相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制