染料电池

仪器信息网染料电池专题为您整合染料电池相关的最新文章,在染料电池专题,您不仅可以免费浏览染料电池的资讯, 同时您还可以浏览染料电池的相关资料、解决方案,参与社区染料电池话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

染料电池相关的资讯

  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al,J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 日立应用|燃料电池的电镜观察
    燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。燃料电池的能量利用效率高,环境污染小,是最有发展前途的发电技术之一。燃料电池按照电解质的种类不同,可分为碱性燃料电池(AFC),磷酸燃料电池(PAFC),熔融碳酸盐燃料电池(MCFC),质子交换膜燃料电池(PEMFC)和固体氧化物燃料电池(SOFC)。按照燃料的类型可分为氢燃料电池,甲烷燃料电池,甲醇燃料电池,乙醇燃料电池。目前各类燃料电池电动车主要使用的是质子交换膜燃料电池(PEMFC)。质子交换膜燃料电池的结构和化学反应上图是PEMFC的结构和化学反应。PEMFC由膜电极(membrane-electrode assembly,MEA)和带气体流动通道的双极板组成。其核心部件膜电极是采用一片聚合物电解质膜和位于其两侧的两片电极热压而成,中间的固体电解质膜起到了离子传递和分割燃料和氧化剂的双重作用,而两侧的电极是燃料和氧化剂进行电化学反应的场所。PEMFC通常以全氟磺酸型质子交换膜为电解质,Pt/C或PtRu/C为电催化剂,氢或净化重整气为燃料,空气和纯氧为氧化剂,带有气体流动通道的石墨或表面改性金属板为双极板。膜电极(MEA)的截面SEM图片Sample: Courtesy of Prof. Takeo Yamaguchi, Tokyo Institute of Technology膜电极(Membrane Electrode Assembly ,MEA)是燃料电池的主要部分,它每层的结合情况以及颗粒的聚集状态会影响发电性能。MEA截面的结构观测非常重要。上图显示了一个聚合物膜样品在冷却时的横截面离子研磨后的结果,为减少离子束的热损伤使用了-100 ℃的条件进行加工。MEA横截面的整个图像显示各层接触时没有分层。在高倍放大时的阳极图像可以观察到纳米尺寸的铂粒子,碳粒子和其中的空隙。阴极层是纳米胶囊催化剂与铂铁纳米颗粒结合,从它的横截面可以看到,催化剂胶囊被紧密地包装在中空空间中。因此,离子研磨法可以在没有应力的情况下进行加工,能够通过冷却功能加工截面样品来减少热损伤,产生具有减少热损伤的横截面样品,进而可以有效的理解MEA的整体结构和分析催化剂颗粒的纳米结构。燃料电池催化电极材料高倍图像和三维重构结构from Prof. Chihiro Kaito, Ritsumeikan University上图左图是使用日立HT7830得到的燃料电池催化电极材料高倍图像,加速电压使用120kV,高分辨模式(HR mode),放大倍数为×50,000。C基底上的Pt颗粒的分散状态可以很清晰的看到。上图右图是同样的样品从+60°~-60°每2°拍照一次得到一系列图片后做三维重构后的结果,可以清楚的看到三维结构的Pt颗粒的分散情况。CNT和PTFE复合膜的SEM图像Sample:courtesy of Prof. Yoshinori SHOW Department of Electrical and Electronic Engineering,School of Engineering, Tokai University由于导电性和耐腐蚀性好,碳纳米管(CNT)和聚四氟乙烯(PTFE)复合膜有时会作为 MEA 的保护膜使用。CNT 在PTFE 中分散的均匀性非常重要,因为膜的导电性会受此影响。上图中,左图为0.2eV时观察CNT和PTFE的表面形貌,由于电压非常低,所以样品没有被电子束损伤。 右图为0.2eV时观察CNT和PTFE的电位衬度,CNT的亮度比PTFE明显要高,这是因为CNT的导电性更好。利用电位衬度就可以非常清晰的区分成分衬度相差不大的CNT和PTFE。燃料电池气体扩散层的电镜观察气体扩散层(Gas diffusion Layer,GDL)作为连接催化层和流动区域的桥梁,一般具有多孔性,导电性,疏水性,化学稳定性和可靠性。常用的支撑材料有碳纤维和聚四氟乙烯/碳膜组成的微孔层(MPL),目前碳纤维布附着MPL可以达到气体扩散层的要求。上图就是碳纤维布及附着MPL的SEM图片,可以观察到二者之间的紧密接触,各自空隙及厚度。高分辨观察自组装Fe3O4纳米颗粒Sample:courtesy of Electrical Computer Engineering department, National University of Singapore过渡金属基材料比如自组装Fe3O4纳米颗粒现在被作为储氢材料,这对氢能的利用来说是非常关键的。上图是高分辨观察自组装Fe3O4纳米颗粒,所用的着陆电压为1.5 kV,使用了电子束减速功能。纳米颗粒非常有规则的组装在一起,每个颗粒的直径约为12nm。利用电镜观察燃料电池各部分的形貌和结构,有助于高性能燃料电池的研发。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 干货:实验室选择燃料电池测试系统应注意哪些技术问题?
    燃料电池具有工作温度低、启动响应快、能源效率高、电池寿命长、产物无污染等优点,是交通、工业、建筑等领域实现能源转型的重要途径。当前,全球主要经济体都在加大氢燃料电池技术研究投入,破解氢燃料电池商用化难题。燃料电池测试系统作为氢能实验室科研必备仪器,发挥着重要作用。燃料电池测试包含电池性能测试(稳态模型、极化曲线V-I特性、极限电流、气体计量比、扩散增益、温度、压力、湿度、过载等)、气密性测试、耐久性测试及环境适应性测试等内容。一套功能强大的燃料电池测试系统可以帮助科研人员高效率完成测试工作,实验数据更准确,结果易重现,节约大量的宝贵时间。实验室选择燃料电池测试系统应该注意哪些技术问题呢?这3个技术点值得注意。1、 自动背压与手动背压背压的作用是根据燃料电池电堆进气需求,与空压机配合,提供适当流量和压力的空气。有自动背压与手动背压两种类型。实验室一定要首先考虑自动背压型燃料电池测试系统。手动背压依赖实验人员的动手经验,操作费时费力,不能非常细腻地调控数值,反应滞后,且存在压力波动现象,测试数据受人为干预因素较大,不利于结果复现。自动背压完全由计算机程序控制,可以连续实时保持恒流恒压的状态,保证了实验的重复性和精准性,避免物料浪费,加快研发效率。2、 电子负载多参数极化曲线测试是典型的燃料电池测试项目,通过描述输出电压和电流密度曲线,表征燃料电池的电化学反应和电子传输情况。在测试时,需要面临“0V启动”、“大电流”问题。具备“0V启动”功能的燃料电池测试系统可以从0电压开始测试,即便是满电流带载运行也无须担心设备问题。燃料电池测试系统的“大电流”选择也很重要,实验室测试所用的电子负载并不是越高越好。过高电子负载的燃料电池测试系统仪器规格不仅尺寸庞大,造价不菲。也非常占空间,操作复杂繁琐,维护保养成本高。很多测试实验根本用不到那么高的电流、功率。一般而言,0-300A即可满足绝大多数测试需求。合理的电子负载,不仅价格经济、不挑空间,而且功能完善、性能卓著。以武汉电弛新能源研制的DC 980Pro燃料电池测试系统为例,该系统电子负载规格10V/240A/1600W,具备0V启动功能,100毫秒超高响应速度,反极也能测试,电子负载的精度、分辨率与进口设备同水平。3、 质量流量控制燃料电池本质上是氢、氧化学反应的发电装置,质量流量控制至关重要,是衡量一套燃料电池测试系统的重要指标。当参与反应的氧气量不足时,电堆输出电压降低,质子交换膜过热,降低电堆寿命。反之参与反应的氧气量过高,电堆输出功率不会随之增加但对应的空压机功耗变大,燃料电池系统净输出功率减少。[1]以武汉电弛新能源DC 980Pro为例,流量计和压力仪表负责主要液体、气体和压力测量和控制相关任务。该系统拥有10000:1(0.01%-100%量程)超宽稳定控制,精度可+/- 0.125%满量程。阳极气体流量控制最大可到5 SLPM,阴极气体流量控制最大可达10 SLPM,应用国际一线品牌T型热电偶,连续实时检测燃料电池质量流量数据,为后续开发节能型燃料电池产品技术打下坚实基础。结语工欲善其事,必先利其器。燃料电池测试系统强大的应用功能不仅能帮助科技工作者快速完成分析测试工作,其多功能性特点也有助于材料学、界面科学、电化学、流体力学等多学科交流创新,对我国氢能源技术加速发展,意义非凡。引用资料[1] 西南交通大学 张玉瑾, 《大功率PEMFC空气系统控制策略研究》

染料电池相关的方案

  • 使用QCM-D改进染料敏化太阳能电池
    可再生能源在如今的社会中越来越被人们所重视,而染料敏化太阳能电池(DSSC)是一种可以替代传统太阳能电池的,新型,具有潜在市场的新型能源。对于染料敏化太阳能电池来说,敏化染料在二氧化钛上的吸附至关重要,因为牵涉到光电转化效率,所以说理解敏化染料的吸附机理可以有助改进电池。本文使用石英晶体微天平(QCM-D)成功的表征了敏化染料的吸附。
  • 导电聚邻苯二胺的合成及在染料敏化太阳能电池中的应用
    制备了聚邻苯二胺, 并将其作固体传输材料应用在染料敏化太阳能电池中。用光电化学方法研究了染料酸性湖蓝、聚邻苯二胺(PoPD)、二氧化钛(TiO2) 纳米晶电极以及用酸性湖蓝和PoPD 复合敏化TiO2 纳米晶膜电极的光电化学行为。用聚邻苯二胺作为固体电解质, 染料酸性湖蓝, 组装了电池, 初步测定了TiO2/ 酸性湖蓝/ PoPD 电极作为光阳极的光电化学电池的工作特性曲线, 测得Voc=0.43V, Isc=0.378mA。
  • 天津兰力科:直接甲醇燃料电池有序功能铂基合金阳极催化剂的研究
    能源的短缺和人类对能源的不合理运用,给人类自身的生存条件和自然环境造成了极大的破坏。燃料电池作为一种不经过燃烧直接以电化学方式将燃料的化学能转化为电能的发电装置,有望成为21世纪首选的洁净、高效的发电技术。直接甲醇燃料电池(DirectMethanol Fuel Cell)是燃料电池的一个重要的分支,以甲醇为燃料,具有无污染、能量转化率高、储存和运输方便等优点,有望在便携式电源、电动机车和野外电站等方面得到应用,但是目前阻碍DMFC发展的主要问题是甲醇氧化的电极材料活性不高且对甲醇吸附能力较好的铂的价格昂贵,本文的主要目的是制备出高催化活性且成本较低的甲醇电催化氧化的阳极催化剂。本论文采用了电化学方法,如循环伏安法,常规脉冲伏安法及X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线能量色散谱(EDS)表征等技术手段研究了铂基功能性系列阳极阵列催化剂的制备方法及对甲醇电催化氧化性能,并讨论了甲醇在催化剂上的催化氧化机理。所制备出来的普通铂基合金修饰玻碳电极、铂基多元纳米线阵列电极、铂基多元空心球和Nafion试剂修饰的玻碳电极对甲醇的电催化氧化性能有了很大的提高,且所用的电极材料(贵金属)相比普通铂电极成本明显降低,得到的实验结果对甲醇燃料电池的商业化有一定的指导意义。本论文综述了燃料电池的发展历史及其分类,重点介绍了直接甲醇燃料电池的工作原理及研究进展和应用前景,尤其是直接甲醇燃料电池的阳极催化剂研究进展以及对纳米电催化材料在甲醇燃料电池阳极催化剂中的应用前景进行了详细说明,由此得出本文的选题依据,主要研究内容和结论如下:

染料电池相关的论坛

  • 【分享】科研人员合成新光敏染料 可改进太阳能电池效率

    美国布法罗分校教授迈克尔·戴缇和罗彻斯特大学教授理查德·杰西艾森柏格领导的研究团队合成了一种新的光敏染料,能大大增强太阳能电池和氢燃料电池的效率。研究发表在最近的《美国化学学会会刊》上。   新染料产生电力的方式是,当太阳光照射到染料时,太阳光蕴含的能量会“敲击”染料中松散的电子,这些电子通过太阳能电池并形成电流。  产生氢气也以同样的方式开始:太阳光敲打染料,释放出电子。但这些电子并不会形成电流,而是流进一个催化剂内,并在此处驱动一个化学反应,将水分解成为氢气和氧气。  科学家已在实验室测试中证明,这种染料系统比传统染料产生氢气的速度更快,部分原因是该染料能够更好地吸收太阳光,同时更有效地运送电子。科学家还发现,新染料在同质的制氢系统中更有效,这些系统使用钴或者沉积在二氧化钛的铂作为催化剂。  这种染料一旦商业化生产,将成为一项物美价廉的基础性技术,为家用电器和氢燃料电动汽车等提供电力。戴缇希望其研究将能够有助于研发出更好的商业技术来制备太阳能电池和氢电池。

  • 【资料】自制染料敏化太阳能电池(图解)

    【资料】自制染料敏化太阳能电池(图解)

    有助于了解染料敏化太阳能电池的原理和制备过程.1.We start with 2 glass plates. Each plate is coated with TCO (or Transparent Coated Oxide). This is a thin coating which is electrically conducting in much the same way as metal wire. The TCO consists of SnO2:F (:F indicates that the tin oxide is doped with a very small amount of Fluor). The coating is transparent to enable light to pass through without loss. Doping is the process where small quantities of foreign atoms are introduced to control the electronic properties of semi conductors.The function of the TCO is to transport the current produced from the solar cell to the power consuming device. The Minus electrode goes by the name of ‘Photo electrode”[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608231806_24512_1618618_3.jpg[/img]

  • 固体氧化物燃料电池的特点介绍

    SOFC与第一代燃料电池(磷酸型燃料电池,简称PAFC)、第二代燃料电池(熔融碳酸盐燃料电池,简称MCFC)相比它有如下优点:  (1)较高的电流密度和功率密度;  (2)阳、阴极极化可忽略,极化损失集中在电解质内阻降;  (3)可直接使用氢气、烃类(甲烷)、甲醇等作燃料,而不必使用贵金属作催化剂;  (4)避免了中、低温燃料电池的酸碱电解质或熔盐电解质的腐蚀及封接问题;  (5)能提供高质余热,实现热电联产,燃料利用率高,能量利用率高达80%左右,是一种清洁高效的能源系统;  (6)广泛采用陶瓷材料作电解质、阴极和阳极,具有全固态结构;  (7)陶瓷电解质要求中、高温运行(600~1000℃),加快了电池的反应进行,还可以实现多种碳氢燃料气体的内部还原,简化了设备。  除了燃料电池的一般优点外,SOFC还具有以下特点:对燃料的适应性强,能在多种燃料包括碳基燃料的情况下运行;不需要使用贵金属催化剂;使用全固态组件,不存在对漏液、腐蚀的管理问题;积木性强,规模和安装地点灵活等。这些特点使总的燃料发电效率在单循环时有潜力超过60%,而对总的来说体系效率可高达85%,SOFC的功率密度达到1MW/M3,对块状设计来说有可能高达3MW/M3。事实上,SOFC可用于发电、热电回用、交通、空间宇航和其他许多领域,被称为21世纪的绿色能源。  固体氧化物燃料电池具有燃料适应性广、能量转换效率高、全固态、模块化组装、零污染等优点,可以直接使用氢气、一氧化碳、天然气、液化气、煤气及生物质气等多种碳氢燃料。在大型集中供电、中型分电和小型家用热电联供等民用领域作为固定电站,以及作为船舶动力电源、交通车辆动力电源等移动电源,都有广阔的应用前景。

染料电池相关的资料

染料电池相关的仪器

  • SCS10-DSSC染料敏化电池IPCE测试专用方案■ 适用电池:染料敏化太阳能电池■ 光谱范围:300~1100nm■ 可测参数:光谱响应度,量子效率,短路电流密度■ 可测样品面积:100mm×100mm■ 测试手段:直流测试法,直流偏光测试法注:绿色曲线测试条件为AC(3.8Hz)+0.1Sun偏置光蓝色曲线测试条件为DC不加偏置光红色曲线测试条件为DC+0.1Sun偏置光SCS10-X150-DSSC 方案规格项目规格测试光斑尺寸 2-10mm波长范围 300-1100nm波长准确性 ±0.2nm(@1200g/mm)扫描间隔最小可达0.1nm,推荐使用5nm间隔多级光谱滤除装置电动控制,根据波长自动切换标准探测器标准硅探测器,含响应度标定证书数据采集器灵敏度 100nA样品夹持适用于“三明治”结构染敏电池夹持仪器所需平台尺寸 ≥1200mm×800mm均可计算机及软件系统含计算机,键盘,鼠标,正版windows7操作系统以及系统软件安装光盘特点测试手段多样化测试方案可以是直流测试法,也可以是直流偏光测试法,方便用户用不同方式不同条件进行测试。直流偏光测试法中的偏光可以采用75W 的溴钨灯作为偏置光源,滤光片架分为两部分,一部分为了方便客户测试多结电池及调整偏置光的波段,可以在此处放置不同波长的滤光片,另一部分中有两个滤光片轮,每个滤光片轮有 6 个孔位,通过调整每个滤光片轮的孔位来设定偏置光光强。■ 靠近偏置光出口的滤光片轮滤光片型号:1—NDFI2501 透过率 79% ( 光密度OD 值为0.1)2—NDFI2503 透过率 50% ( 光密度OD 值为0.3)3—NDFI2504 透过率 39.8%( 光密度OD 值为0.4)4—NDFI2508 透过率 15.8%( 光密度OD 值为0.8)5—NDFI2510 透过率 10% ( 光密度OD 值为1)6 空挡及透过率100%( 光密度OD 值为0)■ 靠近外光路的滤光片轮滤光片型号:1—NDFI2501 透过率 79%( 光密度OD 值为0.1)2—NDFI2503 透过率 50%( 光密度OD 值为0.3)3—NDFI2504 透过率 39.8%( 光密度OD 值为0.4)4—NDFI2508 透过率 15.8%( 光密度OD 值为0.8)5—NDFI2520 透过率 1%( 光密度OD 值为2)6 空挡及透过率100%( 光密度OD 值为0)垂直全反射光路垂直光路使样品可以水平放置,全发射光路可以消除色差所带来的影响。垂直全反射光谱配合三维手动位移台可以调整前后左右距离以保证光斑和被测物位置吻合。专用软件,专用测试流程测试方案所用软件是为测量染敏电池专门设置参数的软件,并且可以设置当您已经测试完一遍且测试条件没有发生变化的条件下直接测试样品,增加测试速度。
    留言咨询
  • 优势特点1)符合 ASTM E1021-12,IEC60904-8,GB/T6495.8-2002 等国内外最新测试标准。2)“一键式”全自动化测试,自动切换标准件和被测件,测试过程无需任何人工参与。3)高稳定、大功率、长寿命连续单色光照明,保证准确性和重复性。4)高稳定、长寿命连续白光偏置,保证准确性和重复性。5)分光系统,保证良好的波长准确度和重复性,消除多级谱的影响,杂散光小。6)样品室采用全反射式光路,避免透射元件的多重反射造成测试不准确。7)采用美国 Keithley数字表,保证信号测试准确性和高采集速度。产品应用适用电池:染料敏化类太阳电池或其他可采用直流方法测试的单结太阳电池。测试数据:绝对光谱响应、量子效率或光电转化效率 IPCE 以及标准太阳 AM1.5G、短路电流密度详细介绍依据染料敏化电池工作基本原理,染料敏化电池需要经过一系列的氧化-还原反应才能实现将光转化为电。染料敏化电池中染料的氧化-还原反应是由一系列复杂的反应所构成,其氧化-还原速率直接影响该电池的稳定性、转换效率和响应速度。氧化-还原速率则受到染料种类、染料浓度、电解质种类、电解质离子扩散速度等多种因素的影响。一般情况下,形成稳定的转换体系所需要的时间在“秒”量级上,也就是说染敏类电池的响应速度是比较慢,如果采用调制的交流测试模式,频率需低到 1Hz 以下,实践中很难实现。因此,直流测试模式更适用于染料敏化电池的 IPCE 测试。IPCE 测试与 I-V 测试不同,是将单色光照射于电池表面,并且要准确的测试出该单色光的强度。因此在 IPCE 测试中,需要可以进行光强标定的标准器件,且要求单色光照射在标准器件和被测样品时的强度一致。因此在测试过程中,单色光的光斑,应同时小于标准器件和被测样品的有效区域,以保证测试结果的准确性。而染料敏化电池的结构特点又决定了只有处于光照下的区域才产生敏化反应,而导电带和电解液却是完全分布于整个电池的有效区域,因此会加大电子被复合的几率,从而导致电池表现为输出电流降低。为保证 IPCE 测试的准确性,应在测试过程中保证电池的全部有效区域处于工作状态,以减少“内耗”情况的发生,而最有效的办法就是在测量时给电池加上偏置光。参考相关国内外标准和测试经验,确定偏置光的强度在约 0.5 个 SUN(AM1.5)的水平最适合。规格参数指标参数适用电池染料敏化类太阳电池或其他可采用直流方法测试的单结太阳电池控制模式软件控制、全自动扫描、自动消除误差、自动扣除背景光谱范围200-1100nm扫描间隔≥1nm连续可调光谱扫描全自动、连续测试结果重复性0.3%(短路电流)工作模式直流模式DC斩波频率5-1000Hz温控台:温控范围5-40℃(±0.5℃),选配偏置光源标配1路,进口白光/氙灯单色仪焦距300mm、150mm可选
    留言咨询
  • 适用电池:染料敏化类太阳电池、钙钛矿电池或其他可采用直流方法测试的单结太阳电池、及相关直流法测试的半导体材料。测试数据:绝对光谱响应、量子效率或光电转化效率 IPCE 以及标准太阳 AM1.5G、短路电流密度 1)符合 ASTM E1021-12,IEC60904-8,GB/T6495.8-2002 等国内外最新测试标准。2)“一键式”全自动化测试,自动切换标准件和被测件,测试过程无需任何人工参与。3)高稳定、大功率、长寿命连续单色光照明,保证准确性和重复性。4)高稳定、长寿命连续白光偏置,保证准确性和重复性。5)分光系统,保证良好的波长准确度和重复性,消除多级谱的影响,杂散光小。6)样品室采用全反射式光路,避免透射元件的多重反射造成测试不准确。7)采用美国 Keithley数字表,保证信号测试准确性和高采集速度。 工作原理:依据染料敏化电池工作基本原理,染料敏化电池需要经过一系列的氧化-还原反应才能实现将光转化为电。染料敏化电池中染料的氧化-还原反应是由一系列复杂的反应所构成,其氧化-还原速率直接影响该电池的稳定性、转换效率和响应速度。氧化-还原速率则受到染料种类、染料浓度、电解质种类、电解质离子扩散速度等多种因素的影响。一般情况下,形成稳定的转换体系所需要的时间在“秒”量级上,也就是说染敏类电池的响应速度是比较慢,如果采用调制的交流测试模式,频率需低到 1Hz 以下,实践中很难实现。因此,直流测试模式更适用于染料敏化电池的 IPCE 测试。IPCE 测试与 I-V 测试不同,是将单色光照射于电池表面,并且要准确的测试出该单色光的强度。因此在 IPCE 测试中,需要可以进行光强标定的标准器件,且要求单色光照射在标准器件和被测样品时的强度一致。因此在测试过程中,单色光的光斑,应同时小于标准器件和被测样品的有效区域,以保证测试结果的准确性。而染料敏化电池的结构特点又决定了只有处于光照下的区域才产生敏化反应,而导电带和电解液却是完全分布于整个电池的有效区域,因此会加大电子被复合的几率,从而导致电池表现为输出电流降低。为保证 IPCE 测试的准确性,应在测试过程中保证电池的全部有效区域处于工作状态,以减少“内耗”情况的发生,而最有效的办法就是在测量时给电池加上偏置光。参考相关国内外标准和测试经验,确定偏置光的强度在约 0.5 个 SUN(AM1.5)的水平最适合。实测光谱响应曲线实测量子效率曲线规格参数指标参数适用电池染料敏化类太阳电池、钙钛矿电池或其他可采用直流方法测试的单结太阳电池、及相关直流法测试的半导体材料控制模式软件控制、全自动扫描、自动消除误差、自动扣除背景光谱范围200-1100nm扫描间隔≥1nm连续可调光谱扫描全自动、连续测试结果重复性0.3%(短路电流)工作模式直流模式DC斩波频率5-1000Hz温控台:温控范围5-40℃(±0.5℃),选配偏置光源标配1路,进口白光/氙灯单色仪焦距300mm、150mm可选
    留言咨询

染料电池相关的耗材

  • PEM燃料电池单电池夹具
    PEM燃料电池单电池夹具品名:PEM燃料电池单电池测试夹具品牌:电弛新能源型号:5*5cm产地:中国材质:石墨+镀金集流板加工工艺:CNC加工适用膜电极MEA尺寸:5*5cm 品名:PEM燃料电池单电池测试夹具品牌:电弛新能源型号:2*2cm产地:中国材质:石墨+镀金集流板加工工艺:CNC加工适用膜电极MEA尺寸:2*2cm
  • 爱谱斯 气体扩散电极变温测试池(燃料电池) 电解池
    气体扩散电极变温测试池(燃料电池)适用于气体扩散电极测试,如氢氧燃料电池,直接甲醇燃料电池等。电解池可以控制温度,控制实验过程中气体的流速,参比电极默认为可逆氢参比电极,工作电极可选择不同类型的气体扩展电极。另外该电解池也适合于腐蚀测试,CO2还原测试等。气体扩散电极变温测试池(燃料电池)特点:电解池集成了工作电极和对电极(惰性铂)平行布置,形成平行的电流线;参比电极位于单独的储液罐中,因此电流曲线不受干扰;工作电极可根据需要通气测试;Flex Cell电解池可通过集成加热系统将口昂之温度85°C(PP)或160°C(PTFE);Flex Cell电解池适用于电解液的pH值为-2至16;Flex Cell电解池的最小电解液体积为40ml;
  • 偶氮染料专用小柱
    品名:Welchrom Celite AZO 偶氮染料:偶氮基两端连接芳基的一类有机化合物保留模式:正相应用:纺织品、皮革等《GB/T 17952-2011 纺织品 禁用偶氮染料的测定》《GB/T 17952-2006 纺织品 禁用偶氮染料的测定》(DM-5MS, 30 m * 0.25 mm, 0.25 μm)(ODS-C18, 250×4.6 mm, 5 μm)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制