热调制技术

仪器信息网热调制技术专题为您整合热调制技术相关的最新文章,在热调制技术专题,您不仅可以免费浏览热调制技术的资讯, 同时您还可以浏览热调制技术的相关资料、解决方案,参与社区热调制技术话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

热调制技术相关的资讯

  • 全二维气相色谱热调制技术的发展与最新进展
    热调制技术是全二维气相色谱中使用较多的一种调制方式,在第一根色谱柱和第二根色谱柱之间以固定频率反复施加高温和低温,使一维的馏出物在该段位置产生周期性的冷聚和释放,从而实现对一维峰的调制过程。热调制技术相对于气流调制,调制效果更好,分辨率更高,而且载气流量保持不变,适合连接质谱检测器,另外冷聚过程中可以对分析物进行浓缩,灵敏度也有所提高。热调制技术已经成为应用最广泛的一种全二维气相色谱调制方法。  目前的热调制技术经历了一系列的技术革新。John Philips和Zaiyou Liu最先于1991年提出热调制技术并申请了专利。当时是在一根石英毛细柱上利用导电涂料的电阻加热和自然冷却来完成调制过程。由于导电涂料反复加热后容易剥落,而且自然冷却速度较慢,这种阻热式的调制方式被淘汰,但它却奠定了当今经典的两级热调制的技术基础。  上世纪90年代末,澳大利亚的Phillip Marriott教授发明了纵向调制冷却系统(Longitudinally Modulated Cryogenic System, LMCS)。LMCS将一个移动的冷阱(Cryo Trap)套在需要调制的色谱柱上,冷阱内可用液态二氧化碳对局部色谱柱进行制冷,冷阱套以外的色谱柱放置在色谱仪的炉膛内部,被炉膛加热。通过冷阱套的上下移动,对不同部位的色谱柱进行反复加热制冷从而完成调制(图1)。这种方式加热和制冷都十分快速有效,能产生非常理想的调制峰宽,大大增加了全二维气相色谱的实用性。LMCS的出现让众多色谱学者开始应用全二维气相色谱技术,发表了大量以此技术为基础的分析应用,对全二维气相色谱的发展产生了深远的影响。不过,由于LMCS的运动部件自外向内伸入炉膛,其两端存在很大的温差,因此易产生变形和失效,其长期稳定性一直存在问题,最终也没有商业化。不过随后发展的商业调制器均沿袭了这种思路,采用色谱仪炉膛直接加热,相比于阻热式调制器,这种方法简单稳定,可靠性大大加强,但为了在加热的炉膛内实现快速冷却,必须大量使用液态制冷剂,所以被称为制冷式热调制器。  图1. LMCS热调制器技术原理示意图  经过一系列探索与改进后,采用固定冷热喷嘴的调制器开始慢慢盛行,例如ZOEX公司的环形调制器,LECO公司的四喷嘴调制器,和Thermo Scientific公司的双喷嘴调制器。这些调制器利用喷嘴喷出的冷热气体对调制柱进行加热冷却(图2),温度变化速率快,可靠性高,该技术现已实现商品化,成为目前学术界和工业界大量使用的主流热调制器。    图2. 冷热喷嘴调制器技术原理示意图  与此同时,随着不锈钢毛细色谱柱的问世和商业化,已经消失很久的阻热式调制技术在几年前重新获得发展。其代表是美国密西根大学Richard Sacks教授的研究团队和加拿大滑铁卢大学的Tadeusz Gorécki教授的研究团队。其共同特点就是长期将调制柱放置在低温环境中,以周期性的电流直接加热需要调制的不锈钢毛细柱。这种方式利用不锈钢的导电性质,不用依赖导电涂料,稳定性显著提高。而且电加热方式简单灵活,可以产生非常窄的脉冲,实现快速释放。他们两个团队在冷却系统上稍有区别。  密西根大学的调制器核心部件安装于色谱仪炉膛内,将金属毛细管浸泡在被一个制冷机循环冷却的聚乙二醇液态腔体里来完成调制全过程。密西根大学首创的这种通过制冷机形成充足冷量的技术方案被ZOEX等公司随后纷纷采用和改进,并形成了商业化的不使用液氮的喷嘴式热调制器。但是,这些调制器仍然需要消耗大量的用于热交换的干燥的氮气或空气,并没有将全二维色谱技术真正从高端实验室或研究机构中解放出来。  滑铁卢大学的调制器核心部件最初安装于炉膛之外,并利用蜗旋管冷却技术来完成调制。蜗旋管需要消耗大量的压缩空气,因此一般也只能在实验室中使用。近年来,改进的调制器核心部件重新安装于炉膛之内,并利用一端伸出炉膛的导热铜块来实现风冷降温。这项改进终于让人看到了不消耗任何制冷剂的曙光。但是,它也牺牲了一定的调制范围,尤其是在低沸点化合物一端。  无论哪种方案,只要采用不锈钢色谱柱作为调制柱,必须同时解决电的良好接触和避免在接触点产生冷点,这样才能保证正常的色谱过程。然而。这两点往往是矛盾的。因此可以看到上述两个团队最终还是选择了直接或间接在炉膛内完成调制全过程,并由此在其它方面做出了牺牲。另外,不锈钢本身比熔融石英的热质量大了近四倍,因此在没有强制冷的条件下,降温速度很慢,例如滑铁卢大学的调制器,调制周期无法做到4秒以下 然而,目前全二维色谱的运行趋势是将调制周期优化在2秒到4秒之间,从而更好地保持第一维的色谱分离效果和节省整体分析时间。最后,不锈钢色谱调制柱必须具有不同膜厚的内部固定相才能完成对相应沸点范围化合物的调制,但是因其固定方式对良好电接触的要求,更换起来并不灵活。综上所述,采用不锈钢色谱柱电阻加热的调制器目前还有很多技术问题没有解决,在短期内难有大的突破,目前只停留在研究阶段,尚未实现商业化。  随着本世纪初微加工工艺和微机电系统(MEMS)的兴起,第一个微型固态热调制器在美国密西根大学诞生。它在一片硅晶片上集成了微色谱柱和金属丝线,利用后者脉冲式电阻加热和一块半导体制冷元件的持续冷却完成对微色谱柱的调制(图3)。这项发明由于整体设备的热质量非常微小,从而省去了制冷剂的使用,极大简化了日常操作。但是由于其微机电系统和外部宏观尺寸的设备难以实现完美的无缝连接,实际性能并不理想。此外由于分析测试市场规模比较小,不足于降低微系统的开发制造成本。经过多年的研发,该技术始终不能商业化。  图3. 基于MEMS的微型热调制器技术原理示意图  借鉴了LMCS移动式系统和微型热调制器的优势后,Guan和Xu将它们以崭新的方式结合起来,发明一种不依赖微加工工艺但又能成功使用半导体制冷的固态热调制器。这种调制器在整体上摈弃了业界一直流行的对色谱仪炉膛加热的依赖,构建了独立的冷却与加热环节以实现炉膛外的完全调制。由于不再需要大量的制冷以抵消炉膛的加热,另外冷却与加热区域进一步在空间上相互隔绝,大大增加了制冷效率。这样只依靠半导体制冷就能实现优异的调制效果,完全避免了制冷剂的使用(图4)。这种技术目前已经成功商业化。  图4. 无需制冷剂的商业化固态热调制器
  • 雪景科技推出全球首款无需制冷剂的商业化热调制器
    全二维气相色谱(comprehensive two-dimensional GC, or GC×GC)作为一种全新的色谱分离手段,具有分离能力强,峰容量大,定性有规律等优点。目前已经开始应用在石油化工、环境监测、天然产物分析、食品卫生、生物医药等行业,是复杂样品和痕量样品分析的强大武器。全二维色谱最核心的部件调制器可分为气流式调制器(flow modulator)和热调制器(thermal modulator)。相比气流式调制器,热调制器调制性能更加优异,而且可以直接连接质谱,是当前最主流的调制技术。市场上的热调制器普遍采用气流喷射调制方式,利用液氮或压缩空气以及热空气对色谱炉膛内的调制色谱柱进行冷却和加热,附属设备较多,运行和维护费用较高。加上居高不下的系统价格,使全二维气相色谱技术目前仅限于一些高端实验室和较前沿的科研应用,难以向广大中低端用户和常规检测普及。  雪景科技经过多年的研发,成功推出了全球首款采用半导体制冷元件的商业化固态热调制器(SSM),使全二维气相色谱(GC×GC)彻底摆脱了液氮和其他制冷剂的使用。独特的机械和热管理设计保证了产品与目前主流热调制器相当的调制性能。其小巧的结构和方便的操作极大地简化了GC×GC技术的使用难度和运营成本。由于采用了模块化设计,用户可以方便地将该调制器安装到任意气相色谱平台上,配合专业的全二维色谱数据处理软件,将常规的一维气相色谱升级成全二维气相色谱系统,极大提高现有系统对复杂样品的分析能力。另外,由于该热调制器体积小巧能耗低,可以和其他在线式或者便携式色谱进行联用甚至集成,第一次实现全二维气相色谱在在线监测和野外分析中的应用,为我国日益增长的环境、食品和化工检测需求提供一种全新的技术手段。固态热调制器  雪景科技是一家致力于推广和普及全二维气相色谱技术的公司。主要产品包括全二维气相色谱调制器、全二维色谱数据处理软件、以及全二维气相色谱系统构建和维护、应用解决方案和技术支持等。全二维气相色谱系统
  • 东南大学崔铁军院士团队Nature子刊,基于二维可编程超表面的定向信息调制技术
    【科学背景】随着无线通信技术的不断发展,对更高数据速率、更低延迟和更少错误率的需求不断增长,推动了下一代无线通信系统朝着更高的载波频率和超大规模天线阵列的方向发展。然而,这一进程也带来了对通信网络安全性和抗干扰能力的重大挑战。传统的加密方法通常在网络层实施,增加了消息代码的长度和传输开销,并需要密钥交换,这使得满足高带宽和超低延迟通信系统的要求变得困难。为应对这些挑战,近年来多种物理层安全方法得到了开发,其中包括相控阵波束成形技术和人工噪声干扰技术。这些方法的目标是通过增加信号到合法接收者和窃听者之间的信道容量差异来提升通信的安全性。然而,传统的波束成形技术存在体积庞大、能耗高等问题,同时发射机无差别地向所有方向辐射未失真的信号,理论上允许配备灵敏接收器的窃听者截获信息。这些安全隐患促使了对定向通信技术的探索。定向信息调制(DIM)作为一种有前景的物理层安全技术,利用多天线的波束成形能力,在期望方向传输正确的星座符号,同时在其他非法方向将其失真为噪声,从而确保了信息的安全。然而,现有的DIM方案存在一些问题,例如体积庞大、能耗高、成本高以及无法支持二维(2D)和高阶调制等。当前的主流DIM实现大多依赖于相控阵和时间调制阵列(TMA),这些方案虽然能够生成任意幅度和相位的响应,但由于硬件昂贵、能耗高,且只能支持一维传输,限制了其应用范围。为了解决这些问题,近年来可编程超表面(PM)被引入DIM研究。PM具有灵活的电磁波实时调控能力,可以作为一个高度集成的通信系统,具有更简单的架构、更低的成本和更少的能耗。已有研究尝试使用PM实现定向通信,包括近场幅度移位键控(ASK)调制、远场正交相位移键控(QPSK)调制等。然而,这些方案通常只利用电磁波的相位或幅度特征,缺乏高阶调制和正交幅度调制(QAM)方案,并且需要外部射频源,限制了其应用于空间受限的环境。有鉴于此,东南大学崔铁军院士团队在“Nature Communications”期刊上发表了题为“Two-dimensional and high-order directional information modulations for secure communications based on programmable metasurface”的最新论文。本研究提出并实验演示了一种基于二维(2D)PM的DIM方案,旨在克服现有DIM方案中的缺陷。该方案集成了可控组件,能够在期望方向生成正确的星座符号,并形成一个可重构的低剖面调制器,提供发射机与多个接收机之间的独立通信链路。通过使用交替方向乘子法(ADMM)框架中的快速高效算法优化编码序列,该方案实现了在谐波下的定向安全性,并在多通道模式下验证了8PSK、16QAM和64QAM的星座图。【科学亮点】(1)本文首次提出了一种基于2位可编程超表面(PM)的二维及高阶DIM方案,并成功实现了这一方案。该方案利用PM的可调控组件和快速高效的离散优化算法,克服了传统DIM方案存在的体积庞大、能耗高、成本高以及无法支持二维(2D)和高阶调制的缺陷。实验中,PM方案能够生成正确的星座符号,并在多方向波束中传输,显示了其在定向信息调制(DIM)方面的潜力。(2)通过在多通道模式下进行的验证实验,本文展示了该DIM方案的有效性。具体而言,三组星座图(8相位移键控(PSK)、16正交幅度调制(QAM)、64QAM)在多通道模式下得到了验证,测量结果表明,接收到的信号在期望方向上保持了与预设星座图一致的结构,而在其他方向上则出现了失真。这表明该系统不仅能够进行数字信息的直接传输,还能实现信息的定向安全,即只有期望方向的用户能够接收到正确的符号,而其他方向的用户将接收到失真的符号,从而确保了信息的安全性。【科学图文】图1:基于PM的DIM方案的示意图。图2:PM-based DIM方案中使用的元件的详细信息。图3:单通道模式的选定测量结果。图4:单通道模式下测得的EVM值。图5:双通道16QAM方案中的选定测量结果。图6:评估双通道16QAM中的串扰的结果。7:双通道16QAM实验中测得的EVM值。图8:验证所提出DIM方案的安全区域特性和宽带性能的测量信号结构,其中红色圆形标记表示参考星座符号。【科学启迪】本文提出的基于二维可编程超表面(PM)的定向信息调制(DIM)方案在物理层安全领域开创了新的方向。传统的无线通信系统面临着信息安全的重大挑战,尤其是当发射信号无差别地传播到所有方向时,窃听者有可能截获到未加密的信息。传统的加密方法虽然能够在网络层提供安全性,但它们往往增加了通信延迟和复杂性,并无法有效解决对高带宽和低延迟通信系统的需求。本研究首次利用二维PM结合快速高效的离散优化算法,提出了一种在多方向上生成和传输正确星座符号的DIM方案。这种方案不仅克服了现有DIM技术中的体积庞大和高能耗等问题,还支持了二维及高阶调制,为未来的无线通信系统提供了更为灵活的解决方案。特别是通过在期望方向传输清晰的信号,并在其他方向进行信号失真,这种定向传输模式大大提高了信息的安全性,防止了非目标方向用户的潜在窃听。此外,实验验证了该方案在8PSK、16QAM和64QAM等多种星座图下的有效性,展示了其在多通道模式下的优异性能。这不仅表明该技术在实际应用中具有高度的可靠性,也为未来高吞吐量、低延迟的无线通信系统的发展奠定了坚实的基础。文献详情:Xu, H., Wu, J.W., Wang, Z.X. et al. Two-dimensional and high-order directional information modulations for secure communications based on programmable metasurface. Nat Commun 15, 6140 (2024). https://doi.org/10.1038/s41467-024-50482-y

热调制技术相关的方案

热调制技术相关的论坛

  • 新型全二维气相色谱固态热调制器的部分应用

    固态热调制器(SSM)上使用一根特殊制备的熔融石英调制柱连接一维柱和二维柱,通过电磁阀驱动并利用其良好的弹性在冷热区间来回穿梭,完成调制过程。同时调制柱内特殊涂覆的固定相有助于实现在半导体制冷元件(TEC)正常工作温度下(-50~+80 ˚ C)对低沸点组分的有效补集。针对不同的应用,有不同种类的调制柱,安装在固态热调制器(SSM)上可以对不同沸点范围的化合物进行有效调制。

  • 温度调制式差示扫描量热法(MTDSC)中实现正弦波温度控制的方法

    温度调制式差示扫描量热法(MTDSC)中实现正弦波温度控制的方法

    [align=center][size=16px] [img=温度调制式差示扫描量热法MTDSC中实现正弦波温度控制的方法,650,411]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241524097587_3670_3221506_3.jpg!w690x437.jpg[/img][/size][/align][size=16px][color=#990000]摘要:在调制温度式差式扫描量热仪(MTDSC)中,关键技术之一是正弦波加热温度的实现,此技术是制约目前国内无法生产MTDSC量热仪的重要障碍,这主要是因为现有的PID温控技术根本无法实现不同幅值和频率正弦波这样复杂的设定值输入。本文将针对此难题提出了相应的解决方案,即采用具有外置设定点功能的特制PID控制器来实现正弦波温度控制。[/color][/size][align=center][size=16px][color=#990000]~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#990000][b]1. 问题的提出[/b][/color][/size][size=16px] 调制温度式差式扫描量热法(MTDSC)是由差示扫描量热法(DSC)演变而来的一种热分析方法,该方法是对温度程序施加正弦波扰动,形成热流量和温度信号的非线性调制,从而可将总热流信号分解成可逆和不可逆热流成分。即在传统DSC线性变温基础上叠加一个正弦振荡温度程序,如图1所示,由此可随热容变化同时测量热流量,然后利用傅立叶变换可将热流量即时分解成可逆的热容成分(如玻璃化转变、熔化)和不可逆的动力学成分(如固化、挥发、分解)。[/size][align=center][size=16px][img=01.调制式差示扫描量热法正弦波温度变化曲线,606,395]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241527062808_6964_3221506_3.jpg!w606x395.jpg[/img][/size][/align][align=center][size=16px][color=#990000][b]图1 调制式差示扫描量热法正弦波温度变化曲线[/b][/color][/size][/align][size=16px] 与DSC(差式扫描量热仪)相比,MTDSC(温度调制式差式扫描量热仪)主要会涉及到两项完全不同的技术,一是正弦波温升变化的实现,二是测量信号的傅里叶变换分析。这两项技术作为MTDSC的核心技术,也是制约目前国内无法生产MTDSC量热仪的重要障碍。特别是在正弦波温度变化控制方面,现有的PID温度控制技术根本无法实现正弦波这样复杂的设定值输入。为此,本文将针对正弦波温度的实现提出相应的解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 在温度自动控制方面一般常会使用PID调节器,PID温度调节器的基本原理是根据设定值与被控对象测量值之间的温度偏差,将偏差按比例、积分和微分通过计算后形成控制输出量,对被控对象的温度进行控制。这里的设定值是一种泛指,实际上包括了不随时间变化的固定设定值和随时间变化的设定曲线。对MTDSC量热仪而言,设定曲线则是正弦波和一条斜线的叠加而成的曲线,其中的斜线是需设定的平均升温速率,而正弦波则是需设定幅值和频率的正弦温度波。[/size][size=16px] 由此可见,解决MTDSC温度正弦波控制的关键是PID温度控制器的设定值可以按照所需的正弦波和线性曲线叠加后函数进行设置。为此,本文提出的解决方案具体内容如下:[/size][size=16px] (1)采用具有外置设定点功能的PID控制器,即PID控制器所接收到的外部任意波形信号都可以作为设定值。[/size][size=16px] (2)配套一个函数信号发生器,给PID控制器传输所需的正弦波和线性叠加信号。[/size][size=16px] 依据上述方案内容所确定的PID控制装置及其接线如图2所示,具体内容如下:[/size][align=center][size=16px][img=02.调制温度式差示扫描量热仪MTDSC正弦波温度控制装置及其接线图,690,216]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241527309145_3057_3221506_3.jpg!w690x216.jpg[/img][/size][/align][align=center][size=16px][color=#990000][b]图2 调制式差示扫描量热仪MTDSC正弦波温度控制装置及其接线图[/b][/color][/size][/align][size=16px] (1)具有外置设定点功能的PID控制器[/size][size=16px] 所用的具有外置设定值功能的PID控制器具有两个输入通道,主输入通道作为测量被控对象的温度传感器输入,辅助输入通道用来作为外置设定点输入。与主输入通道所能接收的信号一样,辅助输入通道的外置设定点同样可接受47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压,即任何信号源只要能转换为上述47种类型型号,都可以直接接入辅助输入通道作为外置设定点源。需要注意的是,远程设定点功能只能在单点设定控制模式下有效,在程序控制模式下无此功能。[/size][size=16px] (2)函数信号发生器[/size][size=16px] 对于MTDSC而言,相应的传感器测量输出无外乎就是电压和电阻这两类信号输出。因此,为了实现MTDSC的温度以正弦波形式的周期性变化,可以采用各种相应的信号发生器输出相应幅值和频率的正弦波信号和线性信号,对这两路电压信号进行叠加后传送给辅助输入通道。[/size][size=18px][color=#990000][b]3. 控制器的接线、设置和操作[/b][/color][/size][size=16px] 为了正常使用正弦波温度控制装置,还需进行相应的接线、设置和操作。[/size][size=16px] 首先,对于图2所示的正弦波温度PID控制装置,也可以用作常规PID温度控制器。即主输入通道连接温度传感器,主控输出1通道连接温控执行机构,由此传感器、执行机构和PID调节器组成标准的闭环控制回路,由此可以通过内部设定点或设定程序进行PID温度控制。[/size][size=16px] 如果要在MTDSC热分析仪上实施正弦波温度变化的控制,则使用外置设定点功能,此时需要在辅助输入通道接入远程设定点源,即函数信号发生器。[/size][size=16px] 完成外部接线后,在运行使用外置设定值功能之前,需要对PID控制器的辅助输入通道相关参数进行设置,且需要满足以下几方面要求:[/size][size=16px] (1)辅助通道上接入的远程设定点信号类型要与主输入通道完全一致。[/size][size=16px] (2)辅助通道的显示上下限也要与主输入通道完全一致。[/size][size=16px] (3)显示辅助通道接入的外置设定点信号大小的小数点位数要与主输入通道保持一致。[/size][size=16px] 完成上述辅助输入通道参数的设置后,在开始使用外置设定点功能之前,还需要激活外置设定值功能。外置设定值功能的激活可以采用以下两种方式:[/size][size=16px] (1)内部参数激活方式:在PID控制器中,设置辅助输入通道2的功能为“远程SV”,相应数字为3。[/size][size=16px] (2)外部开关切换激活:如图2所示可连接一个外部开关进行切换来选择外置设定点功能。同时,还需在PID控制器中,设置辅助输入通道2的功能为 “禁止”,相应数字为0。然后设置外部开关量输入功能DI1为“遥控设定”,相应数字为2。通过这种外部开关量输入功能的设置,就可以采用图2中所示的开关实现外置设定点和本地设定点之间的切换,开关闭合时为外置设定点功能,开关断开时为本地设定点功能。[/size][size=16px] 需要注意的是,无论采用哪种外置设定点激活和切换方式,在输入信号类型、显示上下限范围和小数点位数这三个参数选项上,辅助输入通道始终要与主输入通道保持一致。[/size][size=18px][color=#990000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,本文提出的解决方案,可以彻底解决温度调制式差式扫描量热仪(MTDSC)的正弦波温度的控制问题,温控器模块化结构可很容易与MTDSC热分析仪进行集成,无需再研发和配置复杂的控制电路和软件。随机配备的计算机软件可方便的进行控制运行和调试,便于热分析研发工作的开展。[/size][size=16px] 解决方案的另一个优势是所采用的PID温控器具有很高的测控精度,其中24位AD、16位DA、双精度浮点运算和0.01%的最小输出百分比,这可以满足MTDSC高精度温度控制需求。[/size][size=16px] 另外,本解决方案中的控制器还可以进行多种拓展,除可实现被控对象周期性调制波的加载之外,还可非常便于实现第二类和第三类边界条件的精密PID控制,同时还可以实现其他物理量,如真空、压力和张力等的串级控制、分程控制和比值控制等。[/size][align=center]~~~~~~~~~~~~~~~~~~~[/align]

热调制技术相关的资料

热调制技术相关的仪器

  • 固态热调制器SSM1820利用半导体制冷和直接加热实现快速的调制,使传统的全二维气相色谱 (GC×GC) 彻底摆脱了液氮和其他制冷剂的使用,显著降低了GC×GC技术的使用难度和运营成本。产品特点:调制范围:C7–C40 *调制周期:≥ 2秒,无上限,数字可调,支持非连续和用户编辑模式热区温度:50℃~320℃ 数字控制,支持程序升温冷区温度:-50℃~9℃数字控制,支持程序升温制冷方式:半导体制冷适配商业化GC/GC-MS设备,直接安装后升级成全二维系统*具体沸点范围跟配置调制柱有关默认配置SV调制柱SV调制柱(C7—C40)该范围以外应用请联系厂家定制产品包括固态热调制器主机及电源,安装工具包,调制器控制软件,高级模式安装包(如有),全二维色谱数据处理软件,一年售后服务和技术支持。
    留言咨询
  • 电光调制器 美国 ConOptics公司提供一系列的低压电光调制器和调制系统可用于脉冲选择、再生开关、光盘控制和数据存储。ConOptics公司提供的电光调制器都是横向调制器(通光方向与所加电场方向相垂直)。主要有三种晶体类型可供选择:ADP、KD*P、LTA。 电光调制器指标参数:ADP Crystal Series Wavelength Limits (240 to 800nm)Model NumberV 1/2 wave @ 500nmV 1/2 wave @ 830nmV 1/2 wave @ 1064nmV 1/2 wave @ 2500nmAperture DiameterResonancesContrast Ration @ 633nm and 1064nmLength w/ PolarizerM370184------2.5mmNo500:1, N/A158nmM370LA263------3.5mmNo500:1, N/A158nmM38092------2.5mmNo500:1, N/A253nmM390115------3.5mmNo500:1, N/A272nm KD*P Crystal Series Wavelength Limits (240 to 1100nm)Model NumberV 1/2 wave @ 500nmV 1/2 wave @ 830nmV 1/2 wave @ 1064nmV 1/2 wave @ 2500nmAperture DiameterResonancesContrast Ration @ 633nm and 1064nmLength w/ PolarizerM350-50455757970--3.1mmYes500:1, 700:1106mmM350-80261433522--2.7mmYes500:1, 700:1137mmM350-80LA360600720--3.5mmYes 137mmM350-105226376472--3.1mmYes500:1, 700:1162mmM350-160130216275--2.7mmYes300:1, 500:1215mmM350-210113188240--3.1mmYes300:1, 500:1268mm LTA Crystal Series Wavelength Limits (700 to 2000nm)Model NumberV 1/2 wave @ 500nmV 1/2 wave @ 830nmV 1/2 wave @ 1064nmV 1/2 wave @ 2500nmAperture DiameterResonancesContrast Ration @ 633nm and 1064nmLength w/ PolarizerM360-40--3124009502.7mmYesN/A, 200:195mmM360-80--1431834302.7mmYesN/A, 100:1137mmM360-120--1071383232.7mmYesN/A, 100:1174mmM360-160--71922152.7mmYesN/A, 100:1215mm 放大器指标参数:ModelBandwidthRise/Fall TimesMax. Output VTypical Drive ConfigurationOutput25ADC TO 25MHz14ns145100 Ohms B.L.Analog25DDC TO 30MHz8ns175100 Ohm' s B.L.Digital50DC TO 50MHz7ns9050 Ohms B.L.Analog100DC TO 100MHz3.5ns9050 Ohms B.L.Analog20010KHz TO 200MHz-17050 Ohms S.E.-275DC TO 8MHz50ns275Lumped CapacitanceAnalog302RMDC TO 250KHz1micro sec750Lumped CapacitanceAnalog302ADC TO 1MHz350ns350Lumped CapacitanceAnalog307DC TO 50KHz8ns800Lumped CapacitanceDigital50520 TO 100MHz-4450 Ohms S.E.-55050 TO 500MHz-14050 Ohms S.E- 电光调制器系统指标参数:AmplifierModulatorBandwidthTransmission at Longest wavelength302RM350-80LADC to 250KHz85% @ 1040nm302RM350-50DC to 250KHz85% @ 830nm302RM350-80DC to 250KHz85% @ 1200nm302A350-105DC to 1MHz85% @ 830nm307350-50DC to 50KHz85% @ 900nm505360-8020MHz to 100MHzPhase Modulation550360-8050 to 250MHz85% @ 830nm25A350-160DC to 25MHz85% @ 600nm25A350-80DC to 25MHz85% @ 830nm25D350-160DC to 30MHz85% @ 700nm25D360-80DC to 30MHz85% @ 1064nm50380-2PDC to 50MHz85% @ 500nm50360-120DC to 50MHz85% @ 830nm100380-2PDC to 100MHz85% @ 500nm100360-120DC to 100MHz85% @ 830nm200350-8010KHz to 200MHz85% @ 350nm200350-16010KHz to 100MHz85% @ 600nm200360-8010KHz to 200MHz85% @ 830nm275350-105DC to 8MHz85% @ 650nm275350-160DC to 8MHz85% @ 1064nmConOptics公司提供的电光调制器都是作为强度调制器来使用的。但同时,这些调制器也可以设置成偏振旋转器、电压可变波片、相位调制器。需要注意的是,当作为相位调制器时,只有半个调制器是工作的,因此半波电压是两倍。并且,一旦被设置为相位调制器,就不能再设置回强度调制器。 相位调节器指标参数KD*P SeriesPhase Sensitivity mrad/volt@500nmV for1/2 Wave Phase Modulator350-50LA3.85815350-507450350-8012261350-10514.7225350-16024130350-21029113ADP SeriesPhase Sensitivity mrad/volt@500nmV for1/2 Wave Phase Modulator370LA1226237017184380249039027115LTA SeriesPhase Sensitivity mrad/volt@500nmV for1/2 Wave Phase Modulator360-4013242360-8026120360-1203980360-1605260
    留言咨询
  • PDH稳频相位调制器 400-860-5168转2831
    PDH稳频相位调制器 PDH稳频技术姓名:吴工 (Sam)电话:(微信同号)邮箱:在许多应用中,人们需要抑制激光器噪声和稳定其工作波长,众所周知的应用包括引力波探测(参见2017年诺贝尔物理学奖LIGO项目),以及原子物理、光学频率梳和量子计算中的量子态光谱探测。常见的主动激光稳频技术之一是Pound-Drever-Hall技术,该技术将激光的发射频率锁定在稳定、高精细度的谐振腔中。这项技术以Robert Pound, Ronald Drever and John L.Hall而命名。PDH技术早在1983年的《Applied Physics B》杂志上发表,“Laser phase and frequency stabilization using an optical resonator”。根据路透社2017年的报道,这篇论文被引用了2000多次。 “PDH方案具有难以置信的可靠性,真正成为了主流的锁定机制。今天,这么多年过去了,我们仍在用它来尝试制造线宽为几mHz的超稳定激光器”。Jun Ye博士,NIST。 “PDH技术是一种非常智慧和可靠的方法,以非常干净的方式获得Error误差信号。还有其他一些各具特色的技术,但老实说,PDH技术绝对是迄今为止zui可靠的”。Pr Sylvain Gigan, Laboratoire Kastler Brossel. PDH技术使用常见的光学外差光谱和射频电子学方法,用标准具或法布里-珀罗F-P腔测量激光器的频率,并将测量结果反馈给激光器,以抑制激光器的频率偏差。其优点包括响应时间可能比腔的响应时间更快。选择适合的调制器给PDH应用下图给出了PDH设置的示例。当激光器的频率与腔的FSR(整数倍)完全匹配时,反射光和漏光具有相同的振幅,并且相位差180°。因此两束光相互干扰,反射光消失。考虑到感兴趣的激光源的窄线宽和所需的调制深度,iXblue开发了一系列用于实现PDH技术的优化型相位调制器。与任何其他相位调制器相比,我们可以区分LN-0.1系列的优点:l 适应低频:直流耦合至200 MHz调制频率l 专用于给定的波长范围。l 极低的驱动电压Vπ.l 低插入损耗(LIL选项)。l 高输入阻抗,提高调制效率。l NIR版本的高偏振消光比(PER)。l 低剩余幅度调制(Residual Amplitude Modulation-RAM)专利设计(EP3009879A1) 低频相位调制器的现实优势为光通信应用而设计和开发的普通高速(GHz)电光调制器在射频线的末端具有50欧姆负载电阻终端,以减少射频电反射。当在低频率下工作时,这种高速相位调制器在射频微波线路中有过高的电流,这导致焦耳效应的局部加热。当频率变得较低并且与热效应的时间常数相当时,热循环和散热就成了一个问题。因此,在加热和冷却过程中,电极、波导的物理特性会发生变化。 iXblue的LN-0.1相位调制器采用高输入阻抗负载(10kΩ)抑制热效应或电极线开路(1 MΩ)的设计,PDH测试能证明这种调制器可在温度变化时,性能稳定在一个大的温度范围内(-40℃到+85°C) 左图: 50Hz信号时明显有热效应,上面曲线为射频电信号,下面为光信号。右图: 50KHz信号时无热效应,上面曲线为射频电信号,下面为光信号。当用电光调制器实现PDH技术时,在环境扰动期间引起误差信号的畸变和非预期的频率偏移时RAM总会出现的。当系统的不稳定性逐渐降低到极低水平时,抑制或减轻RAM引起的频率不稳定性就变得越来越重要。iXblue为PDH设计并优化了专用于减小RAM的低频相位调制器。RAM可以通过在调制器注入一个直流电压而降低,该电压对应于铌酸锂波导一个整体的负折射率变化。一个5-15V直流电压足以将RAM降低10 dB。LN-0.1系列内部嵌入高阻抗射频负载终端,不会被直流信号所损坏。数据
    留言咨询

热调制技术相关的耗材

  • 声光调制器/声光移频器
    声光调制器/AOTF-美国CTI公司声光技术器件,包括调制器、移频器、锁模器件、调Q开关、可调谐滤波片和相关的驱动器。公司具备完整的设计和生产能力,可根据客户的特定应用提供标准、半标准、OEM和定制产品,请点击表格中的 型号查看具体参数。1.声光调制器/频率移动器如需详细资料,请与我们联系!
  • eospace调制器
    美国EOSPACE公司全线产品 量青光电专业代理 关于EOSPACE: 美国EOSPACE位于美国华盛顿州西雅图市,属于波音公司的分支公司。EOSPACE是世界上最顶尖的铌酸锂电光调制器生产商,提供的产品能够满足航天航空的要求,并且具有强大的研发能力,可以按照客户的方案进行设计和定制。其标准的强度调制器具有较低的工作电压,低差损,和高消光比的特点。产品适合宽带光通讯应用,也适合航天航空领域的微波通信用途。量青光电专业代理EOspace公司全线产品与技术支持。关于量青光电: 量青光电是一家激光光源,光放大器,光无源器件生产厂家,同时兼具国外仪器设备的代理与系统集成业务的综合性服务商,总部在上海、香港、美国设有办事处。业务覆盖国内各著名高校、中国科学院所属各研究所、信息产业部所属各研究所、航空工业总公司所属各研究所等不同系统内的研究机构,以及相关领域内的各大生产型公司。 经过多年的努力目前公司工厂自主生产的的产品线已经非常丰富,我们生产的产品波长覆盖800-2000nm,包括光无源器件的PLC光分路、光纤跳线、MPO&MTP分支型光纤跳线、FA光纤列阵、光纤透镜、MEMS VOA/光衰减器、机械式光开关/MEMS光开关、C-Lens光纤准直器与大光束准直器、保偏器件与跳线接头的代加工。偏振控制器/激光光源包括,SLD宽带光源、SLD超宽带光源,ASE光源,光纤放大器,SOA半导体放大器等。 我司外贸部代理国外一些高端特殊的光电产品,包括特殊光纤/光栅,相位调制器/强度调制器、SELD/DFB激光器,高速探测器与收发器、VCSEL激光器、QCL量子级联激光器、干涉型光纤传感OCT等一系列高端产品。
  • 40G调制器驱动
    40G电光调制器驱动产品概述 MD-40主要应用光网络射频放大40 Gb/sOC-768通用实验室测试双级放大设计带宽高达 32 GHz峰峰值输出内置直流偏置调制器 主要技术参数:参数MD-40MD-50MD-50-DX-R 双通道40GHz调制器驱动/射频放大器50GHz调制器驱动/射频放大器50GHz调制器驱动/射频放大器3dB S21带宽32 GHz typ.50GHz typ50GHz typ饱和输出功率21.5 dBm typ.>23dBm typ.>23dBm typ.RF 增益30 dB max.15~30dB,可调15~30dB,可调增益纹波±0. 75 dB±1.5dB±1.5dB(>20GHz)输入/输出阻抗50 Ω50 Ω50 ΩS1110 dB min.<-10@30GHz<-10@30GHz输入VSWR(-10GHz)-1.6:1 typ.1.6:1 typ.输出VSWR-2.0:1 typ.2.0:1 typ.总功耗2.5 W max.7W20W增益调整范围10 to 30 dB15~30dB15~30dBDC输出--0-10V DC存储温度范围,℃-45~ +90-40~+85-40~+85电源信息+12 V DC, 1 A max.+12 V DC, 2 A max.电源适配器RF输入/输出连接器K 连接器, AC 耦合2.4mm(V兼容)2.4mm(V兼容),K头可选产品尺寸160 x 65 x 32.5 mm150 x 150 x 30mm-控制接口USB portMolex 4PinUSB2.0;双LCD显示
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制