有机物监测

仪器信息网有机物监测专题为您整合有机物监测相关的最新文章,在有机物监测专题,您不仅可以免费浏览有机物监测的资讯, 同时您还可以浏览有机物监测的相关资料、解决方案,参与社区有机物监测话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

有机物监测相关的资讯

  • 重大仪器项目“水中有机物监测仪” 30分钟检24种有机物
    p   11月10日电,如果河流突发环境事故,使用一种新型便携式检测仪器,可以在30分钟内,检测出水体中“隐藏”的各种有机物,为快速安全处置提供依据。据武汉市环保科技部门获悉,这种填补国内空白、国际领先的仪器正在武汉研制,目前研发工作已全面启动,预计于2020年实现量产。 /p p   近年来,河流等水体的环境事故频发,如松花江的硝基苯、长治的苯胺、新安江的苯酚等污染事故,已严重威胁水体安全。据专家介绍,这类有机物在环境中较挥发性有机物(如苯、甲醛)更难降解,存在时间更长,吸附在颗粒物上容易被人体吸入,被称为半挥发性有机物(SVOCs)。它们种类众多,超过50种,主要来源于水源周边的一些有机排放物,如塑料、杀虫剂、燃烧产物、材料助剂(增塑剂、阻燃剂)等。SVOCs在水中含量极低,国家的检出标准多在0.01毫克/升左右,相当于在一个游泳池中滴入一滴墨水。 而这种“隐形污染物”的生理毒理却十分显著,如果长期接触,将严重危害人体健康。 /p p   要捕捉到水中的“隐形污染物”非常困难。目前,我国只能采用实验室检测方法,从提取水样到实验室化验,往往需要3、4天才能检测出结果。国际上目前也没有快速、全面的检测仪器。 /p p   为此,国家环保部门将“水中半挥发性有机物自动监测仪器”列为重大科学仪器开发项目。经过专家组的论证、评选,武汉境辉环保科技有限公司联合中国环境监测总站、中国科学院大连化学物理研究所等单位“夺标”,共同自主研发。据悉,该企业曾先后自主研发50余项水质自动监测仪器。 /p p   目前,整个研发工作已全面启动。按照计划,研制组将采用多项国际前沿技术构建一套全新的检测设备。预计于2020年实现量产。该产品将首次实现水中SVOCs现场在线、快速检测,可在30分钟内一次检测出24种“隐形污染物”, 犹如一枚“照妖镜”让水中隐形污染物显形、被抓。业内人士称,此产品可弥补传统处理方法费时、费力、溶剂用量大等不足,能更好地分离、检测水中有机物,大大提升应对水体突发环境事故和日常监测水质的能力。 /p
  • 有机物污染监测面临的不同挑战
    在工业和环境过程监测的水质分析中,存在各种不同的应用和挑战——因为水不仅仅是水。水必须满足的要求因应用领域、成分和检测数据的用途而异。例如,在半导体制造和芯片生产中,需要超纯水并且必须不含污染物。而对于饮用水来说,需要一定量的溶解矿物质,同时不得含有任何细菌或其他致病物质。这些与应用有关的具体要求还对水处理和各工艺监测产生影响。让我们通过不同的有机污染监测示例来仔细研究这些影响。水体中有机成分的污染是一个重要的分析参数。有机化合物可能会破坏工艺过程,或在某些情况下,尽管有机物可以接受,但必须了解其浓度并定期监测,以便正确控制工艺过程。有机物监测工具和实时监测需求实验室分析仍经常使用化学需氧量(COD)和生化需氧量(BOD)来确定有机污染的程度。但是,在线分析对于更精确地实时监测工艺过程以及提高自动化程度来说,变得越来越重要。BOD分析需要5天时间,因此不能用于在线监测。由于COD分析时间需要2-3小时,且使用高毒性试剂,COD分析也不适合。相反,多年来,总有机碳TOC检测一直处于主导地位,用于快速监测有机污染,尤其是在工业领域。TOC也越来越多地应用于环境分析领域。与COD相比,TOC监测的优点是使用无毒试剂且检测时间仅需几分钟。此外,取决于所选择的检测技术,TOC分析可以在更大的浓度范围内进行检测,同时具有更高的精度。所有TOC分析仪的基本原理都是基于有机碳氧化形成二氧化碳。通过检测CO2,可以直接测定TOC含量。在线TOC监测——应对常见挑战有多种不同方法来实现这一检测目标。以下示例展示了与在线TOC监测要求相关的外部因素可能带来的不同挑战。通过采用正确的监测技术,就可以应对这些挑战。工艺挑战要求污水处理厂进水有机负荷高含有颗粒物稳健污水处理厂排水难以消解组分自我监测可靠冷凝水回用分析间隔短检测限低快速响应例1. 污水处理厂进水确定废水处理厂进水中的有机负荷对TOC分析仪提出了多项挑战。一方面,污染程度可能差异很大。这种情况主要发生在工业应用中,当批量工艺过程中的废水被排放或意外发生液体泄漏的时候。同时,这些有机物可能由难以分解的高度复杂的组分组成。此外,进水中可能会出现较高浓度的未溶解颗粒和溶解的无机成分(例如盐)。此应用对在线TOC分析仪的要求主要体现在稳健性方面。合适的监测仪表必须能完全检测出大跨度浓度波动,其波动范围可能在远低于100 ppm至高达数万ppm之间。同样,监测仪表还必须足够稳健,以检测更高浓度的溶解成分和颗粒成分。后者很容易导致内径较小的设备内部管道系统发生堵塞。此外,此类仪表在工艺过程中的安装条件往往很苛刻,这就需要稳健的设计。然而,了解有机负荷是优化后续清洁步骤的重要参数。在线TOC监测可以确保在有机负荷发生偏差时,生物处理阶段不会过载。过载会杀死分解有机物所需的细菌。在此情况下,由于适当的监测工具可以快速识别高有机负荷,因此可以将相应部分的进水有效地转移到缓冲池并维持细菌的健康。在负荷较低时,可以将高度污染的水回流。同样,在厌氧反应器中,要注意确保进水浓度尽可能恒定,以实现最佳的降解结果。反之,如果进水有机负荷过低,可根据TOC检测添加甲醇等有机物,使细菌有足够的食物进行高效降解。例2. 污水处理厂排水污水处理厂出TOC监测主要用于检查排水是否符合规定的排放限值。同时,它可以显示污水处理厂内的降解过程是否正常进行。在这些情况下,可以避免因超过限值而产生的罚款,并实现监管合规。废水在经过处理后,出水TOC浓度值明显低于进水。然而,残留的有机物通常是那些难以降解的物质。必须对这些物质进行精确检测,以便发现何时超过限值。因此,分析仪必须提供高度的可靠性,例如,捕获所有有机碳并具有广泛的自我监测功能。自动验证检测或校准应确保检测值始终正确。此外,可以使用自诊断功能来检查设备的整体状态,并依此开展预防性维护工作。这延长了分析仪的在线时间,并确保对限值进行无缝监测,以满足法规要求。例3. 冷凝水回用中的泄漏监测在工业应用中,蒸汽是最常用的传热介质。蒸汽发生用水必须满足特殊要求,以避免在锅炉和蒸汽阶段出现问题。要求对水进行预处理并添加水处理化学品。主要是抑制沉积物的形成和腐蚀。当水蒸发时会残留溶解的物质,形成水垢,导致锅炉中污泥积聚。但是,也会有蒸汽挥发性无机物和有机物进入气相并会积聚在管道和换热器中。这不仅减小了蒸汽通过的路径宽度,而且沉积物还降低了热传递,从而导致能量损失。此外,由于会造成一定的温度梯度,沉积物产生热应力,从而导致微小开裂和泄漏。腐蚀主要是由pH值过低引起。有机杂质在这里起着主要作用,因为在锅炉和蒸汽高温条件下,许多有机物分解并形成有机酸。这降低了蒸汽中的pH值,并加剧腐蚀,直至形成泄漏。除了预处理过程中去除不彻底外,有机物主要通过小泄漏进入蒸汽循环。由于锅炉水的处理复杂且昂贵,通常大部分冷凝蒸汽被返回。如果有机物通过热交换器中的小孔逸出到冷凝水中,它就会返回蒸汽循环。由于大多数有机物在分解之前并非离子态,因此传统的电导率测量无法检测到它们,也无法做到准确记录。在这里,TOC提供了一个解决方案。在此应用中,TOC分析仪面临的挑战是快速响应。与废水相比,除检测范围更低外,检测周期也很重要,因为检测目标是在被污染的冷凝水返回锅炉给水前就应该检测到是否发生了泄漏,从而避免花费巨大财力来更换锅炉给水。因此,更短的检测周期几乎可以无缝监测冷凝水,从而在污染成为问题前及时采取纠正措施。更轻松地检测有机污染并增强故障排除能力Sievers® TOC-R3是一款在线TOC分析仪,可满足常见工业工艺监测应用面临的上述挑战。1200℃无催化剂高温消解能够在较宽的检测范围内完全氧化复杂和颗粒有机碳。分析仪系统采用大内径管,可防止含颗粒的样品造成堵塞,该设计专门针对工业应用,使分析仪对环境条件不敏感。TOC-R3强大的自我监测功能为预防性维护提供信息,并提供了泄漏检测专门选项,可以非常快速地对泄漏进行检测。远程诊断和控制有助于增强故障排除,以避免停机。通过这些功能,可以应对有机污染监测所面临的最重要挑战——稳健、可靠、快速响应,从而提供实时信息,以更轻松地检测泄漏,管理工艺并满足法规要求。◆ ◆ ◆联系我们,了解更多!
  • 水和废水中的有机物监测
    总有机碳(TOC)监测是行业了解其用水或废水质量的重要工具。它有助于确定水中存在的有机物质的量,有多种用途。TOC监测还使不同行业在多方受益,包括提高安全和加强环境保护,节省成本以及更好地遵守相关法规。但是,TOC监测也可能带来技术实施和成本等方面的挑战,这取决于应用的复杂性以及采用的仪表是否适用。什么是BOD、COD和TOC?检测有机物含量采用的最传统分析技术是生物需氧量(BOD)。随着技术的发展,法规允许采用其它方法来分析有机污染,如化学需氧量(COD)和总有机碳(TOC)。尽管BOD和COD已广泛使用,但TOC已成为越来越广泛接受的替代方法。BOD是确定废水有机污染的最常见的参数之一。该方法依靠微生物通过消耗样品中的氧气来分解有机物。如果水样品中有机物含量高,会导致溶解氧消耗增大。通过测量在20℃温度条件下培养五天所消耗的氧气量,BOD试验可以间接指示有机污染。化学需氧量(COD)是用于确定废水有机污染程度的另一种方法。该试验采用化学氧化来分解水中的污染物,然后测量在该分解过程中消耗的氧气。如果氧气消耗量增大,这说明品中有机物含量增高。2-3小时的分析时间少于BOD所需的时间,但需要用到有毒试剂。多年来的技术进步引入了总有机碳(TOC)分析仪,用于直接、快速检测水中有机物含量。与通过需氧量来确定有机物含量的BOD或COD不同,TOC分析仪是直接检测和定量分析样品中的碳。TOC分析仪将有机物氧化成CO2,然后通过电导率或非色散红外检测(NDIR)来测量CO2。样品氧化所采用的不同方法包括紫外线过硫酸盐、燃烧和超临界水氧化(SCWO)。TOC可通过特定相关性转换为BOD和COD。但是,在排放法规中,也有用TOC取代BOD/COD的趋势。挑战与TOC解决方案对于行业而言,总有机碳(TOC)监测对于确保其产品和工艺安全至关重要,同时,还有助于检测样品中有机化合物的量。在TOC监测方面,如果行业无法将其应用需求与合适的TOC技术相匹配,则将会面临诸多挑战。造成这种情况的原因有很多,包括取样技术欠缺,难以检测低浓度有机化合物以及分析方法不可靠。仪器商已经开发了不同的TOC解决方案来应对这些问题,从而降低了TOC监测的复杂性和成本,如下两个实例所示。电力行业挑战:煤气化装置要求在现场的水处理能力约为5,000-6,000 GPM,目标是零工艺水排放。由于该装置采用的是再生市政水,因此其蒸汽和冷凝水的来源中有机物含量高。因此,必须监测反渗透(RO)膜上的有机物负载量,以对处理工艺进行调整并保护宝贵的资产。解决方案:最初,在实验室进行TOC分析,后来采用在线TOC分析,以监测RO预处理性能并验证其可靠性。实时监测能够可靠、有效地调整预处理混凝剂的投加量。食品饮料行业 挑战:对于大型无菌生产企业,如果出现非无菌产品,会反复造成产品损失。他们一直在使用ATP检测拭子来检测微生物污染。但是,质量问题和产品损失则表明他们需要一种新技术。为了验证设备的清洁度并确保质量和安全,他们必须确保在开始灭菌前完全清除污染物和残余产物。除改进其清洗验证工艺外,生产企业还希望降低用水量和成本。解决方案:食品饮料生产企业需采用以turbo模式运行的Sievers® M9 TOC分析仪来进行TOC分析——每4秒钟提供一个数据点,以对原位清洗(CIP)后的冲洗样品进行监测。在审核过程中,证明这些数据对设施在CIP效果和设备清洁度方面很有价值。通过目视检查确认设备很脏,但通过ATP检测拭子检查发现设备干净,但事实上并非如此。来自TOC监测的定量和全面的数据能够进一步减少不必要的CIP次数,并针对不同产品对其进行优化,从而节约用水并改进清洗工艺。碳监测通过TOC分析进行碳监测是一种重要且有用的方法,可以在水通过工业设施时对水质进行检测。通过检测可能出现的任何工艺中断,防止导致停机并造成高昂维护费用,这还是一个保护宝贵设备资产的好方法。碳监测在以下方面很有用:资产保护工艺优化质量控制满足法规要求源水水质源水污染水平会发生很大变化。水质可能受到季节变化、暴风雨径流和当地火灾等多种因素的影响,这些因素可能会造成源水被有机物污染。你的源水告诉了你哪些信息?通过对源水直接进行碳监测,以:监测基线 — 确定源水的正常TOC水平。识别发生的变化 — 市政是否改变了工厂水源?是否有暴风雨或天气事件改变了进入装置的源水的质量?采取纠正措施 — 采用实时、直接的碳数据来调整水处理工艺。确保处理装置正常运行,并调整流量以确保按照足够的比例脱除。公用工程用水水质工业设施经常需要热量来推动化学反应或工艺原材料。在许多工业装置中,使用公用工程用水来产生热量或便于热交换。热量的产生通常通过锅炉给水和冷凝水返回来实现。超纯水在锅炉中加热,然后转化为蒸汽。你的公用工程用水告诉了你哪些信息?通过对公用工程用水直接进行碳监测,以:监测基线 — 确定锅炉给水的最佳TOC含量,以满足设备保护的质量要求。确定正常的冷凝水水平。识别变化 — 快速检测由于处理低效或水源变化而导致的锅炉给水变化。无论是冷却液本身还是其它工艺流体,能够快速发现冷凝水泄漏。采取纠正措施 — 调整处理以确保锅炉给水的质量,如果被污染,则将冷凝水转移到废水收集设施或实施停车以防止污染影响产品或设备。废水处理工艺碳监测可以以多种途径用于废水处理,包括监测处理设施的废水负荷、生物处理效率或最终排放质量是否合规。你的废水告诉了你哪些信息?对废水直接进行碳监测,以:监测基线 — 定量分析原始废水中的碳负载量,以了解系统的真正养料负载量。识别变化 — 检测可能影响处理的任何变化倾向或较大波动。采取纠正措施 — 调整投加量、停留时间或进行分流,以优化处理并实现废水排放标准中规定的质量目标。对工业用水实施直接碳监测可使许多不同行业受益匪浅。TOC是控制产品质量、优化工艺、保护反渗透膜和锅炉等资产以及确保满足法规要求的绝佳工具。TOC能够为决策提供快速、准确的数据,并正在被写入世界各地更多的监管指南中。通过采用有机物监测,世界上许多不同的行业都在有效地监测用水和废水的质量。◆ ◆ ◆联系我们,了解更多!

有机物监测相关的方案

  • 三维荧光光谱检测水中的有机物
    目前水污染问题已经收到世界各国的关注,其中溶解有机物普遍存在于水体中,主要包括腐殖质,复杂的多糖,含氮有机物(如蛋白质)以及乙酸等简单有机物。因此对水体进行净化至关重要,而净化过程中对溶解有机物的追踪必不可少。 荧光光谱技术灵敏度高,不破坏样品结构,选择性好,被广泛用于水体中溶解有机物的检测。日立荧光分光光度计F-7100具有超高灵敏度和最快的扫描速度,配备有荧光指纹测定系统,能够有效的监测水体净化过程。
  • 有机物监测技术对比——TOC、COD与BOD
    本文比较了有机物监测技术——TOC、COD与BOD之间的区别、优势和检测范围,包括分析技术、所需试剂、分析时间、重复性、回收率等参数,以及可以检测的化合物成分。
  • 有机物监测的力量:水质中隐藏的信息
    许多公司和消费者的目标是减少和优化用水量,但对于如何实现这些目标并不十分清楚。特别是在整个工艺步骤中都需要使用水,或将水作为原料使用的工业行业中,各公司需要更简单的方法来监测资源、降低成本并确保满足质量、合规性和运营目标。这些工业行业共同的目标包括:. 降低水和化学品的使用量及成本. 遵守许可和法规要求. 展示安全和质量标准. 保持资产可靠性强有力的水监测程序不必很复杂——事实上,通过利用工厂内不同站点水的正确信息和数据,不同装置可以轻松做出明确的决定并采取行动。根据水数据所获得的信息——使用准确和全面的分析技术——是一种行之有效的方法,据此进行适当的工艺变更以实现目标。本电子书将为寻求优化用水、确保质量、满足合规目标或保护工业过程中资产的用户描述将有机物监测作为工具的作用。我们不仅会向您介绍什么是有机物监测,有机物监测的目的,还会介绍如何在您的设施中进行有机物监测的方式,以及其他企业如何成功使用这一强有力的工具。

有机物监测相关的论坛

  • 环境空气臭氧前体有机物手工监测技术要求

    为贯彻落实《2018年重点地区环境空气挥发性有机物监测方案》(环办监测函〔2017〕2024号)有关要求,规范环境空气臭氧前体有机物手工监测工作,环保部下发了《[b]关于印发《环境空气臭氧前体有机物手工监测技术要求(试行)》的通知[/b]》(环办监测函240号),要求各地遵照执行。具体技术要求详见:附件:[url=http://www.zhb.gov.cn/gkml/hbb/bgth/201802/W020180228354900679758.pdf]环境空气臭氧前体有机物手工监测技术要求(试行)[/url]

  • 元素分析VS有机物检测:谈谈你从事的检测经历

    元素分析是指无机金属与非金属等项目的分析,有机物检测是指各方面有机物组分的检测。元素分析大部分是用光谱,有机分析大部分是色谱和质谱你呢?更喜欢那一类的检测?谈谈你从事的检测经历、故事,就有机会获得积分经历哦1、你现在主要从事什么分析呢?2、你喜欢现在的检测工作嘛?3、聊聊你第一次进入检测的故事吧欢迎大家的参与,一起谈故事、说经历!!!========================================================================相关话题:1、元素分析VS有机物检测:样品的前处理http://bbs.instrument.com.cn/shtml/20120906/4228964/2、元素分析VS有机物检测:谈谈检测所要用到的仪器设备http://bbs.instrument.com.cn/shtml/20120909/4233022/3、元素分析VS有机物检测:比较检测所用到的试剂耗材http://bbs.instrument.com.cn/shtml/20120912/4237993/4、元素分析VS有机物检测:谈谈你从事的检测经历http://bbs.instrument.com.cn/shtml/20120915/4242566/5、元素分析VS有机物检测:说说检测与定量问题http://bbs.instrument.com.cn/shtml/20120919/4248560/

  • 元素分析VS有机物检测:说说检测与定量问题

    有一次跟同行吃饭,一群人是做无机元素分析的,另外一拨又是做色谱等检测有机物,比如食品药品、兽药残留农残等。大家讨论的时候说到一个检测问题,认为无机元素分析定量比有机物分析更准确。你认为元素分析VS有机物检测哪个定量更准确、更严格?重金属元素分析,定量要求严格;有机物、残留分析回收率低说说你对定量的认识和检测遇到问题吧!!!==========================================================================相关话题:1、元素分析VS有机物检测:样品的前处理http://bbs.instrument.com.cn/shtml/20120906/4228964/2、元素分析VS有机物检测:谈谈检测所要用到的仪器设备http://bbs.instrument.com.cn/shtml/20120909/4233022/3、元素分析VS有机物检测:比较检测所用到的试剂耗材http://bbs.instrument.com.cn/shtml/20120912/4237993/4、元素分析VS有机物检测:谈谈你从事的检测经历http://bbs.instrument.com.cn/shtml/20120915/4242566/5、元素分析VS有机物检测:说说检测与定量问题http://bbs.instrument.com.cn/shtml/20120919/4248560/

有机物监测相关的资料

有机物监测相关的仪器

  • 5800挥发性有机物监测系统(5800 VOCs CEMS)系统组成 挥发性有机物监测装置:测量CH4/NMHC、苯、甲苯、二甲苯、苯系物、高反应性VOCs(根据需要) 烟气参数监测装置:流量、温度、压力、O2(根据需要) 系统控制及数采装置 系统应用范围 实现固定污染源挥发性有机物排放的实时连续监测 为挥发性有机物排放控装置实现系统控制提供测量参数 计算污染物排放量,并为环境管理提供数据 系统特点: 基于热态测量设计和组成,可接受的样气温度可达220℃ 能实现成份分析:THC/CH4/NMHC、 苯、甲苯、二甲苯、苯系物(苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯、苯乙烯) 、美国光化测站56种VOC、高反应性VOC,可测量组份多达90种 量程宽: 0.05-50/500/5000/50000/500000 ppm(可选择) 分析时间迅速:每分钟一笔数据;既可满足合规的连续性要求,又可满足治理设备的工艺控制要求 校准 :统全程校准,国标规定,可确保整个分析系统的准确性。 仪器校准,方便VOC监测系统的查修 直接抽取法(热-湿式)采样系统采样探头由于可能需要应用于不同的装置,不同工况,比如,VOCs治理设备的入口/出口同时都需要监测,其工况特点不同治理设施入口烟气特点:浓度高:选用高量程设定分析条件成分多:依各个监测成分定量分析吸附性强:样品全段加热避免吸附水分低:对分析影响较小温度低:取样加热管可适度调整保温条件治理设施出口烟气特点: 浓度低:选用低量程设定分析条件 燃烧后副产物:可能造成管路腐蚀或堵塞,应加热及回吹 吸附性低:可适度调整样品传输条件 水分高(燃烧或湿式处理流程):烟气水分可能造成分析误差 温度高(燃烧后):取样设备兼具耐温及耐蚀性我们需要根据工况设置探头及管线的温度,我们希望尽量保持烟气的工况温度,既不会温度过低,导致凝结,也不会过度加热,导致组份变化,因为,VOCs的沸点在50~260℃,如果过度加热,有可能导致组份的化学反应或物理状态变化。系统采用由高温取样探头取样,高温取样探头包括进入烟道中加热取样管(根据烟道尺寸配有不同长度取样管)和在烟道外的加热过滤器及温度控制系统。 取样探头带有标准的防护罩。电加热取样探头可以被控制加热到最高200℃。温度控制系统除恒温控制整个取样探头外,在探头掉电或温度过低时可以输出报警信号给系统。探头最高可适应含尘量≤10g/m3。一个独立的自动反吹系统直接与取样探头连接。在常温下,反吹仪表风经加热后进入取样探头内部的5um过滤器里,对过滤器直接进行吹扫,以阻止烟尘在过滤器表面堆积。用户可以根据现场情况设定自动反吹的间隔时间。 不锈钢伴热管线从取样探头抽出的样气通过电伴热取样管线进入样品预处理系统。取样管线是恒功率加热式的,并采用温控器对管线温度进行控制,加热温度可以设定为80-150℃。取样管线设定的温度将可以保证样气在传输过程中气态污染物不会发生冷凝,以保证测量结果的准确性。取样管线的材质为不锈钢,可以防止Teflon材质对VOCs组份的吸附作用。 样气预处理系统由于挥发性有机物的物质种类非常多,有些物质可能会溶解在水中,因此,我们的系统不设置制冷器,高温加热的样气可以直接进入分析仪,Model 5800可接受的样气最高温度为220℃分析系统 A.样品由载气携带通过分离管柱分离:(可测定的成分及分离方式如下)a) THC透过无分离效果的熔硅毛细空管,将样品一同吹出b) CH4透过具强吸附性的分子筛,仅允许CH4通过c) VOCs针对不同用户的分析要求,透过不同分离效果的管柱组合,来实现定制化测量B.使分离后的有机物进入FID,在氢火焰中被电离成碳阳离子和电子,其产生的微电流,经由信号放大器输出信号。 技术参数分析方法:GC-FID气相色谱火焰离子法 量程范围: 50ppm/500ppm/5000ppm/5%/50% as Methane 准确度: ±1% f.s. 或 ±0.1 ppm(取其优者) 检测限:0.05 ppm 重现性: ±1% f.s. 或 ±0.1 ppm(取其优者) 零点漂移:±1% f.s. 或 ±0.1 ppm(取其优者) 量程漂移: ±1% f.s. 或 ±0.1 ppm(取其优者) 分析时间:1分钟 (平均) 样品流速:- Flow in analyzer分析用样品:600 ml/min- System flow rate样品更新速率:3 - 10 L/min. max. 校准周期:每月-每年,使用者可自行设定系统报警: 仪器故障 / 校正故障 / 侦测器(FID)故障 输出: Modbus TCP,另有多款选配可供选择:4-20mA (最多12組) / RS232 / RS485 样品稳定: 15-45℃, 85% RH (无冷凝) 环境条件: - Operation操作温度:0-45℃, 0-85% RH (无冷凝) - Storage存储温度:-20-60℃, 0-85% RH (无冷凝)- Sample Inlet进样温度:220℃ 电源: AC 220V, 50Hz, 1.5 Kw 辅助气体燃料气体: H2, 30 ml/min, 2 kg/cm2, 純度99.999%, THC 0.1 ppm 助燃气体: Oil/water free air, 300 ml/min, 2 kg/cm2, THC 0.1 ppm 载气: Oil/water free air, 60 ml/min, 2 kg/cm2, THC 0.1 ppm 零点校正气体: Oil/water free air, 2 kg/cm2, THC 0.1 ppm (载气為空气) Oil/water free N2, 2 kg/cm2, THC 0.1 ppm (载气為氮气) 量程校正气体: 未知浓度之碳氢化合物平衡于空气中(载气为空气),进流压力为1 Kg/cm2 未知浓度之碳氢化合物平衡于氮气中(载气为氮气) ,进流压力为1 Kg/cm2 管路吹扫气体: Oil/water free air, 10 L/min, 2 kg/cm2, THC 1 ppm
    留言咨询
  • 产品概述EXPEC 2000-MS 挥发性有机物在线气相色谱质谱监测系统(GC-MS/FID)采用色谱质谱联用技术, 基于《2019年地级及以上城市环境空气挥发性有机物监测方案》, 可有效用于环境大气中VOCs在线监测。 设备可连续监测100多种VOCs(如碳氢化合 物、卤代烃、含氧/含氮类挥发性有机物等), 性能满足《环境空气挥发性有机物气相 色谱连续监测系统技术要求及检测方法》(HJ 1010-2018)标准要求。性能优势检测因子齐全多参数协同监测,涵盖100多种VOCs组分的监测,完全满足环境空气、园区在线监测的需求;灵活的方案配置可根据需求调整监测模块,扩展出多种解决方案;领先的仪器设备所有设备均已实现国产化,并通过国内外权威机构认证;专业的分析平台综合分析平台,可实现数据的采集、质控及分析展示,并可给出定制化的监测报告结果;丰富的项目经验在国家环境监测站、上海环境监测中心站、湖南省环境监测中心站、福建环境监测中心站、甘肃省环境监测中心站等地均有应用案例。 应用领域城市环境空气质量监测工业园区空气质量监测重大外事活动空气质量保障
    留言咨询
  • 产品概述EXPEC 2000 烟气挥发性有机物连续监测系统采用GC-FID技术,主要由采样探头、温压流、采样管线、预处理单元、在线气相色谱仪、氢气发生器、零气发生器等组成。高温伴热采样泵抽取样气,经由采样探头、采样管线、预处理单元后通入在线气相色谱仪进行检测分析,系统可同时监测废气中,自动显示和保存测试结果,并将数据实时上传至企业中控系统和环保监管部门。系统组成性能优势预处理方法符合美国EPA和国内有机废气测定标准,方法可靠性高全热法设计,避免高沸点VOCs附着,防止部件腐蚀退化完善的预处理装置,带自清洁功能,有效对颗粒物、水汽等杂质进行处理采样管线采用PTFE或惰性化弱吸附金属材质,减少样品损失具有常规、防爆等多应用设计,适用不同工况适配用户操作习惯的控制软件,界面直观、操作简单应用领域石油化工 电子工业 医药 橡胶制品 有机溶剂制造 喷涂 汽车制造 印刷……
    留言咨询

有机物监测相关的耗材

  • 油气回收效果MiniRAE 3000,PGM7320有机物浓度检测仪
    油气回收效果MiniRAE 3000,PGM7320有机物浓度检测仪,中文操作说明书,售后维修服务,水肼过滤器,主要特点:华瑞的光离子技术的卓越表现响应时间短、检测范围宽、分辨率高,检测误差小超宽的检测范围可以实时检测0.1~15000ppm的VOC气体自清洗专利技术紫外灯的自清洁技术保持灯的能量在一个稳定状态无线技术在气体检测中的完美应用内置蓝牙或无线模块,实现实时数据传输内置强力采样泵可外接长达30m的采样管路,检测数据一样准确无误智能的温度和零点补偿算法内置温度湿度压力传感器,自动进行补偿,保证检测的准确性友好的人机操作界面大屏幕图文液晶显示,多国语言,支持中文可检测数千种气体广谱性检测,内置气体数据库,方便使用者选择油气回收效果MiniRAE 3000,PGM7320有机物浓度检测仪,中文操作说明书,售后维修服务,水肼过滤器,技术参数:
  • 挥发性有机物(VOCs)监测用标准气体
    挥发性有机物(VOCs)监测用标准气体 挥发性有机物(VOCs)参与大气环境中臭氧和颗粒物质(PM2.5)形成的光化学反应,是区域性大气臭氧污染、PM2.5污染的主要元凶,是导致城市雾霾和光化学烟雾的重要前体物质,加之普遍具有毒性,严重影响人类和生态系统健康。 为了切实改善大气环境质量,我国制定了一系列VOCs治理和监测的相关制度和标准,以此为基础,我公司研制了一系列VOCs监测用标准气体,其中TO-14、TO-15、PAMS、4组分内标物等VOCs标准物质经与国际公认的同类标准物质(Spectra(Linde))比对,其稳定性和不确定度均可达到国际同类产品的水平,43组分的TO-14 VOCs标准气还经过中国计量科学研究院的测试得到满意结果。 我公司VOCs监测用标准气体详见下表,同时也可以按照客户要求的组分和浓度定制所需的标准气体。标准物质名称标准物质技术指标适用标准标准物质编号组分及浓度相对扩展不确定度 标准编号及名称氮中43组分TO-14 VOCs混合气体标准物质GBW(E)062376 组分:苯乙烯 ,乙烯 ,氯苯 ,甲苯 ,苯 ,四氯乙烯 ,1,2-二氯乙烷 ,三氯乙烯 ,1,1,2-三氯乙烷 ,1,1,1-三氯乙烷 ,1,2-二溴乙烷 ,1.2-二氯丙烷 ,六氯-1,3-丁二烯 ,1,2,4-三氯苯 ,1,2,4-三甲苯 ,1,3,5-三甲苯 ,间二氯苯 ,邻二氯苯 ,对二氯苯 ,对甲乙苯 ,邻二甲苯 ,间二甲苯 ,对二甲苯 ,1,1,2,2-四氯乙烷 ,顺-1,3-二氯丙烯 ,反-1,3-二氯丙烯 ,四氟二氯乙烷 ,二氟二氯甲烷 ,溴甲烷 ,氯甲烷 ,氯乙烯 ,氯乙烷 ,三氯氟甲烷 ,1,3-丁二烯 ,丙烯腈 ,三氟三氯乙烷 ,1,1-二氯乙烷 ,四氯化碳 ,三氯甲烷 ,1,1-二氯乙烯 ,顺-1,2-二氯乙烯 ,二氯甲烷 ,氯丙烯浓度:各组分浓度均为1μmol/mol5%(k=2)HJ 644-2013 环境气体 挥发性有机物的测定 吸附管采样-热脱附/气相色谱法-质谱法 HJ 759-2015 环境空气 挥发性有机物的测定 罐采样气相色谱—质谱法氮中溴氯甲烷、氯苯-d5、1,4-二氟苯、1-溴-4-氟苯混合气体标准物质GBW(E)062377 溴氯甲烷:0.100~1.00(μmol/mol) 氯苯-d5:0.100~1.00(μmol/mol) 1,4-二氟苯:0.100~1.00(μmol/mol) 1-溴-4-氟苯:0.100~1.00(μmol/mol) 5%(k=2)HJ 1010-2018 环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法 HJ 759-2015 环境空气 挥发性有机物的测定 罐采样 气相色谱—质谱法氮中57组分臭氧前驱体VOC (PAMS)气体标准物质BW(DT1001) 组分:乙烯 ,乙炔 ,乙烷 ,丙烯 ,丙烷 ,异丁烷 ,1-丁烯 ,正丁烷 ,反-2-丁烯 ,顺-2-丁烯 ,异戊烷 ,1-戊烯 ,戊烷 ,异戊二烯 ,反-2-戊烯 ,顺-2-戊烯 ,2.2二甲基丁烷 ,环戊烷 ,2.3二甲基丁烷 ,2-甲基戊烷 ,3-甲基戊烷 ,己烯 ,正己烷 ,甲基环戊烷 ,2.4二甲基戊烷 ,苯 ,环己烷 ,2-甲基己烷 ,2.3二甲基戊烷 ,3-甲基己烷 ,2.2.4-三甲基戊烷 ,正庚烷 ,甲基环己烷 ,2.3.4三甲基戊烷 ,甲苯 ,2-甲基庚烷 ,3-甲基庚烷 ,正辛烷 ,乙苯 ,对二甲苯 ,间二甲苯 ,苯乙烯 ,邻二甲苯 ,正壬烷 ,异丙苯 ,丙苯 ,间甲乙苯 ,对甲乙苯 ,1.3.5三甲基苯 ,邻甲乙苯 ,1.2.4三甲基苯 ,正癸烷 ,1.2.3三甲基苯 ,间二乙苯 ,对二乙苯 ,正十一烷 ,正十二烷 浓度:各组分浓度均为1μmol/mol5%(k=2)HJ 1010-2018 环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法 氮中67组分VOC(TO-15)气体标准物质BW(DT1002) 组分:丙烯,二氟二氯甲烷,1122-四氟-12-二氯乙烷,一氯甲烷,氯乙烯,丁二烯,甲硫醇,一溴甲烷,氯乙烷,一氟三氯甲烷,丙烯醛,122-三氟-112-三氯乙烷,11-二氯乙烯,丙酮,甲硫醚,异丙醇,二硫化碳,二氯甲烷,顺12-二氯乙烯,2-甲氧基-甲基丙烷,正己烷,亚乙基二氯(11-二氯乙烷),乙酸乙烯酯,2-丁酮,反12-二氯乙烯,乙酸乙酯,四氢呋喃,氯仿,111-三氯乙烷,环己烷,四氯化碳,苯,12-二氯乙烷,正庚烷,三氯乙烯,12-二氯丙烷,甲基丙烯酸甲酯,14-二恶烷,一溴二氯甲烷,顺式-13-二氯-1-丙烯,二甲二硫醚,4-甲基-2-戊酮,甲苯,反式-13-二氯-1-丙烯,112-三氯乙烷,四氯乙烯,二己酮,二溴一氯甲烷,12-二溴乙烷,氯苯,乙苯,间/对二甲苯,邻二甲苯,苯乙烯,三溴甲烷,四氯乙烷,4-乙基甲苯,135-三甲苯,124-三甲苯,13-二氯苯,14-二氯苯,氯代甲苯,12-二氯苯,124-三氯苯,112344-六氯-13-丁二烯,萘 浓度:各组分浓度均为1μmol/mol5%(k=2)HJ 759-2015 环境空气 挥发性有机物的测定 罐采样 气相色谱—质谱法氮中24种挥发性有机物气体标准物质BW(DT0106) 组分:丙酮、异丙醇、正己烷、乙酸乙酯、苯、六甲基二硅氧烷、3-戊酮、正庚烷、甲苯、环戊酮、乳酸乙酯、乙酸丁酯、丙二醇单甲醚乙酸酯、乙苯、对/间二甲苯、2-庚酮、苯乙烯、邻二甲苯、苯甲醚、苯甲醛、1- 癸烯、2-壬酮、1-十二烯 浓度:各组分均为1μmol/mol5%(k=2)HJ 734-2014 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法氮中醛、醇酮类标气BW(DT0152) 组分:乙醛 ,丙烯醛 ,丙酮 ,丙醛 ,丁烯醛 ,甲基丙烯醛 ,2丁酮 ,正丁醛 ,苯甲醛 ,戊醛 ,间甲基苯甲醛 ,己醛 浓度: 各组分浓度均为1μmol/mol5%(k=2)大气挥发性有机物质检测方案氮中甲醛气体标准物质GBW(E)061531 5.00~100(μmol/mol) 10%(k=2)氮中挥发性卤代烃混合气体标准物质BW(DT1003) 四氯化碳,四氯乙烯:0.01μmol/mol 三氯甲烷,三氯乙烯:0.10μmol/mol 氯丁二烯:1.00μmol/mol 二氯甲,1,2-二氯乙烷,1,2二氯丙烷,溴甲烷,溴乙烷,氯丙烯:10.0μmol/mol 氯甲烷,氯乙烯,环氧氯丙烷:50.0μmol/mol 5%(k=2)HJ 1006-2018 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法氮中苯,甲苯,乙苯,苯乙烯,间二甲苯,邻二甲苯,对二甲苯,异丙苯GBW(E)062160 组分:苯,甲苯,乙苯,对二甲苯,间二甲苯,邻二甲苯,异丙苯,苯乙烯 浓度:各组分浓度均为 1.00~50.0(μmol/mol) 2%(k=2) GB/T 18204.2-2014 公共场所卫生检验方法BW(DT0126)组分:苯,甲苯,乙苯,对二甲苯,间二甲苯,邻二甲苯,异丙苯,苯乙烯 浓度:各组分浓度均为 0.05~0.99(μmol/mol) 10%(k=2) 氮中苯气体标准物质GBW(E)062242 0.02~0.0999(μmol/mol) 10%(k=2) JJG 693-2011 可燃气体检测报警器0.100~0.999(μmol/mol) 3%(k=2) 1.00~49.9(μmol/mol) 2%(k=2) 50.0~999(μmol/mol) 1%(k=2) 空气中苯气体标准物质GBW(E)062243 0.02~0.0999(μmol/mol) 10%(k=2) GB/T 18204.2-2014 公共场所卫生检验方法 第2部分:化学污染物0.100~0.999(μmol/mol) 3%(k=2) 1.00~49.9(μmol/mol)2%(k=2) 50.0~999(μmol/mol)1%(k=2) 空气中氯乙烯气体标准物质GBW(E)062380 5.00~100(μmol/mol)2%(k=2) HJ/T 34-1999 固定污染源排气中氯乙烯的测定 气相色谱法氮中氯乙烯气体标准物质GBW(E)062381 5.00~100(μmol/mol)2%(k=2) 空气中丙烯醛气体标准物质GBW(E)062384 1.00~100(μmol/mol)2%(k=2) HJ/T 36-1999 固定污染源排气中丙烯醛的测定 气相色谱法氮中丙烯醛气体标准物质GBW(E)062385 1.00~100(μmol/mol)2%(k=2) 氮中丙烯腈气体标准物质GBW(E)062591 1.00~100(μmol/mol)2%(k=2) HJ/T 37-1999固定污染源排气中丙烯腈的测定-气相色谱法空气中丙烯腈气体标准物质GBW(E)062592 1.00~100(μmol/mol)2%(k=2) 氮中甲醇气体标准物质GBW (E)062244 10.0~100(μmol/mol)2%(k=2) HJ/T 33-1999 固定污染源排气中甲醇的测定 气相色谱法
  • 油气回收MiniRAE 3000 PGM7320 有机物检测仪
    油气回收MiniRAE 3000 PGM7320 有机物检测仪,中文操作说明书,维修售后服务,试剂耗材,水肼过滤器,主要特点:华瑞的光离子技术的卓越表现响应时间短、检测范围宽、分辨率高,检测误差小超宽的检测范围可以实时检测0.1~15000ppm的VOC气体自清洗专利技术紫外灯的自清洁技术保持灯的能量在一个稳定状态无线技术在气体检测中的完美应用内置蓝牙或无线模块,实现实时数据传输内置强力采样泵可外接长达30m的采样管路,检测数据一样准确无误智能的温度和零点补偿算法内置温度湿度压力传感器,自动进行补偿,保证检测的准确性友好的人机操作界面大屏幕图文液晶显示,多国语言,支持中文可检测数千种气体广谱性检测,内置气体数据库,方便使用者选择油气回收MiniRAE 3000 PGM7320 有机物检测仪,中文操作说明书,维修售后服务,试剂耗材,水肼过滤器,技术参数:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制