纳米标准华

仪器信息网纳米标准华专题为您整合纳米标准华相关的最新文章,在纳米标准华专题,您不仅可以免费浏览纳米标准华的资讯, 同时您还可以浏览纳米标准华的相关资料、解决方案,参与社区纳米标准华话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

纳米标准华相关的资讯

  • 中德纳米技术及纳米标准化前沿论坛在兰举行
    中新网兰州9月5日电 (朱世强)今天上午,中德纳米技术及纳米标准化前沿论坛在兰州大学举行,“这次论坛将对中国纳米技术和纳米的重要应用,以及中德科研领域的交流与合作起到推动作用” 此次论坛主席、原兰州大学校长李发伸教授说。   这次论坛由中德科学基金研究交流中心、兰州大学、北京大学联合主办。其间,将就纳米科技发展现状、新型纳米材料、纳米磁性、纳米器件、纳米加工、纳米光学、纳米技术应用、纳米技术标准化等专题进行研讨,同时将有39场报告,报告内容将围绕纳米技术的最新进展、解读中国纳米科技发展现状、探讨纳米标准和纳米量衡等热点和前沿问题。   据介绍,纳米技术是21世纪最重要的技术领域之一,它的迅猛发展将促进几乎所有工业领域产生一场革命性的变化。纳米材料是未来社会发展极为重要的物质基础,许多科技新领域的突破迫切需要纳米材料和纳米科技的支撑,传统产业的技术提升也急需纳米材料和技术的支持。   中国科研在纳米材料学、纳米机械学、纳米显微学、纳米测量学以及纳米电子学和纳米生物学、纳米技术等研究和应用方面进展迅速。在纳米材料制备与合成、纳米材料计量、测量和表征技术及纳米材料的基础研究、应用研究和开发研究均取得重要成果。   李发伸说,这次论坛在中国的举办,不仅为推进纳米科学、纳米标准研究,建立和加强中德及其他国家科学家在相关领域的合作与交流提供了良好的机遇和平台,也为推进和提高中德两国纳米科学与技术及相关领域的进一步发展起到了积极作用。   中德科学家在2000年到2004年已在两国举办五次以上双边论坛,它是纳米技术和纳米标准化的国际高级论坛。本次会议其间,有纳米材料国际委员会前主席H. Hahn教授、俄罗斯科学院院士伊万诺夫、美国化学学会《ACS NANO》主编Paul Weiss、法国科研中心光子与纳米结构实验室主任研究员王肇中、中科院物理所解思深院士、清华大学薛其坤院士等来自德国、中国、美国、俄罗斯、法国、新加坡六个国家的专家、教授、代表100余人参加。
  • 纳博会多国论剑,剑指“纳米标准化”
    p   21世纪,纳米科技将成为推动世界各国经济发展的驱动力之一,在电子、信息、生物、化工、医药、机械、交通、国防等领域有着重要意义和广泛的应用前景,目前纳米技术在一些产业领域已经形成了规模化的产业,如在胶体、纳米乳液、润滑剂、磁性液体、耐蚀涂层、药物控释系统、电子元器件、纳米陶瓷、纳米金属、纳米复合材料、微电子器件等方面的应用越来越普及,其重要性越来越受到世界广泛关注。 /p p   随着纳米技术产业的发展,纳米技术的标准化已经成各国抢占的“制高点”。经济全球化的加快和技术创新的深刻变化,国际竞争已逐渐转化为标准的竞争。特别是在高新技术产业,谁掌握了标准的话语权,谁就掌握了市场的主动权。“得标准者得天下”已逐渐成为一种共识。 /p p   鉴于此,在今年10月苏州举行的第七届纳博会上,大会主办方江苏省纳米技术产业创新中心与苏州纳米科技发展有限公司将专设国际纳米技术圆桌会议,着重探讨“纳米技术产品市场评估:标准化的意义”这一主题,并邀请世界各地涉足纳米技术的机构以及实业家、决策者、专家来分享经验与看法。据主办方透露,国际纳米技术圆桌会议开展到今年已是第四届,这是首次设定主题,而首次设立主题,即剑指“纳米标准化”。 /p p img src=" http://img1.17img.cn/17img/images/201610/insimg/e3478260-3750-41bd-b4ae-73718c2ef6e2.jpg" title=" 1.jpg" / /p p style=" text-align: center "   图为2015第三届国际纳米技术圆桌会议现场 /p p strong 真假难辨 国家标准“借你一双慧眼” /strong /p p   纳米产品的标准化非一日之功。事实上,早在2005年,国家质检总局和国家标准委就联合发布了《纳米材料术语》、《纳米镍粉》7项纳米材料国家标准,这是我国首次批准发布的关于纳米材料的国家标准,也是世界上首次以国家标准形式颁布的纳米材料标准,标志着此后我国“纳米”技术的生产和市场准入都将有权威依据,那些随意用纳米“搭车赚钱”的现象将受到国家标准的严格规范和约束。当年还成立了全国纳米标准化技术委员会,以更好地推进我国纳米技术标准化工作。而这,还远远不够。 /p p   “大体来讲,国家投资纳米技术开发的重要目标之一是为了从新兴的纳米技术市场分一杯羹。过去几年中,这些投资催生的纳米技术产品已经开始进军市场。相关各方,包括决策方,监管方和投资方有意进行市场评估。决策方需要获取这方面信息来应对政府政策对公众社会经济影响,并对政府政策加以改善。投资方需要知道投资回报,监管方需要评估社会和环境影响。虽然有这种需求,但目前还没有能评估纳米技术市场的完善的参考体系。”伊朗国家纳米振兴委员会国际事务主任表示,2015年发表的ISO-TS18110标准应这一需求而提出了大家所需的标准化的定义。本次会议旨在推广这一标准并鼓励各方使用并进一步完善该标准。 /p p   据悉,伊朗建立了定义纳米技术指标的国家标准,该标准采用了涵盖纳米技术市场容量这一内容的ISO18110。 过去4年中,该国一直在根据提到的定义以及相关的操作标准测量其纳米技术市场的规模,通过纳米级别认证阶段的产品才被视为是纳米科技产品。2016国际纳米技术圆桌会议关于“标准化”的主题便是伊朗这边向主办方提议的。 /p p img src=" http://img1.17img.cn/17img/images/201610/insimg/592ad63d-0178-40c2-a9c1-16924a47ff14.jpg" title=" 1.jpg" / /p p style=" text-align: center " 图为2015第三届国际纳米技术圆桌会议现场 /p p    strong 占领先机 争取国际标准话语权 /strong /p p   许多权威人士也曾预测,21世纪的经济增长将由纳米技术来驱动,如果纳米技术的成分如纳米材料、纳米结构作为一种公开的模块在市场上提供,这种驱动力量就更强大。标准化是纳米技术产业化过程中建立模块结构不可缺少的。 /p p   除了国家标准,国际标准同样不容忽视。不是所有其他国家都会认同你的产品所在的国家标准,一个有国家认证的产品,未必能畅通地走向世界。这时候,国际通用标准的重要性就显现了。 /p p   我国标准委主任李忠海曾指出,发展纳米科技的重要战略选择之一,就是高度重视纳米科技的标准化 保证纳米产品产业化健康发展的重要措施之一,就是建立统一、协调、配套的纳米标准体系。随着纳米科技的逐渐成熟和应用前景的明朗化,竞争会日趋激烈,谁的标准出台快,谁的标准科学性强,谁就最可能占领纳米产业化发展的先机,谁就掌握了市场的主动权。对于我国而言,尽管2005年至今,石墨烯等纳米材料标准陆续出台,但总体上,标准的制定仍然滞后于产品的市场开发。 /p p   据报道,世界科技强国对纳米标准化非常重视,在纳米国际标准化活动中积极抢占标准制定主动权。目前,一些发达国家凭借其技术的先进性及先发制人的时机抢先制定了一系列标准,以期在引领技术、主导产业和开辟市场等方面抢占制高点和话语权。 /p p   可见,标准的建立不能亦趋亦步。参与纳米产品国际标准的建立,掌握纳米产品国际标准的话语权,不仅标志着相应的研究开发处于国际领先地位,而且也能给产品所在的企业和国家带来实实在在的市场红利。 /p p   2016国际纳米技术圆桌会议是本届纳博会重要分会之一。据了解,基于今年“纳米技术产品市场评估:标准化的意义”这一主题,俄罗斯、德国、加拿大、伊朗等国将拿出关于纳米技术及产品标准化的国家报告,介绍其为纳米科技市场标准化所做的努力,包括纳米产品的评估、纳米企业的定义、类型及数据库统计等,并探讨标准化在全球共融中的意义。 /p p   “我们希望通过本次会议,不同国家的主要参与者能意识到标准化的定义的以及评估纳米技术经济影响的方法的重要性,由此希望各国积极主动的投入到开发一套完善的全球性体系的工作中来。总体而言,目前需要一套测量纳米市场容量及与其相关的方法,过程的指导体系。此类会议为推动建立完善的公认体系起了至关重要的作用。”伊朗国家纳米振兴委员会国际事务主任说。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201610/insimg/a99c7f8d-e76d-4308-8995-d299d43a74ed.jpg" title=" 1.jpg" / 图为2015第三届国际纳米技术圆桌会议现场 /p p strong   多措并举苏州积极推动纳米相关标准化工作 /strong /p p   作为全球八大纳米技术产业集聚区之一,当然不会忽视标准化工作的重要性。 /p p   2011年5月,苏州市就向国家标准化管理委员会提出申请建立全国首个战略性新兴产业标准化示范区——国家纳米技术产业化标准化示范区,力争将苏州打造成为全国第一的“纳米之城”。同年7月,国家标准委正式批复同意在苏州工业园区开展国家纳米技术产业化标准化示范区的试点工作。国家纳米技术标准化示范开展以来,苏州纳米技术企业标准化水平整体提高,标准影响力明显增强,纳米技术产业竞争力大幅提升。 /p p   2012年7月,全国洁净室与相关受控环境标准化技术委员会纳米受控环境分技术委员会落户苏州工业园区,这是园区第一个纳米技术标委会分技术委员会,也意味着苏州纳米技术研究介入标准领域。 /p p   2015年11月,苏州成立了国内首个新兴产业标准化协作平台,旨在加强苏州相关企业与标准化技术机构的沟通合作,推动实现标准化工作与科技创新、产业发展的快速响应、协同融合,更好发挥标准化在新兴产业发展中的服务、支撑与引领作用。主管部门从扶持产业发展、助推经济转型的高度,重视和支持做好协作平台的运行工作,相关企业则借助协作平台,全面提升标准化工作能力,切实增强标准化领域的话语权。 /p p   此外,园区还出台了《苏州工业园区纳米技术产品目录》《苏州工业园区纳米技术企业、产品认定管理办法》等规范性文件,落实纳米技术企业、产品认定,激发纳米市场良性发展活力。 /p p   东道主苏州这一系列纳米相关标准化工作,为2016国际纳米技术圆桌会议选择“标准化”作为主题奠定了基础,也令10月即将到来的“各国论剑”更具实践指导意义。 /p p br/ /p
  • 第四届全国纳米技术标准化技术委员会换届方案公示
    关于第四届全国纳米技术标准化技术委员会换届及组成方案进行公示的通知各有关单位: 第四届全国纳米技术标准化技术委员会(SAC/TC279)拟由43名委员组成,赵宇亮任主任委员,高思田、葛广路、张维旭、席广成任副主任委员,高洁任委员兼秘书长,秘书处由国家纳米科学中心承担。 现将第四届全国纳米技术标准化技术委员会换届及组成方案面向社会,截止时间为2023年04月06日。 2023年03月06日 附表:第四届全国纳米技术标准化技术委员会委员名单序号委员会职务姓名工作单位1主任委员赵宇亮国家纳米科学中心2副主任委员高思田中国计量科学研究院3副主任委员葛广路国家纳米中心标准检测重点实验室4副主任委员张维旭冶金工业信息标准研究院5副主任委员席广成中国检验检疫科学研究院6委员兼秘书长高洁国家纳米科学中心7委员白本锋清华大学8委员陈林森苏州苏大维格科技集团股份有限公司9委员陈鲁海上海金相环境科技有限公司10委员陈晓红北京化工大学11委员戴庆国家纳米科学中心12委员丁荣泰州巨纳新能源有限公司13委员方哲宇北京大学14委员高峡北京市理化分析测试中心15委员顾宁南京大学16委员龚林吉广东粤港澳大湾区国家纳米科技创新研究院17委员韩立中国科学院电工研究所18委员黄卫东TCL华星光电技术有限公司19委员孔令涌深圳市德方纳米科技股份有限公司20委员康永印纳晶科技股份有限公司21委员李力北京海岸鸿蒙标准物质技术有限责任公司22委员李平苏州市市场监督管理局23委员李润伟中国科学院宁波材料技术与工程研究所24委员李兆军中国科学院过程工程研究所25委员倪振华东南大学26委员宁辉丹东百特仪器有限公司27委员庞代文南开大学28委员任玲玲中国计量科学研究院29委员孙洁林上海交通大学30委员宋志棠中国科学院上海微系统与信息技术研究所31委员王益群深圳市标准技术研究院32委员王远航深圳市飞墨科技有限公司33委员谢黎明国家纳米中心标准检测重点实验室34委员夏洋嘉兴科民电子设备技术有限公司35委员许海燕中国医学科学院基础医学研究所36委员徐健重庆市计量质量检测研究院37委员杨勇骥上海市显微学学会38委员余方中机生产力促进中心有限公司39委员于明州中国计量大学40委员曾毅中国科学院上海硅酸盐研究所41委员朱建荣苏州市计量测试院42委员朱君上海纳米技术及应用国家工程研究中心有限公司43委员周素红北京粉体技术协会

纳米标准华相关的方案

  • 采用纳米微粒跟踪分析测定乳胶标准尺寸
    NanoSight 仪器有个独特的功能,就是可以在悬浮液中直接观察和测量纳米颗粒。颗粒可视化可以同时对每个颗粒测量尺寸,克服了与光子相关谱(PCS,或者动态光散射)等有关技术所存在的固有问题。纳米颗粒产生的光散射强度与半径公式遵循能量公式,并且随瑞利粒子1的六次方增大而增大。因此PCS(由总体颗粒产生的总散射光)虽然可以获得平均颗粒大小但是很难区分区那些是数量少的大颗粒还是是污染物。从另一方面来说,电子显微镜不仅在样品准备和成像上耗时,而且只能观察一个小区域,因此分析结果可能是以偏概全的。
  • 高分辨纳米粒度仪助力脂质纳米粒(LNP)精准粒度检测
    脂质纳米粒(Lipid Nanoparticles)作为一种高效、安全的药物递送体系,已经被各大企业及科研院所广泛研究,成为近年来发展最为迅速的制剂剂型之一,由于其制备过程需要进行特殊的工艺化定制,故而脂质纳米粒类制剂也被称为“高端复杂注射剂”。脂质纳米粒的制备过程中,其粒径控制是脂质纳米粒制备过程中的基础,因为粒径的大小和分布情况对药品后续的稳定性、包封率都具有非常重要的影响。
  • 通过中空纤维洗滤纯化纳米颗粒
    相较于传统的纳米颗粒纯化方法,如超速离心、搅拌室过滤、透析或者色谱方法,中空纤维洗滤(中空纤维切向流过滤)是一种更加高效、快速的替代方法。中空纤维洗滤可以用于纯化多种纳米颗粒,包括脂质体、胶乳颗粒、磁珠以及纳米管。中空纤维洗滤是一种基于膜分离的技术,膜孔径的大小决定了大分子或颗粒是被截留还是通过。这是一种流动的过程,样品温和循环通过管状膜。通过缓冲液的置换,可以获得纯化的纳米颗粒。中空纤维膜洗滤可以从研发体积直接线性放大到生产规模。通过增加膜纤维数量并维持关键操作参数,大体积样品可在和小规模研发体积一致的条件下完成。

纳米标准华相关的论坛

  • 【原创】国际标准化组织发布纳米毒性风险测定相关标准

    日前,国际标准化组织(ISO)发布新标准ISO 10808:2010,以帮助重点工业企业评估纳米产品可能的风险。 食品、化妆品、IT 及医药行业中纳米技术的快速发展引起了研究人员、制造商、监管机构及消费者的关注,他们关注重点是纳米技术对环境及纳米产品对操作工人的潜在影响。纳米技术的潜力巨大,但作为一个相对较新的技术,科学家们对纳米粒子还不是特别了解。ISO 组织表示新标准旨在增进对纳米粒子的了解,尤其是有助于支持纳米粒子吸入毒性测试。 新发布的ISO 10808:2010 标准全称为《纳米技术-纳米粒子在吸入暴露室中进行吸入毒性测试的特征标准》。该标准有助于确保用于测定空气传播纳米粒子吸入毒性的分析结果的可靠性及协调性。

  • 【求助】纳米铜粉的国家标准

    大家好,请问那位仁兄能方便找到一篇关于“纳米铜粉”的国家标准。论坛上有《纳米镍粉》(GB/T19588-2004)、《纳米氧化锌》(GB/T19589-2004)等等,但就是找不到纳米铜粉的国家标准。急盼解决!!!在这里谢谢了!!![em09509]

  • 纳米粉体测量标准

    请教无机氧化物纳米粉体比表面积测定的方法标准。其它方面如粒度,晶型,相变等有没有行业标准。

纳米标准华相关的资料

纳米标准华相关的仪器

  • 市场上最精确的纳米划痕测试仪主要特点施加较小的载荷时具有极快的响应时间纳米划痕测试仪带有载荷传感器,采用双悬臂梁用于施加载荷,以及压电式驱动器用于对施加的载荷快速响应。这一设计理念还修正了在划痕过程中发生的任何事件(例如出现裂纹和故障、缺陷或样品不平整)而导致的测量结果偏差。适用于弹性恢复研究的专利真实划痕位移测量在划痕之前、过程和之后,位移传感器 (Dz) 一直记录样品的表面的轮廓。这让您可以在划痕过程中或之后评估针尖的位移量,从而可以评估材料的弹性、塑性和粘弹性能(专利:US 6520004)不打折扣:施加任何微牛级的载荷闭环主动力反馈系统可在 1 μN 以下进行更精确的纳米划痕测试。纳米划痕测试仪包含一个 传感器测量载荷,可以直接反馈给法向载荷驱动器。这确保施加的载荷就是用户设置的载荷。高质量光学成像带“跟踪聚焦”功能集成显微镜包括配置高质量物镜的转塔和 USB 照相机。划痕成像时,能轻松将放大倍数从 x200 转换为 x4000,实现在低放大倍数和高放大倍数自由切换从而更好地对样品进行评估。“跟踪聚焦”功能可以进行将多个划痕的 Z 样品台自动聚焦到正确位置。划痕后可用多次后扫描模式评估弹性性能划痕后,您可以在软件中用时间增量定义无限次后扫描测量残余位移。这种全新的分析方法将让您进一步了解表面变形性能与时间的依赖关系。技术指标施加的载荷分辨率0.01 μN最大载荷1000 mN本底噪音0.1 [rms] [μN]*摩擦力分辨率0.3 μN最大摩擦力1000 mN位移分辨率0.3 nm最大位移600 μm本底噪音1.5 [rms] [nm]*速度速度从 0.4 mm/min 到 600 mm/min*理想实验室条件下规定的本底噪音值,并使用减震台。
    留言咨询
  • 纳米压印标准模板 400-860-5168转0250
    在科研中,很多用户需要用到光栅或点阵这些周期性的结构。有时用户不需要研究微纳米加工工艺,这样如果能花费低廉的价格买到这些成品将十分方便,只要接着从事后续的工作就可以了;有的用户自已拥有微纳米加工设备及经验,但纳米量级的尺寸要采用电子束曝光的方法来进行光刻,若有效面积超过1平方厘米,占机时间会很长,并需要调整电子束光刻及干法刻蚀工艺来优化成品。 鉴于此,我们向用户提供光栅及点阵的纳米结构成品。衬底材料为硅单晶,可广泛应用于各类科学研究。 产品类型: 标准模板一 ○ 光栅纳米结构模板 (线条+间距)○ 二维纳米模板(矩形或六边形)标准模板二 ○ 光栅结构○ 柱状点阵模板○ 孔阵模板2x2cm2模板四英寸模板六英寸模板标准模板一 我们可提供纳米级微结构,衬底材料为硅单晶,广泛应用于科学研究。批量生产,质量有保证,且性价比高。 产品精度: 线宽/深度:±15%周期精度:优于0.5%衬底宽度和高度误差:± 0.2 mm衬底厚度:0.675 ± 0.050 mm 具体规格如下表所示: 光栅纳米结构模板 (线条+间距) Linear Nanostamps (line+space) 序号周期沟槽深度占空比 ①线宽 ②样片尺寸③1139 nm50 nm50%69.5 nm12.5×12.5×0.7 mm2139 nm50 nm50%69.5 nm25×25×0.7 mm ⑤3278 nm④110 nm50%139 nm12.5×12.5×0.7 mm4416.6 nm110 nm50%208 nm12.5×12.5×0.7 mm5500 nmmultiple ⑥44%220 nm8×8.3×0.7 mm6500 nmmultiple ⑥60%300 nm8×8.3×0.7 mm7555.5 nm110 nm50%278 nm20×9×0.7 mm8555.5 nm140 nm50%278 nm20×9×0.7 mm9555.5 nm110 nm29%158 nm20×9×0.7 mm10555.5 nm140 nm29%158 nm20×9×0.7 mm11600 nmmultiple ⑥43%260 nm8×8.3×0.7 mm12600 nmmultiple ⑥55%330 nm8×8.3×0.7 mm13606 nm190 nm50%303 nm29×12×0.7 mm14606 nm④190 nm50%303 nm29×12×0.7 mm15606 nm190 nm50%303 nm29×24.2×0.7 mm ⑤16675 nm170 nm32%218 nm24×10×0.7 mm17675 nm170 nm32%218 nm24×30.4×0.7 mm ⑤18700 nmmultiple ⑥47%330 nm8×8.3×0.7 mm19700 nmmultiple ⑥55%375 nm8×8.3×0.7 mm20833.3 nm200 nm50%416 nm12.5×12.5×0.7 mm21833.3 nm200 nm50%416 nm25×25×0.7 mm ⑤ ①占空比表示线宽和周期的比率。③第二个尺寸相当于沟槽的长度。④scientific" grade offered at a discount. It has at least 80% of usable area. Up to 80/100 scratch/dig/particles and irregular substrate shape may present.⑤可定做更大尺寸⑥深度可做成150, 250 和 350 nm。 二维纳米模板(矩形或六边形)2D nanostamps (rectangular and hexagonal lattice) 序号周期晶格类型沟槽深度特征宽度衬底尺寸1500 nmrect postmultiple ①135 nm8×8.3×0.7 mm2500 nmrect postmultiple ①210 nm8×8.3×0.7mm3600 nmrect postmultiple ①195 nm8×8.3×0.7mm4600 nmrect postmultiple ①275 nm8×8.3×0.7mm5700 nmrect postmultiple ①260 nm8×8.3×0.7mm6700 nmrect postmultiple ①350 nm8×8.3×0.7mm7500 nmhex postmultiple ①165 nm8×8.3×0.7mm8600 nmhex postmultiple ①165 nm8×8.3×0.7mm9600 nmhex postmultiple ①240 nm8×8.3×0.7mm10700 nmhex postmultiple ①220 nm8×8.3×0.7mm11700 nmhex postmultiple ①290 nm8×8.3×0.7mm12600 nmhex holemultiple ①180 nm8×8.3×0.7mm13700 nmhex holemultiple ①200 nm8×8.3×0.7mm14700 nmhex holemultiple ①290 nm8×8.3×0.7mm ①深度可做成150, 250 和 350 nm rect post:hex post:hex hole:标准模板二 我们可提供纳米级微结构,衬底材料为硅单晶,广泛应用于科学研究。批量生产,质量有保证,且性价比高。产品精度:直径±10%线宽±10%高度/深度±15%产品说明:硅片厚度:0.5mm(特殊情况另标注)模板尺寸:产品规格+/-0.2mm缺陷面积:1% 具体规格如下表所示: 光栅结构(周期,线宽,高度,有效面积,衬底尺寸) Part NoDescriptionImagePattern 10Line gratingPeriod: 70 nmWidth: 25 nmor 35 nmHeight: 32nmor 40 nmArea: 4x 0.5 x 1.2 mm2Substrate: Si 20 x 20 mm2Pattern 2Line gratingPeriod: 300 nmWidth: 170 nmHeight: 210 nmArea: 30 x 30 mm2Substrate: Si 30 x 30 mm2Pattern 23Line arryPeriod: 150 nmWidth: 75 nmHeight: 116 nmArea:25 x25 mm2Substrate:Si 30 x 30 mm2 柱状点阵模板(周期,柱直径,高度,有效面积,衬底尺寸) Part NoDescriptionImagePattern 1Square pillar arrayPeriod: 300 nmDiameter: 145 nmHeight: 170 nmArea: 14 x 14 mm2Substrate: Si 14 x 14 mm2Pattern 6High-resolution pillar arrayPeriod: 35 nmand 42 nmDiameter: 15 - 20 nmHeight: 25nmArea: each period 25x25 um2Substrate: Si 12.5 x 12.5 mm2Pattern 3Hexagonal pillar arrayPeriod: 600 nmDiameter: 300 nmHeight: 310 nmArea: 20 x 20 mm2Substrate: Si 20 x 20 mm2Pattern 15Hexagonal pillar arrayPeriod: 750 nmDiameter: 325 nmHeight: 260 nmArea: 25 x 25 mm2Substrate: Si 25 x 25 mm2Pattern 7Hexagonal pillar arrayPeriod: 1000 nmDiameter: 400 nmHeight: 280 nmArea: 20 x 20 mm2Substrate: Si 26 x 26 mm2Pattern 17Hexagonal pillar arrayPeriod: 1010 nmDiameter: 470 nmHeight: 750 nmArea: 25 x 25 mm2Substrate: Si (0.7mm) 25 x 25 mm2Pattern 20Hexagonal pillar arrayPeriod: 3000 nmDiameter: 1800 nmHeight: 1200 nmArea: 20 x 20 mm2Substrate: Si 25 x 25 mm2 孔阵模板(周期,孔直径,高度,有效面积,衬底尺寸) Part NoDescriptionImagePattern 11Square hole arrayPeriod: 90 nmDiameter: 45 nmHeight: 50 nmArea: 4x 0.6 x 0.6 mm2Chip size: 15 x 15 mm2Pattern 13Square hole arrayPeriod: 300 nmDiameter: 150 nmHeight: 300 nmArea: 4 x 4 mm2Chip size: 15 x 15 mm2Substrate: Quartz (2.3 mm thick)Pattern 24Square hole arrayPeriod: 350 nmDiameter: 225 nmHeight: 300 nmArea: 20 x 20 mm2Substrate: Si 20 x 20 mm2Pattern 4Hexagonal hole arrayPeriod: 600 nmDiameter: 300 nmHeight: 50 nm, 450 nmArea: 20 x 20 mm2Substrate: Si 20 x 20 mm2Pattern 5Hexagonal hole arrayPeriod: 600 nmDiameter: 400 nmHeight: 680 nmArea: 20 x 20 mm2Substrate: Si 20 x 20 mm2Pattern 14Hole array on Rhombic latticePeriod:* x=610nm, y=425nmDiameter: 150 nmHeight: 300 nmArea: 20 x 20 mm2Chip size: Si 24 x 24 mm2* center-to-center distance in x and yPattern 16Hexagonal hole arrayPeriod: 750 nmDiameter: 380 nmHeight: 420 nmArea: 25 x 25 mm2Substrate: Si 25 x 25 mm2Pattern 18Hexagonal hole arrayPeriod: 1010 nmDiameter: 490 nmHeight: 470 nmArea: 25 x 25 mm2Substrate: Si (1mm) 25 x 25 mm2Pattern 19Hexagonal hole arrayPeriod: 1500 nmDiameter: 780 nmHeight: 550 nmArea: 25 x 25 mm2Substrate: Si (1mm) 25 x 25 mm2Pattern 21Hexagonal hole arrayPeriod: 3000 nmDiameter: 1500 nmHeight: 850 nmArea: 20 x 20 mm2Substrate: Si 25 x 25 mm2Pattern 22Hexagonal hole arrayPeriod: 3000 nmDiameter: 1200 nmHeight: 1500 nmArea: 20 x 20 mm2Substrate: Si 25 x 25 mm22x2cm2标准纳米压印模板 我们提供电子束光刻方法制备的硅模板,衬底尺寸为20x20mm2。图形分辨率高,有效区域为5x5mm2。批量生产,质量有保证,且性价比高。产品精度: 标准高度:100nm直径: ±10%线宽: ±10%缺陷面积: 1% 具体规格如下表所示: 孔阵(矩形孔阵) 序号ProductPeriodAreaDiameter / Height1P100s_h_5w5100nm5x5mm250nm/ 100nm2P150s_h_5w5150nm5x5mm260nm/ 100nm3P200s_h_5w5200nm5x5mm270nm/ 100nm 孔阵(六边形孔阵) 序号ProductPeriodAreaDiameter / Height1P200h_h_5w5200nm5x5mm280nm/ 100nm2P300h_h_5w5300nm5x5mm2125nm/ 100nm3P400h_h_5w5400nm5x5mm2150nm/ 100nm 柱状点阵(矩形柱状点阵) 序号ProductPeriodAreaDiameter / Height1P100s_p_5w5100nm5x5mm250nm/ 100nm2P150s_p_5w5150nm5x5mm260nm/ 100nm3P200s_p_5w5200nm5x5mm280nm/ 100nm 柱状点阵(六边形柱状点阵) 序号ProductPeriodAreaDiameter / Height1P200h_p_5w5200nm5x5mm270nm/ 100nm2P300h_p_5w5300nm5x5mm2110nm/ 100nm3P400h_p_5w5400nm5x5mm2120nm/ 100nm 大面积四英寸模板我们提供四英寸硅或石英模板,可用于压印工艺。批量生产制作,质量有保证且性价比高。 产品精度: 高度/深度:±15%直径:±10%线宽:±10%缺陷面积:1% 具体规格如下表所示: Holes on Hexagonal Lattice(六边形孔阵) Part NoProductPeriodDiameterAreaMax. Etch depth (Si/Quartz)Image1P520h_h_20w20520 nm260nm20x20 mm2450 nm/200 nm2P600h_h_46w46600 nm300nm46x46 mm2450 nm/200 nm3P600h_h_100d600 nm300nm4-inch450 nm/200 nm4P750h_h_51w51750 nm350nm51x51 mm2450 nm/200 nm5P780h_h_20w20780 nm350nm20x20 mm2450 nm/200 nm6P1000h_h_20w201000 nm400nm20x20 mm2600 nm/300 nm7P1000h_h_51w511000 nm300nm~500nm51x51 mm2600 nm/300 nm8P1500h_h_20w201500 nm400nm~650nm20x20 mm2600 nm/300 nm9P1500h_h_51w511500 nm400nm~650nm51x51 mm2600 nm/300 nm10P3000h_h_100d3000 nm600nm~1400nm4-inch1000 nm/400 nm Holes on Square Lattice(矩形孔阵) Part NoProductPeriodDiameterAreaMax. Etch depth (Si/Quartz)Image11P350s_h_20w20350 nm250nm20x20 mm2300 nm/150 nm12P350s_h_100d350 nm250nm100dia300 nm/150 nm Pillars on Hexagonal Lattice(六边形柱状) Part NoProductPeriodDiameterAreaMax. Etch depth (Si/Quartz)Image13P600h_p_46w46600 nm300nm46x46 mm2450 nm/200 nm14P600h_p_100d600 nm300nm4-inch450 nm/200 nm15P750h_p_51w51750 nm350nm51x51 mm2450 nm/200 nm16P780h_p_20w20780 nm350nm20x20 mm2450 nm/200 nm17P1000h_p_20w201000 nm400nm20x20 mm2600 nm/300 nm18P1000h_p_51w511000 nm300nm~500nm51x51 mm2600 nm/300 nm19P1500h_p_20w201500 nm400nm~650nm20x20 mm2600 nm/300 nm20P1500h_p_51w511500 nm400nm~650nm51x51 mm2600 nm/300 nm21P3000h_p_100d3000 nm600nm~1400nm4-inch1000 nm/400 nm Pillars on Square Lattice(矩形柱状点阵) Part NoProductPeriodDiameterAreaMax. Etch depth (Si/Quartz)Image22P150s_p_30w30150 nm75nm30x30 mm275 nm/ —23P250s_p_30w30250 nm110nm30x30 mm2200 nm/100 nm24P300s_p_30w30300 nm130nm30x30 mm2200 nm/100 nm25P400s_p_30w31400nm250nm30x30 mm3200 nm/100 nm26P500s_p_30w30500 nm250nm30x30 mm2450 nm/200 nm Linear Gratings(光栅结构) Part NoProductPeriodWidthAreaMax. Etch depth (Si/Quartz)Image27P150L_p_30w30150nm70nm30x30 mm275 nm/ —28P250L_p_30w30250nm110nm30x30 mm2200 nm/100 nm29P300L_p_30w30300nm130nm30x30 mm2200 nm/100 nm30P400L_p_30w30400nm200nm30x30 mm2200 nm/100 nm31P500L_p_30w30500nm250nm30x30 mm2450 nm/200 nm Multi-pattern(复合结构) Part NoProductDescriptionDiameterPeriodAreaMax. Etch depth (Si/Quartz)32MHSL_400-800Linear, hexagonal, square array combination,Periods: 400-800nmpitch dependentho, les/lineseach period,7.5mm x 7.5mm400 nm/150 nm33MP250L300Multi-period linear grating combination 1, Periods: 250nm, 275nm, 300nmLinewidth(+/15nm): 90/250 100/275 120/300lineseach period,7mm x 7mm200 nm/100 nm34MP300L600Multi-period linear grating combination 2,Periods: 300nm, 400nm, 500nm, 600nmLinewidth(+/15nm): 90/250 100/275 120/300lineseach period,10mm x 10mm300 nm/150 nm
    留言咨询
  • 产品描述iNano采用InForce 50驱动器进行纳米压痕和通用纳米机械测试。 InForce 50的50mN力荷载和50μm位移范围使得该系统适合各种测试。 InView软件是一个灵活的现代软件包,可以轻松进行纳米级测试。 iNano是内置高速InQuest控制器和隔振门架的紧凑平台。 该系统可以测试金属、陶瓷、复合材料、薄膜、涂层、聚合物、生物材料和凝胶等各种不同的材料和器件。主要功能InForce 50驱动器,用于电容位移测量,并配有电磁启动的可互换探头独特的软件集成探头校准系统,可实现快速准确的探头校准InQuest高速控制器电子设备,具有100kHz数据采集速率和20μs时间常数XY移动系统以及易于安装的磁性样品架带数字变焦的集成显微镜,可实现精确的压痕定位ISO 14577和标准化测试方法InView软件包,包含RunTest、ReviewData、InFocus报告、InView大学在线培训和InView移动应用程序主要应用硬度和模量测量(Oliver Pharr)高速材料性质分布ISO 14577硬度测试聚合物tan delta,储存和损耗模量样品加热工业应用大学、研究实验室和研究所半导体和封装行业聚合物和塑料MEMS(微机电系统)/纳米级通用测试陶瓷和玻璃金属和合金制药涂料和油漆聚合物制造复合材料电池和储能应用硬度和模量测量 (Oliver-Pharr)机械表征在薄膜的加工和制造中至关重要,其中包括汽车工业中的涂层质量,以及半导体制造前段和后段的工艺控制。iNano纳米压痕仪能够测量从超软凝胶到硬涂层的各种材料的硬度和模量。 对这些特性的高速评估保证了在生产线上进行质量控制。高速材料性质分布对于包括复合材料在内的许多材料,其机械性能可能因部位而异。 iNano的样品平台可以在X轴和Y轴上移动100mm,并在Z轴方向移动25mm,这使得该系统适用于不同的样品高度并可以在很大的样品区域上进行测量。 可选的NanoBlitz形貌和层析成像软件可以快速绘制任何测得的机械属性的彩色分布图。ISO 14577硬度测试iNano纳米压痕仪包括预先编写的ISO 14577测试方法,可测量符合ISO 14577标准的材料硬度。 该测试方法对杨氏模量、仪器硬度、维氏硬度和标准化压痕进行自动测量和报告。聚合物Tan Delta、储存和损失模量iNano纳米压痕仪能够针对包括粘弹性聚合物的超软材料测量tan delta和储存与损耗模量。 储存与损耗模量以及tan delta是粘弹性聚合物的重要特性,其能量作为弹性能量存储并作为热量消耗。 这两个指标都用于测量给定材料的能量消耗。高温纳米压痕测试高温下的纳米压痕对于表征热应力下的材料性能至关重要,特别对热机械工艺中的失效机理进行量化。 在机械测试期间改变样品温度不仅能够测量热引起的行为变化,还能够量化在纳米级别上不易测试的材料过渡塑性。产品优势iNano纳米压痕仪可轻松测量薄膜、涂层和少量材料。 该仪器准确、灵活,并且用户友好,可以提供压痕、硬度、划痕和通用纳米级测试等多种纳米级机械测试。 该仪器的力荷载和位移测量动态范围很大,因而可以实现从软聚合物到金属材料的精确和可重复测试。 模块化选项适用于各种应用:材料性质分布、特定频率测试、刮擦和磨损以及高温测试。 iNano提供了一整套测试扩展选项,包括样品加热、连续刚度测量、NanoBlitz3D/4D属性映射和远程视频选项。
    留言咨询

纳米标准华相关的耗材

  • 纳米级微球颗粒标准品
    纳米级微球颗粒标准品(Particle-Size Standards)直径大小高度均一,具有NBS 的NIST认证,属于Duke Scientific公司荣誉出品Nanosphere Size Standards?系列产品中的聚合体微球标准品(苯乙烯单体聚合而成)。纳米级微球颗粒标准品应用广泛,电子显微镜领域、气液相微粒研究、色谱柱、激光散射研究等等,20-1000nm范围内的微球颗粒可以用来测量细菌、病毒、核糖体和细胞亚显微结构的大小。该产品以水溶液瓶装形式出售。聚合体密度为1.05g/ml;Refractive index of 1.58 @ 589 nm (25°C)。 订购信息:货号正常直径Certified Mean Dia.Size Uniformity Std. Dev.&C.V固体百分比7088120nm19nm+/-1.5nmNA1%7088350nm50nm+/-2.0nmNA1%70885100nm102nm+/-3.0nm7.6nm (7.5%)1%70886200nm204nm+/-3.1nm3.1nm (1.5%)1%70887300nm304nm+/-6.0nm4.5nm (1.5%)1%70888400nm404nm+/-4.0nm5.9nm (1.5%)1%70889500nm486nm+/-5.0nm5.4nm (1.1%)1%70890600nm600nm+/-5.0nm6.6nm (1.1%)1%70891700nm701nm+/-6.0nm9.0nm (1.3%)1%70892800nm802nm+/-6.0nm9.6nm (1.2%)1%70893900nm895nm+/-8.0nm9.1nm (1.0%)1% 下面推荐的是最高级别测量标准品,对直径1-40um的颗粒来说,以下产品极具竞争力。订购信息:货号Nominal diameterCertifiedMean Dia.Size UniformityStd. Dev.&C.V.SolidsContent708941.0μm0.993+/-0.0210.010μm (1.0%)1.0%708952.0μm2.013+/-0.0250.022μm (1.1%)0.5%708963.0μm3.063+/-0.0270.03μm (1.0%)0.5%708975.0μm4.991+/-0.0350.06μm (1.2%0.3%7089810.0μm9.975+/-0.0610.09μm (0.09%)0.2%
  • 高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米管浆液高剪切乳化机混合机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备
    高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米管浆液高剪切乳化机混合机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备 碳纳米管是一维的纳米材料,在工程材料域,碳管以其优异的物理机械性能成为聚合材料理想的填料。具有优异的力学性能、导电、导热性能,因而被认为是聚合物基复合材料理想的力学强化和功能改性材料,采用碳纳米管制成的复合材料表现出良好强度、弹性和抗疲劳性,碳纳米管也逐渐用于橡胶制品、轮胎、塑料等工业中。 但是,碳纳米管的呈纳米纤维状,自身易团聚和缠结,且碳纳米管表面为规整的石墨晶片结构,表面惰性大,与聚合物基体亲和性差,导致碳纳米管在橡胶基质中的分散性差,而且成本也高,这些限制了碳纳米管在橡胶中的规模化应用。 在橡胶工业中,将碳纳米管填充到各种橡胶基体以提高橡胶基体的性能成为研究高端橡胶产品的理想共混复合材料之一,但碳纳米管自身有着很高的表面自由能,易发生团聚现象,碳纳米管与基体间的相互作用是另一个难题,碳管表面没有任何反应官能图,碳管的惰性使其与聚合物基体间化学界面作用弱,碳纳米管对聚合物基体的改善效果难达到预期,因此制备出尺寸均匀,分散好,性能稳定的碳纳米管及其复合材料是拓展其应用域的需要。 目,在碳管的分散性及其复合材料研究中已经取得许多进展。常用的方法中是将采用表面活性剂对碳管表面改性,将其悬浮液与胶乳复合制得复合母胶,该技术在一定程度解决了碳纳米管的分散,但由于表面活性剂中其它基团的加入会降低复合母胶的性能;因此需要提供一种避免活性剂的加入影响碳纳米管与聚合物间结合的技术方案。 针对现阶段技术中存在的问题,在碳纳米管分散均匀的基础上在其表面引入羧基、羟基等官能团,避免偶联剂的加入影响碳纳米管与胶乳之间的结合。一种高分散碳纳米复合母胶的制备方法,包括以下步骤:1、将碳纳米管在分散液中剪切,制得短切碳纳米管悬浮液;2、通入氧化气体对短切碳管悬浮液氧化,制得短切碳纳米管氧化液;3、将补强材料加入短切碳纳米管氧化液,制得碳纳米管浆液;4、在碳纳米管浆液中加入偶联剂,制得复合浆液;5、将天然橡胶胶乳分散于复合浆液中,制得碳纳米管-天然橡胶复合材料;6、将碳纳米管-天然橡胶复合材料凝固、干燥制得高分散碳纳米复合母胶。 上海依肯根据市场技术需求结合多年来积累的成功案例经验特别推出ERS2000系列高剪切乳化机(混合机),ERS2000在线式高速高剪切乳化机,主要用于微乳液及超细悬浮液的生产。由于工作腔体内三组乳化分散头(定子+转子)同时工作,乳液经过高剪切后,液滴更细腻,粒径分布更窄,因而生成的混合液稳定性更好。三组乳化分散头均易于更换,适合不同的工艺应用。该系列中不同型号的机器都有相同的线速度和剪切率,非常易于扩大规模化生产。 上海依肯ERS2000系列高剪切乳化机(混合机)设备参数选型表:型号 标准流量L/H输出转速rpm标准线速度m/s马达功率KW进口尺寸出口尺寸ERS 2000/4300-100014000442.2DN25DN15ERS 2000/5300010500447.5DN40DN32ERS 2000/10800073004415DN50DN50ERS 2000/202000049004437DN80DN65ERS 2000/304000028504455DN150DN125ERS 2000/407000020004490DN150DN125高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备。。。需要了解更多详情请致电上海依肯机械设备有限公司 销售工程师 徐蒙蒙 182-0189-1183,公司有样机可以免费为客户进行测试验证实验。
  • 多功能纳米压痕仪配件
    多功能纳米压痕仪配件通过扫描材料表面实现对材料力学性能的纳米尺度的高精度测量,精确给出硬度,弹性模量,杨氏模量等材料力学性能。 多功能纳米压痕仪配件特色最高位移测量能力可达300mkm, 最高负载科大100mN。实现静态压痕和动态压痕测量以及sclerometry测量具备原子力显微镜和纳米硬度测量仪的功能采用模块化设计,可广泛集成原子力显微镜,光学显微镜,激光干涉仪器等尖端材料表面测量仪器,为用户提供综合性材料微观力学测试方案。 多功能纳米压痕仪配件选型4D紧凑型多功能纳米压痕仪4D紧凑型是全球结构最为紧凑小巧的纳米硬度测试仪,它采用纳米压痕法测量材料硬度和弹性模量(杨氏模量),负载高达2N,广泛用于材料力学性能测量研究。也非常适合大学或研究单位的纳米压痕仪测量硬度的教学或演示教学。 4D标准型多功能纳米压痕仪4D标准型具有测量材料硬度,弹性模量和其它力学性能的功能。它采用静态和动态纳米压痕技术以及sclerometry方法测量材料性能。并且可以接触式或半接触式地测量材料表面形貌,采用光学显微镜高精度地对压头和样品进行精确互动性定位。多功能纳米压痕仪4D标准型还可以接入另外的传感器或测量模块,实现对材料表面进行其它测量。 4D+增强型多功能纳米压痕仪4D+增强型配置是全球功能最多的多功能纳米硬度测量仪器。它具有纳米压痕仪和原子力显微镜的功能,具备了所有的物理和力学性能测量能力。它具有原子力显微镜测量模块,能够以纳米级分辨率研究压痕后留下的表面痕迹和图像,并能够全自动测量,可以批量处理分析测量结果。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制