结构生物学

仪器信息网结构生物学专题为您整合结构生物学相关的最新文章,在结构生物学专题,您不仅可以免费浏览结构生物学的资讯, 同时您还可以浏览结构生物学的相关资料、解决方案,参与社区结构生物学话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

结构生物学相关的资讯

  • Nature:走向整合的结构生物学技术
    从一类技术角度来说,直接和间接获得诺贝尔奖的技术非结构生物学莫属。经过半个多世纪的耕耘,这一技术现在到了快速收割的季节。现在代表结构生物学技术的多种技术正在走向整合,但整合技术仍然需要进一步推动和推广。   上世纪50年代,开文迪许实验室M.Perutz J.Kendrew用X-射线晶体衍射技术获得了球蛋白结构。X射线晶体衍射技术的应用,使人们可在晶体水平研究大分子的结构,在分子原子基础上解释了大分子。1962年,Waston和 Crick因基于结构生物学技术的研究结果发现了DNA双螺旋结构获得了诺贝尔生理学与医学奖,M.Pertt和J.Kendrew获得了同年的诺贝尔化学奖。   60-70年代,开文迪许实验室又发展了电子晶体学技术,研究对象主要是有序、对称性高的生物体系,如二维晶体和高对称性三维晶体。70-80年代,多维核磁共振波谱学使研究水溶液中生物大分子成为可能,溶液中生物大分子更接近于生理状态。   80年代,冷冻电子显微镜出现,这种技术不仅能够研究生物大分子在晶体状态和溶液状态的结构,且能够研究研究复杂大分子体系和超分子体系,如核糖体、病毒、溶酶体和线粒体等。   杂交或整合方法把多种结构生物学方法结合在一起,大大推动了结构生物学的研究。荧光能量共振转移(FRET)是20世纪初发现的,随着绿色荧光蛋白应用技术的发展,FRET已经成为检测活体中生物大分子纳米级距离和纳米级距离变化的有力工具,在生物大分子相互作用分析、细胞生理研究、免疫分析等方面有着广泛的应用。   冷冻电子显微镜技术通过快速冷冻的方法进行固定的,克服了因化学固定、染色、金属镀膜等过程对样品构象的影响,更加接近样品的生活状态。研究对象非常广泛,包括病毒、膜蛋白、肌丝、蛋白质核苷酸复合体、亚细胞器等等。所研究的生物样品既可具有二维晶体结构,也可是非晶体。由于对于样品分子量没有限制,突破了X-射线晶体学只能研究三维晶体样品和核磁共振波谱学只能研究小分子量样品的限制。计算机技术则可以将各种信息进行整合,从而可以获得接近真实的三维分子模拟数据。   现在结构生物学研究越来越多地依赖这种整合技术。2012年加州大学Andrej Sali等解析了26S蛋白酶体的结构。这种结构在许多神经退行性疾病的神经细胞都存在异常。现在科学家正利用这种结构作为模型开发能调节蛋白酶体活性的药物。今年另外一个小组利用整合技术分析决定感染细胞的艾滋病蛋白结构,利用这种结构开发治疗艾滋病的药物。整合技术也被用在解析核糖体结构。核糖体是细胞制造蛋白质的细胞器,是实现基因表达的关键机构。   目前的蛋白数据库存在一些问题,如这些数据主要依靠晶体结构数据,缺乏对其他相关数据的整合,这一问题给结构生物学领域提出要求应该大力推动整合技术的发展。10月6-7日,由4个机构组织了一次整合结构生物学培训班,以推动结构生物学技术的扩展和引领大家将结构和疾病结合起来研究。   参加学习的大部分学员都支持应该采用标准模式描述多方面的数据,这有利于其他学者整合和利用这些数据。但由于结构数据往往十分巨大,如何有效储存和获取这些数据仍然存在一些问题。会议结束时达成一项共识,将申请经费构建一种&ldquo 分子机器&rdquo 数据库中心。   欧洲分子生物学实验室细胞生物学家Jan Ellenberg说,获取全部分子结构的数据是结构生物学的目标,这个愿望或许能在10或20年后实现。   原文检索:   Ewen Callaway. Data bank struggles as protein imaging ups its game. Nature, 22 October 2014 doi:10.1038/514416a
  • 冷冻电子显微学与结构生物学
    冷冻电子显微学近年来在电子显微镜的硬件设备及结构解析的软件算法等方面取得了多个重要的技术突破, 正在成为结构生物学研究的重要技术手段, 为越来越多的生物学研究者所重视. 冷冻电子显微学的技术特点决定了它所具备的一些独特优势和发展方向, 同时作为一个正在迅速发展的科学技术领域, 需要多学科的交叉促进.   近期来自清华大学生科院的王宏伟发文介绍了冷冻电子显微学的研究现状及面临的技术挑战, 并提出未来可能实现结构生物学与细胞生物学不同尺度的研究在冷冻电子显微学技术上融合的新方法.   结构生物学是 20 世纪后半叶, 尤其是在 80~90年代蓬勃发展起来的重要学科. 通过对生物大分子(蛋白质、核酸及其复合体)的三维空间结构的测定, 结构生物学可以在微观尺度上精确地描述复杂生物大分子的形状, 原子与分子组合方式, 及其表面带电、亲疏水等物理性质, 从而为生物大分子发挥生物学功能的机理提供关键的解释. 进入 21 世纪以来, 结构生物学研究的技术手段日益成熟, 在现代生物学研究的各个分支领域中均发挥着重要的作用. 至今为止, 国际蛋白质结构数据库中的结构数据已经超过 100000, 其中绝大部分结构由 X 射线晶体学及核磁共振波谱学解析而来.   近年来, 技术的进步使得结构生物学新的研究手段取得了长足的进展. 2013 年 12 月份发表在Nature 上的利用冷冻电子显微学解析获得 TRPV1 原子分辨率结构的两篇文章, 在结构生物学领域造成了巨大的反响. 美国加州大学旧金山分校的程亦凡研究组与 Julius 研究组合作, 利用冷冻电子显微学技术首次获得了 300 kD膜蛋白 TRPV1的 3.4 Å 分辨率的三维结构, 并建立了该分子的原子模型.   其实在过去的几年间, 已经有若干工作报道了利用冷冻电子显微学解析病毒、蛋白酶体复合物、核糖体等近原子分辨率模型. 这些工作的里程碑式意义在于: 高分辨率结构解析过程不需要生长三维晶体, 样品用量非常少, 而且可以在短时间内同时获得多个复合体状态的三维结构. 短短一年里, 冷冻电子显微学技术作为直接解析生物大分子原子分辨率结构的技术手段受到人们的广泛关注.   事实上, 电子显微学是结构生物学研究中的老兵. 该技术自从 20 世纪 50~60 年代以来, 一直在研究细胞、 亚细胞及生物大分子结构的研究中扮演着独特的角色, 揭示了很多重要的细胞内精细结构. 在研究生物大分子的结构方面, 该技术采取与 X 射线晶体学及核磁共振波谱学迥然不同的原理, 在过去的几十年里逐渐建立了成熟的图像处理及分析算法, 成为结构研究的一种独特技术手段. 近 10 年来, 该领域的日臻成熟以及科研团队的扩大更快地催生了冷冻电子显微学成像技术与结构解析技术的革命性突破. 自从 2008 年以来, 冷冻电子显微学已经连续获得多种生物大分子复合体的原子分辨率结构, 而且高分辨率结构的解析速度正在呈现迅速上涨的趋势。   冷冻电子显微学从 20 世纪中叶开始, 经历了 80年代到 90 年代的技术方法建立时期, 21 世纪初的技术成熟期, 在过去的两年里发生了革命性的技术进步, 进入了快速发展期. 结构生物学和细胞生物学研究者如何抓住这个契机, 如何尽快适应新的局面, 掌握新的技术, 充分发挥该技术的优势从而更加更深入地研究生命现象, 将是未来几年里的一个主题. 数学、物理学、计算机科学、材料科学、化学等众多领域的研究者们必将在未来冷冻电子显微学的新技术新方法的开发中发挥重要的作用, 成为该技术的进一步完善与成熟的重要力量.   冷冻电子显微学领域研究者们则需要以主动开放的态度吸引其他领域研究者的合作, 并积极迎接来自更多领域研究者的挑战, 保持并发展自己的技术特长, 站在技术发展的制高点上选准研究方向, 始终在冷冻电子显微学的技术前沿上开疆拓土.   原文检索:   王宏伟. 冷冻电子显微学在结构生物学研究中的现状与展望. 中国科学: 生命科学, 2014, 44: 1020&ndash 1028   Wang H W. Current status and future perspective of cryo-electron microscopy in structural biology. SCIENTIA SINICA Vitae, 2014, 44: 1020&ndash 1028 doi: 0.1360/052014-140
  • 颜宁等点评:AI 精准预测蛋白质结构,结构生物学何去何从?
    p style=" text-indent: 2em " 12 月 1 日,谷歌旗下的 DeepMind 公司宣布,其 strong 新一代 AlphaFold 人工智能系统 /strong 在国际蛋白质结构预测竞赛(CASP)上击败了其余的参会选手, strong 精确预测了蛋白质的三维结构 /strong , strong 准确性可与冷冻电子显微镜(cryo-EM)、核磁共振或 X 射线晶体学等实验技术相媲美。 /strong /p p br/ /p p style=" text-indent: 2em " (详见《解决生物学 50 年来的重大挑战!生物界「AlphaGo」精准预测蛋白质结构》)这一消息引发了全球媒体关注,前 Genentech 首席执行官 Arthur D. Levinson 博士盛赞这一成就是 strong 「划时代的进步」 /strong 。 /p p br/ /p p style=" text-indent: 2em " 人工智能的「进击」对生物学、对其他学科会有什么影响?网络上有人提出: strong AI 都能解蛋白质结构了,结构生物学家是不是该失业了? /strong /p p br/ /p p style=" text-indent: 2em " 《返朴》总编、结构生物学家颜宁特邀几位同仁对这一新闻各抒己见, 回答大家的疑问。 /p p style=" text-align: center text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 558px height: 618px " src=" https://img1.17img.cn/17img/images/202012/uepic/73bb911a-86ca-490b-a90a-f01fb76aa418.jpg" title=" 微信图片_20201204191414.jpg" alt=" 微信图片_20201204191414.jpg" width=" 558" height=" 618" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " by Asier Sanz | https://asiersanz.com/ /span /p p br/ /p p style=" text-align: center text-indent: 2em " strong AlphaFold2 是个大突破,但我们还有努力的方向 /strong /p p br/ /p p style=" text-align: center text-indent: 2em " 张阳 /p p style=" text-align: center text-indent: 2em " (ITASSER 创造者,美国密歇根大学教授) /p p br/ /p p style=" text-indent: 2em " AlphaFold2 显然是蛋白质结构预测领域的重大突破。这可能是从 1969 年第一篇& nbsp Journal of Molecular Biology& nbsp 用比较建模方法预测蛋白质结构发表& nbsp 51 年以来最大的突破。 /p p br/ /p p style=" text-indent: 2em " 这个领域过去 20 年来,进展一直比较缓慢,但最近几年,随着共同进化、接触图预测以及引入深度学习之后,很多软件,比如 I-TASSER 和 Rosetta 等,都有了很大进步。 /p p br/ /p p style=" text-indent: 2em " 就 I-TASSER 来讲,两年前在第 13 届 CASP(CASP13)时,它能够正确预测的非同源蛋白数目比其六年前在 CASP11 上提高了 5 倍。这次 CASP14 也比 CASP13 的预测能力提高了很多。但 AlphaFold2 这次比上次进步更大,和两年前的上一个版本相比,& nbsp AlphaFold2 的主要变化是直接训练蛋白质结构的原子坐标,而不是用以往常用的、简化了的原子间距或者接触图。 /p p br/ /p p style=" text-indent: 2em " 传统上,蛋白质结构预测可以分成基于模板和从头预测,但是 AlphaFold2 只用同一种方法 —— 机器学习,对几乎所有的蛋白质都预测出了正确的拓扑学的结构,其中有大约 2/3 的蛋白质预测精度达到了结构生物学实验的测量精度。这说明,至少是在单结构域的蛋白结构,他们接近解决了这个问题。 /p p br/ /p p style=" text-indent: 2em " 谷歌这次为什么能够取得如此大的成功? /p p br/ /p p style=" text-indent: 2em " 这首先与它们拥有强大的人力和计算资源有关。 /p p br/ /p p style=" text-indent: 2em " 计算机上,他们使用 TPU(据他们的宣传是比 GPU 快 15 倍),学术界的实验室只有 CPU 或者 GPU,而很多实验室都还没有 GPU。他们对媒体宣传中说 Alphafold2 最后只用相当于 100 个 GPU 的资源训练了两周就产生了最后的模型,学界大多数实验室都可以做到,这是不客观的。因为产生一个新的想法,到训练成功的模型,中间起码要反复测试重复 100 次甚至 1000 次。这就像吃了十个馒头的饿汉一 样,不能说吃了最后一个馒头吃饱了,就觉得只吃最后一个馒头就够了。 /p p br/ /p p style=" text-indent: 2em " 另外,他们可以高薪招聘大量专业人才,集中精力攻关一件事,不需要担心基金申请、教学和学生毕业论文等等。这些人力和计算资源上的差别是谷歌 DeepMind 这样的工业研究机构比起学术界在攻关科学或者工程问题上的最大优势。 /p p br/ /p p style=" text-indent: 2em " 当然,学术界在蛋白质结构预测这么多年的积累,也给 AlphaFold2 的成功奠定了基础。 /p p br/ /p p style=" text-indent: 2em " 我自己很高兴他们取得了这么大突破。这个工作首先证明了蛋白质结构预测问题是可以被解决的。这其实不是一个简单的问题,因为蛋白质结构和序列的复杂关系,常常让人们 —— 特别是做结构预测的人 —— 怀疑,蛋白质折叠这个问题是不是可解, 或者有没有唯一解。 /p p br/ /p p style=" text-indent: 2em " 我们在 15 年前的一篇 PNAS 论文中提到,用 PDB 库中的模板,在理论上可以解决 “单结构域蛋白质结构预测” 这个问题,但那是一个基于模板的传统解法, 难点是如何找到最好的模板。谷歌他们这次用「暴力」的机器学习,「暴力」地解决了这个问题。这个做法的成功会对很多相关领域都产生深远影响。 /p p br/ /p p style=" text-indent: 2em " 有人说这个 AlphaFold2 会让很多相关行业的人失业。我认为恰恰相反,它给很多领域提供了解决问题的新途径和新思维,因而会极大推动相关领域的发展,因此会产生更多更大的机会。即便是在蛋白质结构预测这个相对较小的领域,我们还有很多事情要做。 /p p br/ /p p style=" text-indent: 2em " AlphaFold2 这次只有 2/3 的蛋白预测做到实验精度,还有 1/3 做不到,是否还有更快更好的途径来产生更高精度结构的算法?基于商业或其它考虑,我相信谷歌可能不会公开代码或 Server。 /p p br/ /p p style=" text-indent: 2em " 所以,最终可能还得学术界的同行共同努力,完善和推广这一技术,让其真正惠及生物医学研究以及普通公众的健康需求。 /p p br/ /p p style=" text-align: center text-indent: 2em " strong 共赢大于竞争 /strong /p p br/ /p p style=" text-align: center text-indent: 2em " 龚新奇 /p p style=" text-align: center text-indent: 2em " (中国人民大学数学科学研究院教授,清华大学北京结构生物学高精尖中心合作研究员) /p p br/ /p p style=" text-indent: 2em " 2020 年第 14 届国际蛋白质结构预测竞赛(CASP14)共有 84 个常规(Regular)题目,其中有 14 个题目因为生物实验没给出确定结构等原因被取消或延缓,其他 70 个题目的单体和复合物蛋白质所含有的氨基酸个数从 73 到 2180 不等。 /p p br/ /p p style=" text-indent: 2em " 19 个国家的 215 个小组参加了 CASP14。最终,谷歌旗下 DeepMind 公司的人工智能系统 AlphaFold2 在 2018 年的 Alphafold 基础上迭代创新,超常发挥,一枝独秀,基本解决了「从氨基酸序列预测蛋白质结构」这个困扰人类 50 年的生物学第二遗传密码问题。 /p p br/ /p p style=" text-indent: 2em " AlphaFold2 的成功表现在三个方面: /p p style=" text-indent: 2em " 1.不少结构的预测精确度跟实验晶体结构相当,可以替代晶体结构; br/ /p p style=" text-indent: 2em " 2.一些含有多个结构域的复杂超长的单链结构也达到了可以跟实验结构比较的程度; /p p style=" text-indent: 2em " 3.帮助解析了竞赛中涉及到的、实验多年没拿到的 X 射线晶体和 cryo-EM 冷冻电镜结构,比如 T1058 的膜蛋白是用了 Alphafold2 的预测模型之后,才跟原有晶体学数据综合成功解析了结构。 br/ /p p style=" text-indent: 2em " AlphaFold2 团队的& nbsp John Jumper 报告表明,他们使用了基于注意机制的神经网络,动态调整网络中节点的顺序和链接;依靠的是端到端的优化整体构建结构,而不是氨基酸距离;网络中内置了大量的序列、结构和宏基因组等多重比较信息;还依赖分子模拟软件优化去掉了原子的堆积碰撞。 /p p br/ /p p style=" text-indent: 2em " 在 AlphaFold2 的摘要作者名单里,交叉团队的 30 位作者中有 19 位都被标记为相同贡献的第一作者。他们将近 8 分钟的宣介视频,记录了团队成员在新冠疫情期间精诚合作、攻坚克难的宝贵场景。 /p p br/ /p p style=" text-indent: 2em " CASP 组织者 John Moult 指出,计算下一步还有更困难的问题要解决:超大复合物结构、动态构象变化、蛋白质设计、药物设计等等。 /p p br/ /p p style=" text-indent: 2em " 除了我们蛋白质结构预测小同行对 AlphaFold2 的成功很欣喜之外,社会上还有多个不同方向的学术界、产业界和新闻界对它寄予了厚望。 /p p br/ /p p style=" text-indent: 2em " 在欣喜的同时,蛋白质结构预测小同行也有一些保留意见: /p p style=" text-indent: 2em " 1.工程化明显,依赖于强大的 GPU 计算资源和代码优化团队; br/ /p p style=" text-indent: 2em " 2.谷歌公司几乎可以收集全球所有网络信息,虽然看起来 AlphaFold2 的自动化程度很高,但他们在人工操作中使用了哪些信息值得关注; /p p style=" text-indent: 2em " 3.预测对了结构,但不等于明白了蛋白质折叠过程和原理。 /p p br/ /p p style=" text-indent: 2em " strong 生物实验科学家也有不少看法: /strong /p p style=" text-indent: 2em " 1.算出结构只是生物学规律发现的第一步; /p p style=" text-indent: 2em " 2.计算的多个 models 中,有时打分排序不准; /p p style=" text-indent: 2em " 3.开放 AlphaFold2 的 server 之后,使用效果不一定那么好; /p p style=" text-indent: 2em " 4.只是在已有蛋白质结构数据集上训练得到的模型,尚不能计算其它构象或其它类别的分子结构。 /p br/ p style=" text-indent: 2em " 还有关心这个领域的其他方向的专家也提出了问题:怎么理解这个算法成功的原理?怎么跟原有的热力学、物理学等基本原理相融相通? /p p br/ /p p style=" text-align: center text-indent: 2em " 我认为 AlphaFold2 是个大突破,后续可能性很多,会替代一些简单的结构生物学实验,但对当下科学家追求的前沿生物学来说,共赢大于竞争;对生物学、数学和计算机学等学科而言,则会带来新的机遇。 br/ br/ strong 技术服务于科学探索,结构生物学早就进入新时代 /strong br/ 颜宁 /p p style=" text-align: center text-indent: 2em " (美国普林斯顿大学雪莉?蒂尔曼终身讲席教授,美国科学院外籍院士) /p p br/ /p p style=" text-indent: 2em " 首先,简单说一下,什么是生物学里的「结构」。 /p br/ p style=" text-indent: 2em " 用个不太恰当的类比:变形金刚。比如擎天柱是辆车还是个机器人,这就是不同的结构了,机器人能打架大车做运输,功能也不一样。而不同的汽车人组成成分可能差不多,都有合金、玻璃、橡胶,但是形态各异,特长也不一样。 br/ 生物分子的组成成分和基本单元就那么几种,但是组装起来,不同的序列不同的结构,于是功能各异、五花八门。这个结构不是静止的,每一个生物大分子基本都像个小机器,比变形金刚更复杂、更变化多端。 /p p br/ /p p style=" text-indent: 2em " 因为结构决定了生物大分子的功能,所以解析高分辨率结构在过去几十年一直是理解生物大分子工作机理最有力的工具。但是一直以来,因为技术局限,对于绝大多数生物大分子的结构解析困难重重。所以,一批科学家另辟蹊径,试图在已有的知识基础上,绕开劳心劳力又劳财的实验步骤,从蛋白质的序列直接通过计算预测出它们精准的三维结构。 /p p br/ /p p style=" text-indent: 2em " 蛋白结构预测并不是一个新鲜学科,一直以来就是结构生物学的一个分支,很多科学家不断开发算法,希望根据序列预测出来的结构越来越准确。 br/ 这个领域在过去十几年进步迅速,并且与实验结构生物学融合度越来越高。比如,自从进入电镜时代,看到一堆黑白灰的密度,如果其中某些部分没有同源结构,通过软件预测一个大致的结构模型,放到密度图里面做框架,再根据实验数据调整,已经是个常规操作。 /p p br/ /p p style=" text-indent: 2em " 这次人工智能赢得 CASP 的新闻亮点有两个,一是 AI,二是准确度高。这确实是突破,但是有了两年前的新闻(注:2018 年,DeepMind 开发的第一代 AlphaFold 首次参加 CASP 并且拔得头筹)做铺垫,现在这次委实是意料之中。 br/ 至于衍生出来的所谓「结构生物学家都要失业了」的调侃 —— 如果你对结构生物学的理解还停留在 20 年前,那这么说也不是不行。但是结构生物学自身一直在发展着,一场冷冻电镜的分辨率革命更是令结构生物学不同往日了。 br/ 我在 2015 年主持一个学术研讨会的时候曾经评论过:结构生物学的主语是生物学,是理解生命、是做出生物学发现。 br/ 但是,在 X - 射线晶体学为主要手段的时代,获得大多数研究对象的结构本身太难了,于是很多研究者把「获得结构」本身作为了目标,让外行误以为结构生物学就是解结构。但我从进入这个领域之初,就被教育得明明白白:结构本身只是手段,它们是为了回答问题、做出发现。而电镜使得「发现」二字尤为突出。 br/ br/ 看到结构本身、知道你的研究对象长啥样,倒也可以称之为发现,但我刚刚说的「发现」,特指那些超乎想象的、通过结构才揭示出来的、自然界里神奇的存在或者令人叹为观止的机理。 /p br/ p style=" text-indent: 2em " 我讲课最喜欢举的例子之一就是施一公组的剪接体结构。为啥呢?因为它集合了结构生物学发现里几乎所有的精彩要素和挑战。 br/ br/ 第一,在剪接体结构出来之前,有很多剪接体的组分甚至是未知的。不同于传统的结构生物学,先知道你要研究对象是啥,再吭哧吭哧地去把它们的结构解出来 —— 剪接体的电镜分析是看到了密度图之后,完全不晓得这是啥,需要通过质谱等手段去鉴定组分。我从 2015 年就预测:电镜与质谱组合,将会变成一个重要的生物学研究发现手段。在电镜时代,这样的例子越来越多。比如清华大学隋森芳老师组的那个巨大的藻胆体结构,靠质谱都不够了。为了搞明白组分,他们甚至先做了基因组测序。 br/ br/ 第二,几十上百个蛋白如何众星捧月地把那么几条貌似简单的 RNA 掰成与几个小小的金属离子配合的核酶反应中心,在茫茫碱基中,在正确的时间正确的地点牵线搭桥,剪掉 intron(内含子),连接 exon(外显子)?就为了这一「剪子」& nbsp 一「钩针」,为了几毫秒的过程,这么个庞然大物的几十上百个组成部件却要分分合合,这个过程是真神奇。 /p p br/ /p p style=" text-align: center text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/72bc97e7-d254-461b-b199-1156f73a37c8.jpg" title=" 微信图片_20201204191624.jpg" alt=" 微信图片_20201204191624.jpg" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " 施一公实验室报道的首个酵母剪接体的结构 /span /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " (图源:生物化学经典教材 Lehninger Principles of Biochemistry(第七版)封面) /span /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " br/ /span 结构生物学目前的实验手段只能获得静止的 3D 照片,为了揭示这部电影,就要不断获得中间态的 3D 照片,帧数越多,电影越精准。但即便如此,这个过程中的动力学问题,简单说,就是变化速度,依旧不是现在的结构生物学实验手段可以揭示的,需要借助更多生物物理技术、计算生物学手段去探索。 br/ 我自己的工作虽然没有剪接体那么酷炫,但是电压门控钠离子通道如何感受膜电势的变化,开门关门,就这么个过程,听着简单,我们死磕三年了,依旧束手无策。另外,我们今年发的两篇 PNAS 论文其实代表了结构生物学的另一个努力方向:在实验操作过程中对生物大分子施加外力(电场、磁场、各种长度的波......)。 br/ 也许是受到我自身专业领域的局限,AlphaFold 迄今带给我的震撼还赶不上冷冻电镜的革命,后者将我们从技术挣扎中解放出来,可以专注于结构带来的生物学发现本身。 br/ br/ AlphaFold 目前最成功的预测是针对单链分子,当然将来预测复合物的高精结构也应该不在话下。相比于对蛋白折叠的贡献,我倒是更希望 AI 能够助力 Molecular Dynamics Simulation(分子动力学模拟)。对结构生物学而言,这个领域才是亟需进步的。 br/ br/ 我个人认为生命是地球上最神奇的存在,那么多未知要探索,任何一次技术进步都是契机。该考虑的是如何把新技术为我所用,去问出、去探索更有意思的问题。 br/ 最后,当 AI 能够成功预测我们正在孜孜以求的生物大分子动态、原位高分辨率结构的时候,那失业的一定不止是结构生物学家、或者生物学家了 :p br/ br/ strong 各抒己见 /strong /p p style=" text-indent: 2em " strong br/ /strong 根据现在披露的结果,AlphaFold2 已经基本达到实验解析结构的精度。前天 AlphaFold2 团队的报告展示了新冠病毒 SARS-COV-2 的预测结果,说明 RNA 聚合酶这么大的蛋白也能基本预测准确。 /p br/ p style=" text-indent: 2em " 理论上,这会对结构生物学有很大冲击,尤其是以后单颗粒 cryo-EM 的实验方法上,是否还需要把分辨率做得那么高?低分辨率的电子密度图,甚至 SAXS 数据结合预测结果应该就能解决问题了。 br/ 但是,现实中的冲击不会那么大。这是因为,AlphaFold2 模型的创新性非常高,其中结合的 2D transformer 和 3D equivariant transformer 都是 AI 领域的前沿技术,模型的训练难度很大。 /p br/ p style=" text-indent: 2em " DeepMind 的训练方法在学术界很难复现,估计学术界要花几年的时间才能跟上,因此短期内 AlphaFold2 对结构生物学的影响会比较有限。DeepMind 可能会和个别实验室合作,预测蛋白质结构。 /p br/ p style=" text-align: right text-indent: 2em " ——& nbsp 龚海鹏(计算生物学家,清华大学结构生物学高精尖创新中心研究员) /p br/ br/ p style=" text-indent: 2em " AlphaFold 为结构生物学家提供了除晶体学、冷冻电镜、NMR 以外的另外一种手段,用于揭示生物大分子发挥作用的分子机制。 /p br/ p style=" text-align: right text-indent: 2em " —— 张鹏(结构生物学家,主要利用晶体学和冷冻电镜技术;中科院分子植物科学卓越创新中心研究员) /p br/ br/ p style=" text-indent: 2em " AlphaFold 目前还不能预测复杂的分子机器,主要是因为蛋白 - 蛋白相互作用非常复杂,存在极多的可能性。实验手段所揭示出来的蛋白 - 蛋白相互作用方式还只是冰山一角,更何况在不同生理条件和过程中的结构变化。因此,未来对有特定功能的、多个成分组成的、生物大分子复合体的结构解析,以及体内的结构分析,将成为结构生物学实验研究的主要内容。无论有没有 AlphaFold,结构生物学也正在朝这个方向发展。 /p p style=" text-indent: 2em " Rosetta(注:从头蛋白结构建模算法)也好,AI 也罢,结构预测都是基于已有的实验数据够大。没有足够的数据积累,这些基于统计和数据库的预测就无法实现。完全基于物理学和化学第一性原理的结构预测还没有出现。 br/ 实验科学永远是探索未知的必要手段。新的软件算法应该是成为实验科学家的更有力工具,而不是取代实验科学。 /p p br/ /p br/ p style=" text-align: left text-indent: 2em " —— 王宏伟(cryo-EM 专家,清华大学结构生物学高精尖创新中心执行主任,清华大学生命科学学院院长) br/ br/ br/ br/ & nbsp & nbsp & nbsp 最近两年,结构生物学领域经历了与围棋界类似的故事。Alphago Fan 版本时围棋界并不认为它能够战胜人类顶尖高手,可是 Alphago Lee 后整个围棋界甘拜下风,并且转向 AI 拜师学艺。2018 年 Alphafold 出现时,实验结构生物学领域认为被战胜的仅仅是传统的结构预测领域,2020 年 Alphafold2 之后,实验结构生物学领域应该开始思考如何与之共存以及如何「拜师学艺」了。 /p p style=" text-align: left text-indent: 2em " br/ & nbsp & nbsp & nbsp 目前阶段人工智能在围棋上已经远远超过人类顶尖棋手,但是人类围棋比赛并未因此取消,如同汽车发明后奥林匹克仍然在进行田径比赛一样。原因之一是人工智能虽然超越了人类,但并未解决围棋的最终解。同样的道理,对于复杂的结构生物学问题,预测手段本身还不能号称完全解决了问题。 /p p style=" text-align: left text-indent: 2em " br/ & nbsp & nbsp & nbsp 实验结构生物学领域接下来需要做的一个事情是要拥抱变化,更好地与预测方法结合以及共同发展。 /p br/ p style=" text-align: right text-indent: 2em " —— 周强(cryo-EM 专家,西湖大学生命科学学院特聘研究员) /p p br/ /p p br/ /p p style=" text-indent: 2em " 蛋白质体系越大,结构的解析越难仅依赖计算方法。Cryo-ET& nbsp (冷冻电镜断层成像)& nbsp 技术擅长解析体外难表达的大分子机器结构、细胞中的原位蛋白结构等复杂体系,因此很难被脱离实验手段的方法取代。目前,由于体系过于复杂,使用分子动力学模拟整颗病毒尚未实现,要模拟细菌、细胞、组织,还要很长的路要走。 /p p br/ /p

结构生物学相关的方案

结构生物学相关的论坛

  • 【转帖】攻坚结构生物学难题 清华本科学生在《自然》发表学术论文

    在清华大学医学院教授颜宁的带领下,以党尚宇、孙林峰、黄永鉴三位清华学生为主力的课题组,用了一年半的时间,在世界上首次解析了膜蛋白——大肠杆菌岩藻糖(L-fucose)转运蛋白(FucP)的结构,并结合生化手段初步揭示了其工作机理。顶级学术期刊《自然》在10月7日刊发了他们的学术论文“Structure of a fucose transporter in an outward-open conformation”(岩藻糖转运蛋白向胞外开放构象的结构)。膜蛋白的结构生物学研究一直以来是结构生物学领域公认的重点及难点。而该论文的前两位作者党尚宇和孙林峰在开始课题研究的时候还都是清华大学的本科生。  初生牛犊不惧虎——本科生接手结构生物学世界难题  膜蛋白存在于细胞的细胞膜上,它们是沟通细胞或细胞器内外的桥梁。各种营养物质的运输,细胞内有毒物质的排出,以及细胞内外信息的交换都要依靠膜蛋白,所以它们的功能在生命体中至关重要。但是由于膜蛋白不溶于水,难以纯化出均一性较好的蛋白质,也就比较难得到高质量的蛋白质晶体,故研究起来困难重重。  1985年,第一个膜蛋白结构问世,当时共计仅有不到200个生物大分子结构。而时至今日,PDB收录的近7万个生物大分子结构中,膜蛋白结构仅不到700个,其中新型的膜蛋白结构又只有250多个,足见膜蛋白结构生物学研究的困难。  2008年3月,还是一名大三学生的党尚宇,在本科生进实验室进行科研训练的时候,选择了施一公教授领导的清华大学结构生物学研究中心,并进入了颜宁教授负责的实验室进行科研工作。凭着对科研的热爱和刻苦钻研的精神,党尚宇在不到半年的时间里就掌握了基本的实验技能。  2008年8月,当颜宁老师找到党尚宇,与他讨论如何开展科研工作的时候,没有什么科研经验的党尚宇提出自己是否可以尝试承担一项课题,颜宁老师答应了,并将这个膜蛋白的研究课题交给了他。  为什么敢于将这样一个难题交给一名本科生?颜宁说:“那个时候就想,他们年龄很小,一两年内做不出来也没有什么心理负担,感觉有点像是我把他们‘骗上船’的。如果做不出来,就算是通过课题培养他们的科学素养、锻炼他们的实验技能了,不过后来他们的科研工作进展给了我一个巨大惊喜。他们的科研经历是一张白纸,完全没有畏难情绪,很有勇气,我觉得这是好事。”  坚持就是胜利——研究膜蛋白就看谁先放弃  然而,要做好膜蛋白的研究工作,不是单单凭借勇气就可以的。  回想起当时的研究工作,党尚宇说:“每前进一步都像是进行一场惊险的跨越。”

  • 彻底“消灭”结构生物学 冷冻电镜有多牛叉你知道吗?

    彻底“消灭”结构生物学 冷冻电镜有多牛叉你知道吗?

    [img=,640,570]https://ng1.17img.cn/bbsfiles/images/2019/01/201901251125013494_802_3221097_3.jpg!w640x570.jpg[/img][color=#5e5353]2017年诺贝尔化学奖奖颁给了雅克杜波谢(Jacques Dubochet), 约阿希姆弗兰克 (Joachim Frank) 和 理查德亨德森(Richard Henderson),以表彰他们对于冷冻电子显微镜技术的研究发展所作出的贡献,三位科学家同时还简化和改进了生物分子的成像。这项技术使得生物化学迈向了新的时代。我们很有可能在近期内获得原子级别分辨率下的生命复杂机械的详细图像。[/color][img=,640,424]https://ng1.17img.cn/bbsfiles/images/2019/01/201901251125136496_4010_3221097_3.jpg!w640x424.jpg[/img][color=#888888]因为冷冻电子显微镜技术的出现,我们能看到的微观世界从图片左侧的样子,变成了右侧这样。图片来源:The Royal Swedish Academy of Sciences | 制图:Martin Hö gborn[/color][color=#5e5353]听到导师约阿基姆弗兰克(Joachim Frank)得奖的消息后,我的心情有些激动。[/color][color=#5e5353]近几年,冷冻电镜在生物物理,特别是结构生物学领域掀起了一轮新的风暴。尤其在近三四年来,依靠冷冻电镜技术,很多具有非常重要生物学功能的生物大分子复合物的三维结构得到解析。所以说冷冻电镜技术彻底改变了结构生物学的研究方式。[/color][color=#5e5353][/color][color=#5e5353]冷冻电镜的重要性,在我看来就是它彻底地“消灭”了结构生物学。这句话是什么意思呢?就是说冷冻电镜技术在这两年的突破,使得解析生物大分子复合物的三维结构变得越来越容易、越来越常规。所以这个发展趋势,就是以电镜为主的技术越来越平台化,入门的门槛越来越低,会更多地普及生物研究的方方面面。[/color][color=#5e5353][/color][color=#5e5353]冷冻电镜近年来取得了一系列重大突破,这一系列突破让以前很多不能做的研究变成了可能。而这一切最新的突破所用的方法,主要就是这三位科学家建立的,所以他们得奖是实至名归的事。[/color][color=#5e5353]目前冷冻电镜技术逐渐成熟,未来的发展将包括数据计算的算法等一系列更加友好界面软件的开发等等(以前主要是硬件的发展)。通过冷冻电镜,可以对以前不了解的重要的蛋白质复合物进行研究,可以看到某些蛋白质具有怎样的生物学功能。这方面的研究将来还是很发展前景的。[/color][color=#5e5353][/color][color=#5e5353]中国的清华大学冷冻电镜中心近年来发表了很多具有重要的影响的工作,比如施一公教授的剪切体,我所做的呼吸链复合物等。这些工作在以前都是很难做成的,正是冷冻电镜发展起来之后,才使得我们能在短期内就取得了这一系列的重大突破。[/color][color=#5e5353]目前来说,中国冷冻电镜的应用的发展远远超过世界上其他国家,未来的发展重点将是一系列具有重要生物学功能的蛋白质复合物,以及这些蛋白质复合物的生命科学中的应用等。想信在未来还会持续成为生命科学研究领域的热门手段。冷冻电镜的重要发展就是使得解析像呼吸链复合物这样重要蛋白的结构成为了可能。按照X射线晶体学发展的轨迹,首先诺奖先建立方法学的人,然后就很可能是一系列重要生物学功能的蛋白复合物的了。他们在介绍他们三位为啥会获得诺奖的时候能把我们的研究结果放在第一个图,这对我们来说是一个激励和鼓励。[/color][color=#5e5353] [/color][color=#5e5353][/color][color=#5e5353]冷冻单分子电镜技术获得诺贝尔奖实至名归。这是结构生物学上面的一个巨大的突破,尤其是对生物大分子复合物的结构分析超越了以前基于X光衍射和核磁共振的传统方法。[/color][color=#5e5353][/color][color=#5e5353]而今天获奖的三位科学家在冷冻单分子电镜技术的发展中起到了关键性的作用。就像我们经常说的,这是天赋和天才的区别,有天赋的人,能够击中别人都击不中的目标,而天才呢,则能够击中别人甚至都看不到的目标。在二三十年以前,大家都认为晶体衍射可能会是解决生物大分子最主要、最有效的技术,而只有他们看到了电镜技术的潜力,发展了巨大的技术突破,获得了众多梦寐以求的分子结构。[/color][color=#5e5353]在短短的几年时间里面,冷冻单分子电镜技术已经成为了结构生物学里发展最快的一个领域。在全世界各个主要的研究机构里面,冷冻单分子电镜技术都是着重发展的领域。而我们中国,尤其是我们清华大学,在这个领域走在世界的前面。我们中国的学者包括施一公教授、颜宁教授、杨茂君教授、王宏伟教授以及华裔的程亦凡教授等等,在这个领域都做出了突出的贡献。[/color][color=#5e5353][/color][color=#5e5353]而在我们国内所做出原创性工作,对于理解mRNA修饰,阿尔兹海默症的发病机制等重要的生物学问题都起到了突出的贡献。在下面的几年里面,我认为我们会在电镜技术有原理性的突破。[/color][color=#5e5353]最后,本次诺贝尔奖也再次证明了化学作为一个中心学科,它和物理学、生物学的交叉,起到了互相补充、互相支持的作用。而冷冻电镜技术和其他的潜在候选者来比较,可能是作为一个成熟的、已经在科研中起到直接贡献的技术受到了委员会的青睐。[/color][color=#5e5353]通过快速冷冻溶液,使生物样品维持原来形态,在纳米尺度的电子显微镜技术的帮助下获得原汁原味的,原子分辨率的三维空间结构:这是物理成像与化学需求的结合,巧妙的概念,精致的实验手段。[/color][color=#5e5353][b][/b][/color][color=#5e5353]冷冻电子显微技术,是指通过将生物样品快速降温使其固定在玻璃态的冰中,继而用透射电子显微镜成像的技术。电子显微技术已经获得过多次诺贝尔奖,本次再次授予化学奖实际是对其在结构生物学,尤其是单颗粒重构技术的肯定。[/color][color=#5e5353][/color][color=#5e5353]本次获奖的三位科学家,Jacques Dubochet的工作集中在“冷冻”这个词上,他成功实现了将蛋白样品固定在玻璃态的冰中,使得在电子显微镜的高真空环境观察接近生理状态下的蛋白成为可能。Joachim Frank 和Richard Henderson则是在提供了单颗粒重构结构的理论依据和技术路线。在这三位科学家工作的基础上,随着硬件水平的不断提高,冷冻电镜目前已经真正成为结构生物学的常规技术手段。与晶体学相比,冷冻电镜可以用于解析更大的,具有结构柔性的复合物的结构。[/color][color=#5e5353][/color][color=#5e5353]说到我国在这方面的研究,早在八十年代初从事材料学研究的郭可信教授等就发现电子显微镜在生物领域的潜力,培养并鼓励一批物理背景的学者进入生物领域,他们不少目前已经成为行业中坚,以郭可信先生名字命名的冷冻电镜会议也是行业非常高水准的重要会议。[/color][color=#5e5353][/color][color=#5e5353]清华大学也在09年起就大力发展冷冻电镜的研究,其电镜平台(国家蛋白平台)也一度是全球最大的冷冻电镜中心(不仅规模大,而且非常非常高产)。[/color][color=#5e5353][/color][img=,640,462]https://ng1.17img.cn/bbsfiles/images/2019/01/201901251125363454_1832_3221097_3.jpg!w640x462.jpg[/img][color=#888888]中国电镜家谱图。图片来源:参考文献1[/color][img=,640,521]https://ng1.17img.cn/bbsfiles/images/2019/01/201901251125482544_7761_3221097_3.jpg!w640x521.jpg[/img][color=#888888]中国电镜平台分布。图片来源:参考文献1[/color]

结构生物学相关的资料

结构生物学相关的仪器

  • 产品介绍:NU-543是II级A2型生物安全柜,属于NuAire的LabGard系列。30%的气流经HEPA过滤后外排,70%的气流经HEPA过滤后在柜内循环,能有效保护工作人员、样品和环境,使其免受生物感染及危害。适用于危险度为1至3级的病原微生物样品操作,微量挥发性化学物质及痕量挥发性放射核素操作。技术特点:l 内外双层304不锈钢结构,全满焊焊接,耐压耐腐蚀;l HEPEXTM零泄漏气流系统,防止污染物外泄,真正层流气流;l 斜面操作前窗,减少反光,视线清晰;l 电子显示屏,可显示进风及层流风速、温度、时间、定时、错误报告、过滤器寿命等信息;l 超高效直流ECM电机,可自动补偿,延长过滤器寿命;l NitecareTM节能模式;l 全部正面维修,易于操作。应用领域:广泛应用于微生物学、生物医学、生物制品等领域。可用于操作原代培养物、菌毒株及诊断性标本等具有感染性的实验材料。
    留言咨询
  • 合成生物学解决方案 400-860-5168转5945
    合成生物学是一门新兴的交叉学科,让我们以工程学的思路和方式理性地修改、创造新的生物系统。镁伽自动化系统通过整合软硬件,能够高效运行“设计-构建-测试-学习”这一工程化循环,加速合成生物学的研究和转化。合成生物学解决方案提供从克隆构建、基因编辑到产物纯化、酶活检测等全流程解决方案,可整合各种相关模块,如离心机、培养箱、克隆挑选模块、封膜机、撕膜机、PCR仪等即可提供单系统解决方案,又可提供多系统全流程解决方案,满足各种不同的需求。高通量 可实现多达上千克隆构建 兼容性好 支持合成生物学克隆构建及酶活检测或产物检测中常见的各种液体工作站、克隆挑选设备、检测设备及各类辅助设备等 应用扩展 可适配多种应用方向,如合成生物学、分子生物学、结构生物学、噬菌体展示等多种应用 灵活性好 真正的动态调度,不仅支持多实验并行运行,还可随时添加新的实验 应用场景:分子克隆、基因编辑、DNA组装
    留言咨询
  • FITOCLIMA 600 & 1200 BIO生物学研究用箱体常应用于植物生长、组织培养、拟南芥、发芽、孵化、昆虫学研究、昆虫存储以及其他生命科学中的应用。FitoClima生物学研究用培养箱可提供灵活多样的配件选择以及控制条件来满足不同研究者的需求。主要特点即开即用,操作简单,无需其他配置最小的设计体积获得高效的利用空间易于拆卸和高度可调的搁架,多变的光源选择以及灵活可变的光照强度调节具有研究安全保护功能,配备高低温、湿度安全报警器以及自动远程通知功能不锈钢内胆设计具有强大的阻力,确保搁架的稳定性,靠近边缘的设计具有良好的抛光度,易于清洗的整个内腔多种照明选择适合任何研究要求以及植物生长不同发育阶段的要求主要技术参数型号FITOCLIMA 600FITOCLIMA 1,200外部尺寸(H x W x D) (mm)1980 x 720 x 9451975 x 1440 x 810内部尺寸(H x W x D) (mm)1330 x 600 x 6501330 x 1320 x 650温度范围 [1]开灯时 +5º C to +45º C 关灯时 -5º C to +45º C控温精度± 0,5º C温度均一性± 1,0º C湿度范围开灯时 40 to 80% RH 关灯时 40 to 90% RH湿度精确度± 1% RH湿度均一性± 2% RH货架/光源[2]FitoClima 600: 1至4层带光源控制的货架FitoClima 1,200: 2至8层带光源控制的货架
    留言咨询

结构生物学相关的耗材

  • EMS生物学精密镊子
    EMS生物学精密镊子EMS镊子进入中国市场十年来,逐渐得到了实验室科研工作者的接纳和认可,并获得了不少赞誉。EMS 镊子瑞士制造,材料选择无磁性、抗酸蚀不锈钢(镍铬锰合金),防炫目的缎面设计,高品质和革新是EMS镊子的一直追求!EMS生物学精密镊子,手指拿取部位均带有防滑齿。l Style 3精密尖头,外观光滑,长度:4?" (120mm)订购信息:货号产品描述尖部mm材质78325-3SAEMS 3#0.04T*0.08WSAl Style 4订购信息:货号产品描述尖部mm材质78325-4SAEMS 4#0.03T*0.06WSAl Style 5非常精密的镊尖,表面抛光,长110mm订购信息: 货号产品描述尖部mm材质78325-5SAEMS 5#0.02T*0.05WSAl Style 7订购信息: 货号产品描述尖部mm材质78325-7SAEMS 7#0.03T*0.07WSA
  • 1. 食品微生物学检验---乳酸菌检验 MRS培养基/ MC培养基
    食品微生物学检验---乳酸菌检验 MRS培养基/ MC培养基 北京绿百草提供乳品安全标准第65条乳酸菌检验的设备:恒温培养箱,MRS培养基及莫匹罗星锂盐改良MRS培养基,MC培养基,蔗糖发酵管等。 本标准规定了含乳酸菌食品中乳酸菌的检验方法,本标准适用于含活性乳酸菌的食品中乳酸菌的检验。 需要详细的信息请联系北京绿百草 010-51659766 登录网站获得更多产品信息: www.greenherbs.com.cn
  • 食品微生物学检验---单核细胞增生李斯特氏菌检验 SIM动力培养基/缓冲葡萄糖蛋白胨水/血琼脂
    食品微生物学检验---单核细胞增生李斯特氏菌检验 SIM动力培养基/缓冲葡萄糖蛋白胨水/血琼脂 北京绿百草提供乳品安全标准第64条单核细胞增生李斯特氏检验的设备:SIM动力培养基,缓冲葡萄糖蛋白胨水,血琼脂,糖发酵管,过氧化氢酶。 本标准规定了食品中单核细胞增生李斯特氏菌的检验方法,本标准适用于食品中单核细胞增生李斯特氏菌的检验。 需要详细的信息请联系北京绿百草 010-51659766 登录网站获得更多产品信息:www.greenherbs.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制