核糖体

仪器信息网核糖体专题为您整合核糖体相关的最新文章,在核糖体专题,您不仅可以免费浏览核糖体的资讯, 同时您还可以浏览核糖体的相关资料、解决方案,参与社区核糖体话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

核糖体相关的资讯

  • Nature重磅发现:衰老的根源在核糖体?衰老加剧核糖体暂停,破坏蛋白质稳态
    自然生命,有情众生,都难逃衰老的命运。从微观的调度来看,衰老会导致细胞适应性的下降和蛋白质功能的丧失。然而,衰老导致蛋白质聚集的机制还没有被完全理解。实际上,科学家们已经知道,随着年龄增长的蛋白质聚集是一个与许多疾病相关的问题。因此,深入研究这些疾病的基本生物学,了解导致它们的机制,可以帮助我们选择更好的治疗方法。衰老的根源在于核糖体?Nature最新研究发现,衰老加剧核糖体暂停,破坏共翻译蛋白质稳态!近日,斯坦福大学的研究人员在国际顶尖学术期刊 Nature 发表了题为:Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis 的研究论文。该研究提出,随着细胞衰老,核糖体翻译暂停将不断增加,导致核糖体相关质量控制(RQC)超载和新生多肽聚集,从而在衰老过程中至关重要地促进了蛋白平衡障碍和全身衰退。该论文开辟了一个新的研究方向,将衰老如何导致蛋白质聚集的问题追溯到了核糖体的年龄依赖性损伤。核糖体(Ribosome)是细胞内普遍存在的一种细胞器,主要由rRNA和蛋白质构成,“中心法则”中mRNA翻译成蛋白质这一过程就发生在核糖体。其功能是按照mRNA的指令将遗传密码转换成氨基酸序列并从氨基酸单体构建蛋白质聚合物。因此,核糖体也被称为细胞内蛋白质合成机器。核糖体的结构和功能本研究的第一作者 Kevin C. Stein 博士表示:“衰老伴随着细胞蛋白平衡的失调,这是许多与年龄相关的蛋白质错误折叠疾病的基础。然而,衰老是如何破坏蛋白质平衡的仍不清楚。由于新生多肽对蛋白平衡网络构成了巨大的负担,我们假设,衰老过程中翻译效率的改变可能有助于推动蛋白平衡的崩溃。”在这项最新研究中,研究团队发现衰老改变了秀丽隐杆线虫和酿酒酵母的翻译延伸过程的动力学。在衰老的线虫和酵母的特定位置(例如多碱基区域)核糖体暂停被加剧,导致核糖体碰撞增加,从而触发核糖体相关质量控制(RQC)。事实上,长寿的酵母突变体减少了年龄依赖的核糖体暂停,并且延长了寿命,具体与更大通量的RQC途径相关。研究人员还发现,线虫中显示年龄依赖核糖体暂停的新生多肽在年龄依赖的蛋白聚集体中强烈富集,进一步将核糖体翻译停顿与蛋白平衡崩溃联系起来。研究衰老对翻译动力学和协同翻译的影响通过结合实验和计算数据分析,研究人员发现核糖体的功能会随年龄的增长而退化,与此同时,有缺陷的蛋白质也会不断增加,使得原本会阻止蛋白质聚集的质量控制失效保护机制无法发挥作用。斯坦福大学生物学和遗传学教授、本研究的通讯作者 Judith Frydman 博士说道:“蛋白质在生命中最脆弱和最关键的时刻——也就是它最容易发生错误折叠的时候——恰恰是它形成的时候。”衰老加剧了酵母中核糖体在多碱基区域的暂停研究团队使用了一种称为核糖体图谱的技术,这种技术可以让他们准确地看到在翻译过程中核糖体是如何在mRNA上移动的。他们观察到,在年龄较大的细胞中,核糖体的周期性移动变得更慢,并且核糖体性能的下降与年龄相关的错误折叠蛋白质聚集的增加相一致。核糖体暂停后,被截断的新生多肽的年龄依赖性聚集对此,论文第一作者 Kevin C. Stein 博士解释道:“有两种情况,衰老导致核糖体碰撞的增加和停滞,但细胞失去了处理它的安全网络。”核糖体暂停和截断的新生多肽在衰老过程中的聚集本研究的另一位主要作者 Fabián Morales-Polanco 博士兴奋地表示,这个发现只是一个非常迷人的未来的开端,这开创了一个新的研究方向,也随之而来了无数个等待回答的问题,并可能因此产生数百篇论文。总而言之,这项研究提出,随着细胞衰老,核糖体翻译暂停将不断增加,导致核糖体相关质量控制(RQC)超载和新生多肽聚集,从而在衰老过程中至关重要地促进了蛋白平衡障碍和全身衰退。 论文链接:https://www.nature.com/articles/s41586-021-04295-4
  • 用于确定真菌核糖体结构的冷冻电镜
    大多数人身上携带真菌白色念珠菌,没有它会引起很多问题。然而,这种真菌的全身感染是危险的并且难以治疗。很少有抗菌剂是有效的,而且它的耐药性正在增加。包括格罗宁根大学副教授 Albert Guskov 在内的一个国际科学家小组已经使用单粒子冷冻电镜来确定真菌核糖体的结构。他们的研究结果近日发表在《科学进展》上,揭示了新药的潜在目标。白色念珠菌通常不会引起任何问题,或者只是容易治疗的皮肤瘙痒感染。然而,在极少数情况下,它可能会导致可能致命的全身感染。现有的抗真菌药物会引起很多副作用并且价格昂贵。此外,白色念珠菌的耐药性越来越强,因此确实需要新的药物靶点。“我们注意到没有抗真菌药物针对蛋白质合成,而一半的抗菌药物会干扰这个系统,”Guskov说。造成这种情况的一个原因是真菌核糖体,即将遗传密码转化为蛋白质的细胞机器,在人类和真菌中非常相似。所以,你需要一种非常有选择性的药物来避免杀死我们自己的细胞。——Albert Guskov,格罗宁根大学副教授原子分辨率因此,Guskov 和他的合作者推断,获得白色念珠菌核糖体的结构对于寻找药物靶点很有价值。经典的方法是从纯化的核糖体中生长晶体,并使用 X 射线晶体学确定它们的结构;然而,这是一项费力的技术。相反,他们使用单粒子冷冻电镜,其中大量单粒子在电子显微镜中在非常低的温度下成像。从不同角度看到的单个粒子的图像随后被组合以产生原子分辨率的结构。突变' 通过这种方式,我们解决了空缺和抑制剂结合的真菌核糖体的结构,并将它们的功能与酵母和兔子的核糖体进行了比较——后者作为人类核糖体的模型——并重复了与不同核糖体结合的核糖体抑制剂,”Guskov 解释道。其中一种抑制剂是抗微生物放线菌酮 (CHX),已知白色念珠菌对其具有抗药性。通过比较这些结构,科学家们注意到在蛋白质合成中起关键作用的 E 位点的单个突变阻止了 CHX 与白色念珠菌核糖体结合。 ' 突变将这个E位点结构中的一个氨基酸从脯氨酸改变为谷氨酰胺。这种替代减少了结合位点的大小,因此抑制剂不能附着,因此无效。另一种抑制剂叶花苷不会被突变阻断。威胁' 通过比较白色念珠菌和人类空缺核糖体中 E 位点的结构以及不同抑制剂与该位点结合方式的信息,我们可以开发出一种特异性抑制剂,它可以阻断真菌核糖体,但不能阻断人类的核糖体。这将成为治疗真菌感染的选择性药物。科学家们目前正在筛选分子库以寻找药物先导物。 “开发针对白色念珠菌的疫苗极具挑战性,就像我们针对冠状病毒所做的那样。因此,我们需要药物来治疗全身感染,”Guskov解释道。 “这种真菌日益增加的耐药性是一个真正的威胁。如果这种情况继续下去,除非开发出新药,否则我们可能会遇到严重的麻烦。Source:University of GroningenJournal reference:Zgadzay, Y., et al. (2022) E-site drug specificity of the human pathogen Candida albicans ribosome. Science Advances. doi.org/10.1126/sciadv.abn1062.
  • 清华大学重大成果:酵母核糖体组装前体的高分辨冷冻电镜结构
    核糖体是一种广泛存在于细胞中的分子机器。所有生物,包括微小的细菌直至人类个体,都依赖核糖体对各种各样的蛋白质进行生物合成。作为一个分子量巨大的复合物,核糖体本身是如何在细胞中由多条RNA链及超过70种蛋白分子装配而成?这一问题已困扰相关领域科学家近30年。  核糖体自身是一个由核糖核酸(RNA)和蛋白质组成的超大复合物(半径20纳米),其三维结构和分子机制的研究一直是生命科学基础研究中的重要方向。2009年的诺贝尔化学奖即授予了首次解析出细菌核糖体原子分辨率的三位结构生物学家。  真核细胞核糖体装配过程是个高度复杂的动态过程,有超过300种不同功能的辅助装配因子(蛋白质或者RNA)参与其中。然而绝大多数装配因子的结构及其行使功能的分子机理完全未知。此外,核糖体的组装与细胞的生长调控通路密切相关,某些装配因子的遗传突变会导致核糖体生物生成的失调,引起一系列的人类遗传性疾病(称为ribosomopathies)。某些特定的装配因子(例如eIF6)不正常表达也在多种人类癌症细胞中被发现。因此,针对核糖体装配过程的研究不仅具有重要的科学意义,还具有潜在的临床应用潜力。  图1酵母核糖体大亚基组装中间体的3.08埃冷冻电镜结构。a,3.08 埃冷冻电镜密度图,核糖体蛋白颜色为米色,核糖体RNA颜色为灰色。b,19个装配因子的原子模型。  清华大学生命科学学院高宁研究组自2009年一直致力于研究各种生物的核糖体装配过程。2013年,高宁研究组和美国卡内基梅隆大学的约翰伍尔福德(John L. Woolford Jr)教授研究组携手合作,利用清华大学的高端冷冻电镜平台,以真核生物酵母菌为材料,开展真核核糖体的装配研究工作。2015年,合作研究获得重大突破,课题组得到了酵母细胞核内的一系列组成上和结构上不同的核糖体60S亚基前体复合物的冷冻电镜结构。其中一种状态的三维结构分辨率达到3.08埃,其核心部分的分辨率可达2.8埃,是国际在核糖体组装研究领域迄今为止分辨率最高的结构。基于这一冷冻电镜结构,课题组确定了超过20种不同装配因子在核糖体60S前体上的结合位置,并获得了19种装配因子的原子模型。课题组所提供的丰富结构信息为详细阐释真核核糖体装配过程中的多种装配因子功能和分子机制提供了重要基础。  2016年5月25日,报道这一重大突破的研究论文在线发表于《自然》(Nature)期刊,题目为《细胞核内的核糖体组装前体结构揭示了装配熟因子的功能多样性》(Diverse roles of assembly factors revealed by structures of late nuclear pre-60S particles)。高宁研究员和卡内基梅隆大学约翰伍尔福德(John L. Woolford Jr)教授为论文共同通讯作者,清华大学生命学院2013级博士生吴姗为第一作者。北京生命科学研究所董梦秋教授及谭丹博士提供了化学偶联交联质谱数据。论文中冷冻电镜数据收集和处理工作获得了国家蛋白质科学(北京)设施清华大学冷冻电镜平台及高性能计算平台支持。课题组得到了中国科技部、国家自然科学基金委、清华大学自主科研、北京高精尖结构生物学中心的经费支持。  论文链接

核糖体相关的方案

  • 人抗核糖体P蛋白抗体(ARPA/Rib-P)检测试剂盒
    人抗核糖体P蛋白抗体(ARPA/Rib-P)检测试剂盒人抗核糖体P蛋白抗体(ARPA/Rib-P)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人抗核糖体P蛋白抗体(ARPA/Rib-P)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人抗核糖体P蛋白抗体(ARPA/Rib-P)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人抗核糖体P蛋白抗体(ARPA/Rib-P)抗原、生物素化的人抗核糖体P蛋白抗体(ARPA/Rib-P)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人抗核糖体P蛋白抗体(ARPA/Rib-P)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 人28S抗核糖体抗体(28S rRNP)检测试剂盒
    人28S抗核糖体抗体(28S rRNP)检测试剂盒人28S抗核糖体抗体(28S rRNP)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人28S抗核糖体抗体(28S rRNP)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人28S抗核糖体抗体(28S rRNP)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人28S抗核糖体抗体(28S rRNP)抗原、生物素化的人28S抗核糖体抗体(28S rRNP)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人28S抗核糖体抗体(28S rRNP)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 人抗核糖核蛋白抗体(RNP-Ab)检测试剂盒
    人抗核糖核蛋白抗体(RNP-Ab)检测试剂盒人抗核糖核蛋白抗体(RNP-Ab)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人抗核糖核蛋白抗体(RNP-Ab)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人抗核糖核蛋白抗体(RNP-Ab)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人抗核糖核蛋白抗体(RNP-Ab)抗原、生物素化的人抗核糖核蛋白抗体(RNP-Ab)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人抗核糖核蛋白抗体(RNP-Ab)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度

核糖体相关的论坛

  • 【讨论】核糖体—生命化学工厂中的工程师

    10月7日,瑞典皇家科学院在斯德哥尔摩宣布,英国剑桥大学科学家文卡特拉曼·拉马克里希南(左)、美国科学家托马斯·施泰茨(中)和以色列科学家阿达·约纳特因“对核糖体结构和功能的研究”而共同获得2009年诺贝尔化学奖。这是瑞典皇家科学院在斯德哥尔摩举行的新闻发布会上展示3位科学家的照片。  生命体就像一个极其复杂而又精密的仪器,不同“零件”在不同岗位上各司其职,有条不紊。而这一切,就要归功于仿佛扮演着生命化学工厂中工程师角色的“核糖体”:它翻译出DNA所携带的密码,进而产生不同的蛋白质,分别控制人体内不同的化学过程。  诺贝尔奖评选委员会10月7日介绍说,三位科学家文卡特拉曼·拉马克里希南、托马斯·施泰茨和阿达·约纳特因“对核糖体的结构和功能的研究”而获得今年的诺贝尔化学奖。  DNA(脱氧核糖核酸)是核酸的一类,因分子中含有脱氧核糖而得名。生物体中的每一个细胞里,都有DNA分子,它们对于无论是一个人还是一棵植物或者一个细菌而言,都至关重要,因为这些DNA分子决定了生命体的外貌及功能。DNA是几乎所有生物的遗传物质基础,它存储了大量的“指令”信息,能引导生物的发育和生命机能的运作。但是在生命体中,DNA所含有的指令就像一张写满密码的图纸,只有经核糖体的翻译,每条指令才能得到明确无误的执行。  具体而言,核糖体的工作,就是将DNA所含有的各种指令翻译出来,之后生成任务不同的蛋白质,例如用于输送氧气的血红蛋白、免疫系统中的抗体、胰岛素等激素、皮肤的胶原质或者分解糖的酶等等。人体内有成千上万种蛋白质,它们各自拥有不同的形式与功能,在化学层面上构建并控制着生命体。  诺贝尔奖评委会介绍,三位科学家都采用了X射线蛋白质晶体学的技术,标识出了构成核糖体的成千上万个原子。这些科学家们不仅让我们知晓了核糖体的“外貌”,而且在原子层面上揭示了核糖体功能的机理。“认识核糖体内在工作的机理,对于科学理解生命非常重要。这些知识可以立刻应用于实际。”  基于核糖体研究的有关成果,可以很容易理解,如果细菌的核糖体功能得到抑制,那么细菌就无法存活。在医学上,人们正是利用抗生素来抑制细菌的核糖体从而治疗疾病的。评委会说,三位科学家构筑了三维模型来显示不同的抗生素是如何抑制核糖体功能的,“这些模型已被用于研发新的抗生素,直接帮助减轻人类的病痛,拯救生命”。

  • 【资料】核糖体—生命化学工厂中的工程师

    09诺贝尔化学奖成果解读:核糖体,生命化学工厂中的工程师 生命体就像一个极其复杂而又精密的仪器,不同“零件”在不同岗位上各司其职,有条不紊。而这一切,就要归功于仿佛扮演着生命化学工厂中工程师角色的“核糖体”:它翻译出DNA所携带的密码,进而产生不同的蛋白质,分别控制人体内不同的化学过程。  诺贝尔奖评选委员会10月7日介绍说,三位科学家文卡特拉曼拉马克里希南、托马斯施泰茨和阿达约纳特因“对核糖体的结构和功能的研究”而获得今年的诺贝尔化学奖。  DNA(脱氧核糖核酸)是核酸的一类,因分子中含有脱氧核糖而得名。生物体中的每一个细胞里,都有DNA分子,它们对于无论是一个人还是一棵植物或者一个细菌而言,都至关重要,因为这些DNA分子决定了生命体的外貌及功能。DNA是几乎所有生物的遗传物质基础,它存储了大量的“指令”信息,能引导生物的发育和生命机能的运作。但是在生命体中,DNA所含有的指令就像一张写满密码的图纸,只有经核糖体的翻译,每条指令才能得到明确无误的执行。  具体而言,核糖体的工作,就是将DNA所含有的各种指令翻译出来,之后生成任务不同的蛋白质,例如用于输送氧气的血红蛋白、免疫系统中的抗体、胰岛素等激素、皮肤的胶原质或者分解糖的酶等等。人体内有成千上万种蛋白质,它们各自拥有不同的形式与功能,在化学层面上构建并控制着生命体。  诺贝尔奖评委会介绍,三位科学家都采用了X射线蛋白质晶体学的技术,标识出了构成核糖体的成千上万个原子。这些科学家们不仅让我们知晓了核糖体的“外貌”,而且在原子层面上揭示了核糖体功能的机理。“认识核糖体内在工作的机理,对于科学理解生命非常重要。这些知识可以立刻应用于实际。”  基于核糖体研究的有关成果,可以很容易理解,如果细菌的核糖体功能得到抑制,那么细菌就无法存活。在医学上,人们正是利用抗生素来抑制细菌的核糖体从而治疗疾病的。评委会说,三位科学家构筑了三维模型来显示不同的抗生素是如何抑制核糖体功能的,“这些模型已被用于研发新的抗生素,直接帮助减轻人类的病痛,拯救生命”。

  • 【转帖】2009年诺贝尔化学奖揭晓---美以三科学家因“对核糖体结构和功能的研究”而获奖

    北京时间10月7日下午5点45分,2009年诺贝尔化学奖揭晓,美以三科学家因“对核糖体结构和功能的研究”而获奖。这三位科学家为美国的Venkatraman Ramakrishnan、Thomas A. Steitz及以色列的Ada E. Yonath。  Venkatraman Ramakrishnan,1952年出生于印度的Chidambaram,美国公民。1976年从美国俄亥俄大学获得物理学博士学位。现为英国剑桥MRC分子生物学实验室结构研究部资深科学家和团队领导人。Thomas A. Steitz,1940年出生于美国密尔沃基市,美国公民。1966年从哈佛大学获得分子生物学与生物化学博士学位。现为耶鲁大学分子生物物理学和生物化学教授(Sterling Professor)及霍华德• 休斯医学研究所研究人员。Ada E. Yonath,1939年出生于以色列耶路撒冷,以色列公民。1968年从以色列魏茨曼科学研究所获得X射线结晶学博士学位。现为魏茨曼科学研究所结构生物学教授及生物分子结构与装配研究中心主任。  今年的诺贝尔化学奖奖金为1000万瑞典克朗,三位科学家将各获得三分之一的奖金。  2009年诺贝尔化学奖奖励的是对生命一个核心过程的研究——核糖体将DNA信息“翻译”成生命。核糖体制造蛋白质,控制着所有活有机体内的化学。因为核糖体对于生命至关重要,所以它们也是新抗生素的一个主要靶标。  今年的诺贝尔化学奖奖励Venkatraman Ramakrishnan、Thomas A. Steitz和Ada E. Yonath这三位科学家,他们在原子水平上显示了核糖体的形态和功能。三位科学家利用X射线结晶学技术标出了构成核糖体的无数个原子每个所在的位置。  在所有有机体的每个细胞内都存在DNA分子,它们包含的蓝图决定着一个人、一棵植物或一个细菌的外形和功能。但是DNA分子是被动的,如果没有其他东西存在,就不会有生命。  这些蓝图通过核糖体的作用被转变成活物质。依据DNA内的信息,核糖体制造蛋白质——运输氧的血红蛋白、免疫系统的抗体、胰岛素等激素、皮肤胶原质或分解糖的酶等。身体内存在成千上万种蛋白质,各自具有不同的形态和功能。它们在化学水平上构造并控制着生命。  理解核糖体最基本的工作方式对于科学地理解生命是重要的。这一知识可被直接应用于实践,比如,目前许多抗生素通过阻滞细菌核糖体的功能而治愈多种疾病。没有起作用的核糖体,细菌就无法生存。这就是为什么核糖体对于新抗生素来说是如此重要的一个靶标。  今年的三位获奖者均制造了3D模型,展示了不同的抗生素如何绑定到核糖体。这些模型如今被科学家们所应用以开发新的抗生素,直接帮助了挽救生命及减少人类的痛苦。   诺贝尔奖得主感言:我们只是一群努力者的代表  新华网斯德哥尔摩10月7日电“科学是高度合作的事业,”2009年诺贝尔化学奖得主文卡特拉曼拉马克里希南在得知获奖消息后说,“很多人对核糖体的研究作出了贡献。所以,从某个角度来说,我们只是一群努力者的代表。”  “哦,你知道吗,”拉马克里希南在确认获奖后对媒体说,“我接到获奖通知电话时的第一反应还认为这是个玩笑,我有个朋友经常和我开玩笑,我还夸奖他说话有瑞典口音。”  “我真的,真的很高兴!”年届七旬的以色列女化学家阿达约纳特在接到诺贝尔基金会网站主编的获奖通知电话时,虽然语调平静,但言语之中却充满了喜悦,“这么说,我是继居里夫人、约里奥-居里、霍奇金之后获得诺贝尔化学奖的第四位女科学家了?”  “当年我们取得那些发现的时候,感觉真是太美妙了!”这位被拉马克里希南称为核糖体研究“先锋”的女科学家回忆说,“那些发现实际上是一系列研究的成果。尽管我们现在还没弄清楚所有核糖体的秘密,但已经取得许多进展。”  接到来自瑞典的电话时,托马斯施泰茨正打算去体育馆健身。“电话那头建议我别去了,因为接下来会有不少电话找我。”施泰茨解释说,有关核糖体的研究成果将有助于研发新型抗生素。

核糖体相关的资料

核糖体相关的仪器

  • 使用 Thermo Scientific™ Sorvall™ MX Plus 系列落地式微量超高速离心机可在更短时间内进行更多高容量实验。 尖端技术将高速性能、多功能转子容量和紧凑的占地空间相结合。该超级离心机具有优异的处理容量和样品分离效果,离心力可达到 1,048,000 × g。描述高速和低 K 因子:150,000rpm 或 120,000rpm 的最高速度以及经充分优化的转子设计可显著缩短总离心时间紧凑和个人:0.53 sq.m (5.7 sq.ft.) 的较小占地空间,方便在实验室摆放,不会占用实验室的宝贵空间运行安静:噪音水平低于 45dBA;即使在其旁边工作也不会听到它运行的声音多功能性能:多种转子及离心管体积,可满足多种不同样品要求。坚固可靠免维护无刷驱动系统和转子失衡保护可确保可靠的性能订购信息:为满足各种少量样品处理应用需要,Sorvall MX Plus 系列产品可选择多种转子(如固定角、水平和垂直转子),兼容 0.2 到 30mL 离心管。 所有转子均为单独销售。推荐用途:病毒(HIV、SRSV、轮状病毒)细胞器(核糖体、线粒体、微粒体)脂蛋白纳米粒核酸
    留言咨询
  • Fragment Analyzer 5200 全自动毛细管电泳系统突破了分析瓶颈,简化了核酸分析工作流程,在研究人员需要时为他们提供所需的结果。该系统可在没有研究人员干预的情况下,同时分析多达12个样本,分辨率高达3 bp。样品浓度要求极低,使研究人员能够保存珍贵的样品以便进一步分析。Fragment Analyzer 5200 全自动毛细管电泳系统的优势包括: - 毛细管阵列可互换的灵活性,实现不同的分辨率与应用- 可以加载3块96孔样品板,在无人干预的情况下实现288个样本的分析,并可以任何顺序开展检测 - 可以装载两种不同的凝胶基质,实现无需人工干预的不同样本类型分析间的切换- 专业软件配合不同试剂盒提供基因组DNA完整值(GQN)、RNA完整值(RQN)、DNA完整值(DQN),以DV200参数 - 广泛的应用覆盖基因组DNA、大/小片段DNA、cfDNA、NGS文库质控、质粒、微卫星、PCR片段、酶切片段、小RNA文库、mRNA、sgRNA、小RNA/微卫星RNA、去除核糖体后的总RNA、总RNA、FFPE来源的核酸等样本类型- 产品货号:M5310AA- 可选毛细管阵列:m5310aa##001, m5310aa##002, m5310aa##003- 配套试剂盒:- 定量试剂盒- 定性试剂盒具体试剂盒种类请咨询销售代表
    留言咨询
  • Fragment Analyzer 5300 全自动毛细管电泳系统突破了分析瓶颈,简化了核酸分析工作流程,在研究人员需要时为他们提供所需的结果。该系统可在没有研究人员干预的情况下,同时分析多达48或96个样本,分辨率高达3 bp。样品浓度要求极低,使研究人员能够保存珍贵的样品以便进一步分析。Fragment Analyzer 5300 全自动毛细管电泳系统的优势包括: - 毛细管阵列可互换的灵活性,实现不同的分辨率与应用 - 可以加载3块96孔样品板,实现无人值守的分析至多288个样本,并以任何顺序开展检测 - 可以装载两种不同的凝胶基质,实现无需人工干预的不同样本类型分析间的切换- 专业软件配合不同试剂盒提供基因组DNA完整值(GQN)、RNA完整值(RQN)、DNA完整值(DQN),以DV200参数- 广泛的应用覆盖基因组DNA、大/小片段DNA、cfDNA、NGS文库质控、质粒、微卫星、PCR片段、酶切片段、小RNA文库、mRNA、sgRNA、小RNA/微卫星RNA、去除核糖体后的总RNA、总RNA、FFPE来源的核酸等样本类型产品货号:M5311AA- 可选毛细管阵列:m5311aa##001, m5311aa##002, m5311aa##003配套试剂盒:- 定量试剂盒- 定性试剂盒具体试剂盒种类请咨询销售代表
    留言咨询

核糖体相关的耗材

  • 放大倍数及分辨率测试标样 610-66 认证的聚苯乙烯乳胶球,350nm
    该系列标样尺寸均匀一致,尺寸范围在20至907nm之间,可溯源至NIST。纳米球标样适合电子显微镜和原子力显微镜校准,也可用于激光散射研究和悬浮物系统研究。可方便地检查细菌、病毒、核糖体、亚细胞成分等的大小。
  • 超高灵敏度 RNA 试剂盒,275
    超高灵敏度 RNA 试剂盒可用于评估浓度低至 2.5 pg/µL 的 RNA。两种分离方法经优化用于总 RNA 和 mRNA QC 的分析。两种样品类型在 NGS 文库制备和基因表达分析工作流程中都需要质量控制步骤。ProSize 数据分析软件通过提供总 RNA 的 RNA 质量评分 (RQN) 和 mRNA 样品的核糖体 RNA 污染百分比来简化 RNA QC 过程。这些质量指标卡由 ProSize 软件自动计算,可在 RNA QC 期间对样品实现客观分析。 超高灵敏度检测 — 超高灵敏度 RNA 试剂盒可检测浓度低至 2.5 pg/µL 的总 RNA 和 15 pg/µL 的 mRNA质量指标 — RNA 质量评分 (RQN) 提供了总 RNA 样品的客观分析和 mRNA 样品的核糖体污染百分比可靠的分子量测定 — 超高灵敏度 RNA 试剂盒可实现高达 6000 nt 的准确分子量测定低样品量 — 仅需 2 µL 样品,可最大程度减少 RNA QC 步骤的样品损失两种分离方法 — 针对总 RNA 的优化分离方法(US 总 RNA 方法)和针对 mRNA 的优化分离方法(US mRNA 方法)
  • 放大倍数及分辨率测试标样 610-76 认证的聚苯乙烯乳胶球,900nm
    该系列标样尺寸均匀一致,尺寸范围在20至910nm之间,可溯源至NIST。纳米球标样适合电子显微镜和原子力显微镜校准,也可用于激光散射研究和悬浮物系统研究。可方便地检查细菌、病毒、核糖体、亚细胞成分等的大小。

核糖体相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制