分离膜材料

仪器信息网分离膜材料专题为您整合分离膜材料相关的最新文章,在分离膜材料专题,您不仅可以免费浏览分离膜材料的资讯, 同时您还可以浏览分离膜材料的相关资料、解决方案,参与社区分离膜材料话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

分离膜材料相关的资讯

  • 新型材料有望成为新一代高效膜分离材料 用于高效有机小分子分离取得新进展
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 近日,中国科学院国家纳米科学中心、纳米科学卓越创新中心研究员唐智勇和副研究员李连山在具有刚性分子骨架的自组装多孔薄膜用于高效有机小分子分离的研究中取得新进展。相关研究成果Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration 于7月23日在线发表在《自然-化学》(Nature Chemistry)杂志 (Nat. Chem. 2018, DOI: 10.1038/s41557-018-0093-9)。 /p p style=" line-height: 1.5em "   当今工业过程中涉及大量的分离、纯化或者浓缩过程,因此分离技术成为现代工业中最重要的技术之一。目前,分离纯化过程主要依赖于高能耗的基于热的过程,例如蒸馏、蒸发、精馏等。据统计,化工工业中用于分离和纯化的能源消耗占据了全部能源消耗的一半,其中80%被蒸馏过程消耗。因此,开发低能耗、高效的分离纯化技术将极大降低能源消耗。 /p p style=" line-height: 1.5em "   膜分离过程是一种在选择性膜两侧施加压力差,使得待分离物质选择性通过膜从而实现分离的过程,这一过程的核心技术是高效、高选择性膜材料。这一技术在水纯化或者海水脱盐方面已经有了很成熟的应用,利用聚酰胺等聚合物材料的薄膜实现杂质或离子去除。然而,其在有机体系的应用相对滞后,这是因为大部分传统的一维聚合物材料在有机溶液中不稳定。其次,传统一维聚合物薄膜没有永久性孔,导致分离速度非常低下。 /p p style=" line-height: 1.5em "   为了同时解决高稳定性、高溶剂通量及高选择性的问题,唐智勇课题组选择了具有刚性骨架的自组装多孔聚合物材料。这种材料相比于传统的一维柔性聚合物材料有非常大的优势:第一,三维全共轭结构使得这类材料在任何溶剂中不溶,且具有很高的热稳定性 第二,刚性骨架支撑起丰富的自组装微孔,有利于溶剂的传输 最后,可通过化学手段对孔结构或尺寸进行调控。然而其三维刚性结构在解决了结构稳定性的同时,其不溶的特性也同时带来了材料成膜困难的问题。因此,如何获得高质量的薄膜是解决这类材料在膜分离领域应用的关键一步。受一维聚合物表面聚合的启发,该课题组在SiO sub 2 /sub 表面修饰初始聚合位点后进行表面聚合反应,通过精细控制表面修饰及聚合反应条件,获得了平方厘米级的无缺陷薄膜并成功转移至超滤膜多孔支撑层。分子截留测试表明,其对有机溶剂具有极高的稳定性,在同等选择性基础上,过滤速度较目前商用的一维柔性聚合物薄膜高出两个数量级。这一结果主要得益于这类材料永久性微孔结构及高孔隙率,使其有望成为新一代高效膜分离材料。 /p p style=" line-height: 1.5em "   国家纳米中心博士梁斌和助理研究员王会为文章的共同第一作者 唐智勇、李连山为共同通讯作者。 /p p style=" text-align: center line-height: 1.5em " img src=" http://img1.17img.cn/17img/images/201807/insimg/5a4b40ad-e20b-47d9-9ef0-26d1a80e97c4.jpg" title=" W020180724535051727276.jpg" / /p p style=" text-align: center line-height: 1.5em " 聚合物全刚性骨架支撑起自组装结构中高度联通的永久性微孔& nbsp /p
  • 高性能分离膜材料的规模化关键技术取得突破
    p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/eefe34f4-d5d3-47f0-939e-bd1ca31d5a25.jpg" / /p p style=" text-align: center " strong 图片来源于网络 /strong /p p   高性能分离膜是国家节能减排和环境保护的重要基础材料,是新材料领域重要的发展方向之一。高性能分离膜作为新型高效分离技术的核心材料,在过程工业、能源环境等领域具有的良好的应用前景。“十二五”期间,在863计划新材料技术领域,支持了 “高性能分离膜材料的规模化关键技术(一期)”重大项目。近日,863新材料技术领域办公室在北京组织专家对该重大项目进行了验收。 /p p   该项目突破了反渗透膜、纳滤膜、膜生物反应器膜和水质净化膜等膜材料的规模化制备技术并建成了生产线,在海水淡化、污水处理等领域实现了示范应用 突破了陶瓷纳滤膜、疏水性渗透汽化膜、酸碱回收膜等关键技术并建成规模化生产线,在油气分离、酸碱回收等领域取得了应用 攻克了金属微孔膜、纯质碳化硅膜、二氧化碳分离膜、复合钯膜等膜材料规模化制备及应用技术并建成了示范生产线,并在高温气体分离等方面取得示范应用。通过该项目的实施,突破了高性能水处理膜、特种分离膜材料、气体分离膜规模化制备的技术难点,奠定了高性能膜材料制备、应用的技术基础,整合了国内高性能分离膜材料研究的优势力量,推动了该领域自主核心技术的研发和应用。 /p p   “十三五”期间,为进一步推动我国材料领域科技创新和产业化发展,科技部制定了《“十三五”材料领域科技创新专项规划》,在新型功能与智能材料方向规划了高性能分离膜技术,重点研究高性能海水淡化反渗透膜、水处理膜、特种分离膜、中高温气体分离净化膜、离子交换膜等材料及其规模化生产、工程化应用技术与成套装备,制膜原材料的国产化和膜组器技术,旨在攻克高性能分离膜方向的基础科学问题以及产业化、应用集成关键技术和高效成套装备技术。 /p p & nbsp /p
  • MOF材料未来将大行其道 在分子分离等应用领域潜力巨大
    一个由闪闪发光的钢铁建成的小城市横跨德国莱茵河,这里是该国化学巨头巴斯夫公司的总部。  在过去2013年—2014年间,这里小部分箱式送货车和小汽车携带着一个大秘密:燃料箱塞满了一种与众不同的晶体材料,材料上面充满了直径约1纳米的小孔。这些孔内部存在着整齐堆叠的甲烷分子,准备着为货车的内燃机提供燃料。  这些奶酪般的晶体就是金属有机骨架(MOF)。这些小孔能捕获客体分子,并在某些情况下强迫它们参与化学反应。而且,它们能被极精确地调整:研究人员已经创造出两万多种MOF,应用范围从除去电厂排放的二氧化碳到分割工业混合物等。“目前,在化学领域,MOF是发展最快的材料种类。”该领域先驱之一、美国加州大学伯克利分校化学家Omar Yaghi说。  长期以来,MOF被认为过于脆弱,无法在现实世界使用,通常一旦客体分子被移除,它们就会立刻崩溃。许多研究人员怀疑MOF可能永远无法打败坚固的无机材料——沸石,后者的孔隙被广泛应用于过滤和催化等各种工业过程中。  但经过全世界相关实验室10多年的密集研究,MOF已经为走向商业化应用作好准备。巴斯夫公司表示已经准备在2015年推出甲烷储存体系,它能比传统压力容器填充更多燃料。  MOF研究人员表示,这个划时代事件将为他们的工作注入一针兴奋剂,而且可能刺激针对MOF其他应用的商业兴趣。   存储之战  MOF的大部分酝酿工作能追溯到1999年,两种与众不同的材料初次登台:由中国香港科技大学研发的HKUST-1和Yaghi研发的MOF-5。后者的内表面面积至少为2300平方米每克——足以覆盖8个网球场。“这是一个转折点,因为它打破了所有表面积纪录。多年后,巴斯夫公司告诉我,他们曾认为这是印刷错误。”Yaghi说。  更大的内表面积意味着有更多区域堆叠客体分子。领导巴斯夫公司多孔材料研究的Ulrich Müller很快看到了机遇。“Yaghi的论文发表后,我们开始直接研究MOF。”他说。  制作稳定的MOF的关键是使用金属原子簇而非单个离子作为节点。这些簇的几何结构决定了该晶体的总体结构。不断发展的万能工匠部件能让MOF比沸石更适用,并能让化学家为特定应用设计出尺寸和化学性能恰好合适的晶体产品。目前,科学家已经研发出能抵御500摄氏度高温,或在沸腾甲醇中轻松维持一周的MOF。还有的MOF的内表面积是MOF-5的3倍,或孔隙足以容纳短粗的蛋白质。  巴斯夫公司当前控制着初期MOF市场。它之所以将目标定位于甲烷储存是因为页岩气十分便宜且越来越可用,因此可以为汽车提供能源。但当下,这种气体的储存体积大,并且高压油箱价格昂贵。这极大限制了甲烷的使用。MOF则能在更低的压力条件下储存更多的甲烷。  但要实际应用,MOF孔隙的大小和化学特性必须十分正确,因为它们决定甲烷如何在材料内进行堆积。“如果你仅让甲烷漂浮在气孔中,你可能使用的还是一个空筒。”Yaghi说。  为了束缚甲烷,研究人员使用能暴露金属离子的气孔。这些离子能扭曲甲烷的电子云,使其产生偏振,以便气体黏住金属。但如果这些气孔对甲烷的束缚过于薄弱,气体将会外溢 太强烈,容器将很难清空。最佳的MOF晶体能占据一个宜居带,赋予一个空容器在适度的压力下保持至少两倍的容量,而且还允许它们在压力泄漏时,释放出几乎所有的甲烷。“机动车辆的甲烷存储很大程度上已经解决。”Yaghi说。  但谁也无法担保其获得商业成功。自从去年原油价格暴跌后,该气体的经济刺激消失。“所有事情都有点混乱。”Müller说。  市场观察家预测,石油价格迟早将回升。但同时,加州大学伯克利分校的Jeffrey Long表示,MOF甲烷储存系统仍有较大的提升空间。通过与Yaghi、巴斯夫公司和福特汽车公司合作,他计划降低填充燃料箱所需的压力。“如果降低到35巴,人们将能在家为汽车加燃料。”他说。Long和同事表示,已经研发出在低气压下能储存更多甲烷的MOF,并将发表相关结果。  MOF能通过存储氢,对交通运输业产生更大的影响。将冷冻气体压缩到高压燃料箱里是复杂和昂贵的。但将这些油箱更换为MOF是一个巨大挑战。“没有吸收剂具有足够高的商业使用能力。”Long说。  Long研究小组开发出破纪录的镍基MOF,在室温和100巴的条件下,每升燃料罐能携带12.5克的氢。但这仍低于美国能源部2020氢储存目标——每升40克。  试验性分离  研究人员还希望MOF能从空气中抽出特定分子。“尤其是气体分离,可能是这些材料的竞争优势。”Long说。  它们可能对裂化厂有极大的吸引力。这些工厂会加热原油,分解其大分子,从而得到轻质烃。这些气体尤其难以分离。例如,丙烯和丙烷仅相差两个氢原子,而且沸点仅有约5摄氏度的差距。此时,精炼机利用冷却混合物对其进行分离,直到其液化,然后缓慢加热,直到第一个气体首先汽化。但温度的改变使其成为化工厂最耗能的工艺过程之一。  Long研究小组发现,一种名为Fe-MOF-74的晶体能让该过程更加简单,并能降低成本。这种晶体的外露金属阳离子能捕获经过的丙烯分子的电子,降低其通过速度。在45摄氏度下,丙烷首先出现,加热MOF,然后释放99%纯度的丙烯流。  另一种晶体Fe2(BDP)3能有效地分离己烷同分异构体。线型分子能够出现在MOF三角形通道的拐角处。  或许对以MOF为基础的分离的最终测试每年能从化石燃料发电厂捕获13.7亿吨的二氧化碳。传统的碳捕获体系主要依靠溶解剂——能在40摄氏度的排出气流中与二氧化碳进行反应。移除和加热该溶解剂到120摄氏度或以上能释放吸收的气体,以便收集和储存。但温度的反复变化消耗了电厂20%~30%的能量,并且需要价格昂贵的基础设施。  2015年3月,Long等人研发出的镁基和锰基MOF,在温度变幅为50摄氏度的条件下吸收和释放超过其重量10%的二氧化碳。其孔隙中排列有胺分子,它能与二氧化碳发生反应。  快速前进  催化作用常被认为是MOF最具前途的应用之一。它们可调节的气孔能将试剂保持在适当的位置,劈开特定骨架,然后锻造新的,正如一个酶的活性部位。  但西北大学化学家Joseph Hupp表示,直到几年前,这种催化剂的发展进程仍非常缓慢,尤其因为几乎没有MOF具有足够的化学稳定性能完成多次反应。结果是,Hupp表示:“没有案例能显示MOF更出众,以致没有化学家选择使用MOF催化剂。”  但现在,研究人员正在通过利用稳定的MOF,并扭曲其孔隙周围的化学基团,制造有希望的催化剂。他们还更进一步,逐步置换出全部的链接和金属节点,改造MOF的化学和物理特性,并且不让整个结构崩塌。这些进步允许化学家设计和制造多种多样岩石般坚硬但具有化学活性的MOF。“现在有许多MOF,我们在5年前根本制造不出来。”Hupp说。  确实,该领域一个不断扩大的挑战是MOF庞大的数量令人眼花缭乱。“我们有太多种MOF了。”Yaghi说。Hupp也表示同意。他指出,研究人员需要合成那些特性并未完全开发的MOF,而非精炼那些已被证明具有稳定性和活性的。  另一个挑战是,MOF需要与目前的技术进行竞赛,例如沸石。这需要鼓励利用丰富的金属和廉价的有机链接制造MOF,以便大幅降低成本。  Yaghi正在开发同一个晶体中包含数种类型孔洞的MOF,以便分子在从一个区域到另一个区域时,能经历一个预先确定的反应顺序。这些MOF就像一家化工厂的微缩版本,允许科学家在一个连续过程中逐步合成分子。  “这是我们的梦想。只有MOF有可能实现。”Yaghi说。  什么是金属有机骨架材料  金属有机骨架材料(MOFs)是近十年来发展迅速的一种配位聚合物,具有三维的孔结构,一般以金属离子为连接点,有机配体位支撑构成空间3D延伸,系沸石和碳纳米管之外的又一类重要的新型多孔材料,在催化,储能和分离中都有广泛应用,目前,大多数研究人员致力于氢气储存的实验和理论研究。 金属阳离子在 MOFs 骨架中的作用一方面是作为结点提供骨架的中枢,另一方面是在中枢中形成分支,从而增强MOFs 的物理性质(如多孔性和手性) 。这类材料的比表面积远大于相似孔道的分子筛,而且能够在去除孔道中的溶剂分子后仍然保持骨架的完整性。因此,MOFs 具有许多潜在的特殊性能,在新型功能材料如选择性催化、分子识别、可逆性主客体分子(离子) 交换、超高纯度分离、生物传导材料、光电材料、磁性材料和芯片等新材料开发中显示出诱人的应用前景,给多孔材料科学带来了新的曙光 。  MOFs 材料作为储氢领域的一名新军,由于具有纯度高、结晶度高、成本低、能够大批量生产、结构可控等优点,正受到全球范围的极大关注,近年来已成为国际储氢界的研究热点。经过近 10 年的努力,MOFs 材料在储氢领域的研究已取得很大的进展,不仅储氢性能有了大幅度的提高,而且用于预测 MOFs材料储氢性能的理论模型和理论计算也在不断发展、逐步完善。但是,目前仍有许多关键问题亟待解决。比如,MOFs 材料的储氢机理尚存在争议、MOFs材料的结构与其储氢性能之间的关系尚不明确、MOFs 材料在常温常压下的储氢性能尚待改善。这些问题的切实解决将对提高 MOFs 材料的储氢性能并将之推向实用化进程发挥非常重要的作用。  金属有机骨架材料的发现  金属有机骨架是由含氧、氮等的多齿有机配体(大多是芳香多酸和多碱)与过渡金属离子自组装而成的配位聚合物。早在20世纪90年代中期,第一类MOFs就被合成出来,但其孔隙率和化学稳定性都不高。因此,科学家开始研究新型的阳离子、阴离子以及中性的配位体形成的配位聚合物。目前,已经有大量的金属有机骨架材料被合成,主要是以含羧基有机阴离子配体为主,或与含氮杂环有机中性配体共同使用。这些金属有机骨架中多数都具有高的孔隙率和好的化学稳定性。由于能控制孔的结构并且比表面积大,MOFs比其它的多孔材料有更广泛的应用前景,如吸附分离H2 、催化剂、磁性材料 和光学材料 等。另外,MOFs作为一种超低密度多孔材料,在存储大量的甲烷和氢等燃料气方面有很大的潜力,将为下一代交通工具提供方便的能源。  金属有机骨架材料的应用  MOFs具有多孔、大比表面积和多金属位点等诸多性能,因此在化学化工领域得到许多应用,例如气体贮存、分子分离、催化、药物缓释等。  (1)气体的吸附与储存:MOFs特殊的孔道结构,是理想的氢气存贮材料,现在MOF177在77K下的储氢能力已达到7.5%,当前研究重点是室温下达到高储氢能力的突破   (2)分子分离:MOFs的孔道大小和孔道表面可以控制,可以用于烷烃分离,也可以由于手性分离,在这方面的应用正在扩大   (3)催化:MOFs材料的不饱和金属位点作为Lewis酸位,可以用作催化中心,现已用于氰基化反应、烃类和醇类的氧化反应、酯化反应、Diels-Alder 反应等多种反应,具有较高的活性   (4)药物的缓释:MOFs材料具有较高的载药量、生物兼容性及功能多样性,可广泛用于药物载体,例如MIL-100和MIL-101对布洛芬有较好的载药和释放效果 其固载率和缓释时间分别为350mg/g,3天,1400mg/g,6天。展望未来MOFs材料无论在品种、性能、合成方法、应用领域,作为一类新型材料,还会进一步发展和扩大。

分离膜材料相关的方案

  • 有机光电材料的分离纯化
    本文中的样品为有机光电材料的合成粗品,由某OLED新材料研发公司提供。关于SepaBean machine配合SepaFlash系列分离柱在有机光电材料的快速纯化制备方面的应用,可参阅我们之前发表的另一篇应用案例《SepaBean machine快速制备色谱系统在有机光电材料领域的应用》。
  • 聚烯烃材料差异化组分的分离制备
    通过对聚烯烃材料的微观结构分析,我们了解了各种聚烯烃材料样品的微观结构差异,为了进一步研究这些差异,有必要把差异组分分离制备出来,而这种分离制备工作通常非常困难和繁琐,而采用我公司的全自动聚烯烃级分分离制备设备可以在60个小时左右实现10到20克聚烯烃材料的9个级分的全自动分离制备,从而为高端聚烯烃材料的研发提供巨大的帮助。
  • 应用于含硼有机光电材料领域分离纯化
    有机光电材料是指具有光电转换功能、光电活性的有机材料。广泛应用于有机发光二极管、有机晶体管、有机太阳能电池、有机存储器等领域。有机光电材料通常是富含碳原子、具有大π共轭体系的有机分子,分为小分子和聚合物两类。有机π-共轭材料具有柔性、易修饰以及可大面积制备的特点,在有机电致发光器件、有机场效应晶体管、有机光伏电池以及有机传感等领域具有广阔的应用前景,因此引起了科学家们的广泛关注。引入杂原子是实现有机π-共轭材料高性能化和多功能化的重要方式。利用杂原子与π-共轭体系间特殊的轨道相互作用及其自身空间结构上的特点,能够有效地调控有机光电材料的前线分子轨道能级、发光颜色、发光效率和激发态寿命等。引入硼原子进行有机π-共轭材料的修饰即为其中的典型代表,本篇主要介绍了含硼有机光电材料类样品的分离纯化方法,为光电材料合成产物的分离纯化提供了一种高效、快速且经济的解决方案。

分离膜材料相关的论坛

  • 功能化石墨烯复合材料与蛋白质分离纯化

    [color=#333333]石墨烯是一种新型二维碳纳米材料,其具有独特而优异的物理化学性质,故引起了科学界及工程界的广泛关注。石墨烯巨大的比表面积使其成为一种潜在的固相吸附材料。为了实现复杂基体样品中蛋白质的高选择性分离纯化,本文制备了一系列功能化石墨烯复合材料,研究了其在蛋白质选择性分离纯化中的应用,建立了满足不同类型的复杂基体样品(全血,鸡蛋清和细胞裂解液)中目标蛋白质的高选择性分离纯化方法。第一章简要综述了石墨烯的研究历史,结构性质及其合成方法。概述了石墨烯的表面功能化,石墨烯复合材料的制备,以及石墨烯及其复合材料在样品预处理等领域中的应用进展。第二章制备了一种新型功能化石墨烯复合材料。通过共价功能化的方式,氧化石墨烯(GO)表面依次经过环氧氯丙烷(ECH),亚氨基二乙酸(IDA)和1-苯硼酸(1-PBA)修饰后,再进一步螫合镍金属离子得到复合材料。复合材料由FT-IR, XRD, SEM, TGA和[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]等手段进行表征。[/color]

  • 色谱分离新材料研究进展

    [align=center][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]色谱[/size][/font][font='times new roman'][size=16px]分离新[/size][/font][font='times new roman'][size=16px]材料[/size][/font][font='times new roman'][size=16px]研究进展[/size][/font][/align] 共价有机骨架(COF)是通过共价连接刚性有机结构单元而构建的结晶多孔材料,具有比表面积大、丰富的杂原子位点、高度有序的π-共轭体系以及优异的热稳定性和化学稳定性等特点。灵活地选择结构单元可以使COF具良好的分离分析性能,在色谱固定相开发领域具有广阔的应用潜能。Zheng等使用具有规则形状和微米尺寸的单晶共价有机骨架(COF-300)材料直接装填的色谱柱用于高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分离,实现了硝基苯胺、二氯苯、二溴苯、二碘苯、氯硝基苯、溴硝基苯等位置异构体的基线分离,并具有较高的柱效和满意的重现性,显著优于商品化色谱柱。 金属有机骨架(MOF)是通过金属离子/团簇自组装和有机配体通过配位键桥接而成的新型有机-无机多孔晶体材料,由于其具有大比表面积、可调的孔径和高孔隙率等优点,近年来也被广泛用于开发新型的色谱固定相材料。例如,Yan等将MIL-53(Fe)材料直接装填作为一种新型固定相,在优化的条件下,实现了二甲苯、二氯苯、氯甲苯和硝基苯胺异构体的快速基线分离,其分离性能优于MIL-53(Al,Cr)、C8和C18填充柱。 最初研究者大多是将COFs、MOFs材料直接作为色谱柱填料使用,虽然取得了一定的分离效果,但是存在柱压大,色谱峰宽和拖尾、柱效低、选择性差、制备过程复杂等问题。多孔硅胶材料具有稳定的理化性质、可调控的孔径、良好的热稳定性和比表面积大等优点[font='times new roman'][sup][size=16px][21[/size][/sup][/font][font='times new roman'][sup][size=16px]-[/size][/sup][/font][font='times new roman'][sup][size=16px]22][/size][/sup][/font],是目前色谱固定相最常用的载体[font='times new roman'][sup][size=16px][23][/size][/sup][/font]。近年来,以多孔硅胶材料为基质,将MOFs、COFs等新材料通过涂覆、键合或嵌入多孔硅胶材料内部或表面进而制备改性色谱固定相的策略备受关注。例如,Xu等通过在多孔硅胶表面原位生长富含醛基和氨基反应位点的COFs材料(LZU1),制备了一种新型复合色谱固定相材料SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@rLZU1。SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@rLZU1不仅保留了多孔二氧化硅球的大比表面积和良好的机械强度,而且保留了COFs的多孔结构和优异的稳定性,有效地改善了色谱保留能力、选择性和重现性等性能。 Rehman等通过H[font='times new roman'][sub][size=16px]2[/size][/sub][/font]O[font='times new roman'][sub][size=16px]2[/size][/sub][/font]刻蚀UiO-66@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]微球,成功地合成了HP-UiO-66@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]核壳微球,其孔径最大可达9 nm,有利于高效的分离传质。进一步将所制备的HP-UiO-66@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]核壳微球作为固定相,成功分离了非极性烷基苯同系物、极性芳香醇同系物和二甲苯异构体,与UiO-66@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]色谱柱相比,均可实现基线分离,并且峰宽较窄,分离度较高。此外,HP-UiO-66@SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]色谱柱对芴的最大理论塔板数达到134,459 N/m,且具有良好的重现性。 [align=center] [/align] Si等使用介孔MOF材料,并将其设计成缺陷型,有效减小了传质阻抗,然后将其与聚丙烯酰胺结合在二氧化硅球表面进行改性制备了d-MOF-818/PAM@silica混合模式固定相。色谱性能测试表明其对于亲水性和疏水性分析物的良好选择性和保留,实现了9个核苷和核碱基,8个生物碱,6个抗生素,和5个烷基苯的有效分离。 共轭微孔聚合物(CMP)是一种将永久微孔与π-共轭骨架结合在一起,并具有三维网络结构的交联型聚合物多孔材料,具有优异的孔隙率、高比表面积、较强的疏水性。此外,与传统的MOF和COF材料相比,CMP通常具有优异的化学和热稳定性。近年来,常被应用于制备色谱固定相。Sun等将吡啶基偶联共轭微孔聚合物(P-CMP)通过齐齐巴宾反应逐层组装到氨基二氧化硅表面,合成了具有核壳结构的SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@P-CMP材料(图1)。填充SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@P-CMP色谱柱具有π-π堆积作用、疏水作用和氢键作用等作用机制,并且随着二氧化硅表面P-CMP层数的增加而增强。其中,具有四层P-CMP包覆的SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@PCMP色谱柱具有良好的分离性能和良好的重现性。与C18柱相比,SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@P-CMP色谱柱对多环芳烃类物质具有更好的分离选择性。 [align=center][img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408191731522006_7113_5389809_3.jpeg[/img][/align][align=center][size=13px]图[/size][size=13px]1 SiO[/size][font='times new roman'][sub][size=13px]2[/size][/sub][/font][size=13px]@P-CMP[/size][size=13px]核壳材料制备示意图[/size][/align][align=center] [/align] 此外,多功能复合材料也已开发用于制备新型色谱固定相。Zhang等首次尝试了在硅胶基质上构建MOFs@COFs复合材料,开发了SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@NH[font='times new roman'][sub][size=16px]2[/size][/sub][/font]-UiO-66@CTF色谱固定相。因MOFs材料中金属离子与有机配体的相互作用较弱,会产生柱压高、柱效低和峰形差等问题,而COFs中富含氮和氧的有机基团可以将金属离子固定在MOFs骨架中,从而增加了MOFs的物理化学稳定性。因此,在MOFs和COFs的协同作用下,色谱柱的性能得到了极大的改善,SiO[font='times new roman'][sub][size=16px]2[/size][/sub][/font]@NH[font='times new roman'][sub][size=16px]2[/size][/sub][/font]-UiO-66@CTF色谱柱表现出了良好的疏水性和芳香选择性,同时具有极高的分子形状选择性,[font='segoe ui'][back=#ffffff]在分离杂原子污染物方面显示出[/back][/font][font='segoe ui'][back=#ffffff]良[/back][/font][font='segoe ui'][back=#ffffff]好的应用前景。[/back][/font][back=#ffffff]Zhang[/back][back=#ffffff]等以丙烯酰胺和海藻酸钠为水凝胶单体,以[/back][back=#ffffff]UiO-66-NH[/back][font='times new roman'][sub][size=16px][back=#ffffff]2[/back][/size][/sub][/font][back=#ffffff]为纳米填料,制备了[/back][back=#ffffff]T-Sil@PAM[/back][back=#ffffff]/SA/UiO-66-NH[/back][font='times new roman'][sub][size=16px][back=#ffffff]2[/back][/size][/sub][/font][back=#ffffff]固定相[/back][back=#ffffff]材料。[/back][back=#ffffff]将[/back][back=#ffffff]MOFs[/back][back=#ffffff]材料加入到水凝胶聚合网络中,不仅解决[/back][back=#ffffff]了柱压不稳定[/back][back=#ffffff]的缺点,还提供了额外的相互作[/back]用位点,提高了分离选择性。该固定相可以用于混合模式色谱分离分析,实现了生物碱、糖类和多环芳烃类化合物的分离分析,并具有良好的稳定性。

  • 基于金属有机骨架材料固定相的气相色谱分离应用

    [font=Encryption][color=#898989]摘要:[/color][/font][font=Encryption][color=#666666] 金属有机骨架材料(MOFs)是一类由有机配体和金属离子(或金属簇)自组装形成的新型多功能材料.MOFs具有孔隙度高、比表面积大、孔径可调、化学和热稳定性高等特点,被广泛应用于吸附、分离、催化等多个领域.近年来,MOFs作为新型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相用于分离异构体受到了广泛关注.与传统无机多孔材料相比,MOFs在结构和功能上展现出高度的可调性,通过合理地选择配体和金属中心,可以设计合成具有不同孔道大小和孔道环境的MOFs,从而分别从热力学和动力学角度优化色谱分离效果,有效提高分离选择性.该文结合MOFs的结构,讨论了MOFs[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相分离不同类型分析物的分离机理.分离机理主要包括MOFs孔道的分子筛效应或形状选择性,MOFs不饱和的金属位点与分析物中不同的官能团之间产生的相互作用,分析物与MOFs孔道之间产生的不同范德华力、π-π相互作用和氢键相互作用.此外,MOFs的手性分离可能主要依赖于外消旋体与手性MOFs中手性活性位点之间的相互作用.该文也对不同分析目标物进行了归类,综述了多种MOFs[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相对烷烃、二甲苯异构体和乙基甲苯、外消旋体、含氧有机物、环境有机污染物的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分离效果.最后,该文还对MOFs在该领域的应用进行了总结与展望,旨在为MOFs[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]高效分离的研究提供参考.[/color][/font][font=Encryption][color=#666666][/color][/font][font=Encryption][color=#666666][url=http://www.wanfangdata.com.cn/perio/detail.do?perio_id=sp&perio_title=%E8%89%B2%E8%B0%B1&publish_year=2021&issue_num=1]2[/url]021年1月刊,查找不易!多珍惜![/color][/font]

分离膜材料相关的资料

分离膜材料相关的仪器

  • 适用范围适用于分离膜对各种气体的透过率、选择性、分离率的定性定量测定,包括:(1) 分离膜单一、混合气体的气体透过率测定。(2) 分离膜多组分气体选择性、分离率的测定。测试原理将试样装夹在上下腔之间,上腔保持恒定高压,下腔为低压,在压差的作用下,上腔试验气体透过试样到达下腔,渗透达到平衡后,即可得到气体透过率等指标,透过气体被流动的载气携带至气相色谱仪,通过对色谱峰分析可得到多组分气体选择性、分离率的指标。产品特征1. 压差色谱法测试原理2. 部件进口采购,确保试验安全、试验结果精度3. 循环介质控温(选购)4. 测试腔内置温度传感器,实时监控实际温度5. 远程维护升级 6. 可支持 DSM 实验室数据管理系统,能实现数据统一管理,方便数据共享(选购)技术指标测试范围:0.01- 2*E+04Barrers测试流量:0-100ml/min(200ml/min, 300ml/min 可选)测试精度:0.01Barrers真空精度:0.1Pa试验压差:0-10bar(标准);系统耐压:16bar控温范围:5℃-95℃, 控温精度:±0.1℃ (温控装置选购)测试面积:Φ20mm(3.14cm2)试样厚度:≤2mm试样数量:1 件检测器灵敏度:≥5000mv.ml/mg 或 10000mv.ml/mg检测器漂移:≤0.10mv;噪音:≤0.015mv载气压力:2bar载气种类:N2 ,H2 ,He,Ar;根据试验气体选择载气;主机尺寸:320 mm(W)×625mm(D)×335mm(H)色谱尺寸:590 mm(L)×480mm(W)×500mm(H) (标准)供电电源:AC 220V 50Hz产品配置标准配置:主机、真空泵、真空波纹管、PCIE 卡、GC 色谱仪、色谱柱、工作站软、减压阀(氧氮)、试验气管、载气管、尾气排管、通信电缆、真空密封脂选 购 件:计算机、恒温控制装置、DSM 实验室数据管理系统。
    留言咨询
  • 聚烯烃材料差异化组分的分离制备通过对聚烯烃材料的微观结构分析,我们了解了各种聚烯烃材料样品的微观结构差异,为了进一步研究这些差异,有必要把差异组分分离制备出来,而这种分离制备工作通常非常困难和繁琐,而采用我公司的全自动聚烯烃级分分离制备设备可以在60个小时左右实现10到20克聚烯烃材料的9个级分的全自动分离制备,从而为高端聚烯烃材料的研发提供巨大的帮助。
    留言咨询
  • 安研薄膜蒸发器AYAN-B220S热敏性料液的分离产品介绍:薄膜蒸发器(Thin film evaporator)是一种物料液体沿加热管壁呈膜状流动而进行传热和蒸发,优点是传热效率高,蒸发速度快,蒸发器的类型,特点是物料停留时间短,因此特别适合热敏性物质的蒸发,是一种特殊的液--液分离技术,在高真空状态下,使蒸气分子的平均自由程大于蒸发表面与冷凝表面之间的距离,从而可利用料液中各组分蒸发速率的差异,对液体混合物进行分离应用领域:精细化工,如芳香油提纯.高聚物中间体的纯化.羊毛脂的提取等等医药领域:如提取天然维生素AE等.制取氨基酸及葡萄糖的衍生物等等食品行业:如精制鱼油.油脂脱酸.精制高碳醇.混合油脂的分离等等其他领域:石油行业,日用化学,环保领域等等产品特点:1.远低于物料沸点的温度下操作,而且物料停留时间短 利于高沸点、热敏及易氧化物料的分离2.有效地脱除液体中的物质如有机溶剂、臭味等,对于采用溶剂萃取后液体的脱溶是非常有效的方法3.可有选择蒸挥发出产物,去除其它杂质,通过多级分离可同时分离2种以上的物质4.蒸馏真空度高,真空度可达5mmHg以下,其内部可以获得很高的真空度,通常分子蒸馏在很低的压强下进行操作,因此物料不易氧化受损5.蒸馏液膜薄,传热效率高,膜厚度小于0.5mm6.分离程度更高,分子蒸馏能分离常规不易分开的物质7.没有沸腾鼓泡现象,分子蒸馏是液层表面上的自由蒸发,在低压力下进行,液体中无溶解的空气,因此在蒸馏过程中不能使整个液体沸腾,没有鼓泡现象8.物理分离法,无毒、无害、无污染、无残留,可得到纯净安全的产物9.刮板系统由PTFE材料和SS316L不锈钢材料制成,具有极高抗腐蚀的功效;10.进料罐可选实现预加热功能,温度可达300度,温度可调节11.各个接口采用的是硅胶垫片进行密封,气密性好,如客户需要耐腐蚀可以更换成四氟材质维护保养1)减速机润滑油为40#机油,其加油量应在指示高度内。油量过多会引起搅拌而发热,油量过少偏心体轴泵油膜破坏而发热导致温度升高。开始使用时在1个月之内更换二次润滑油,以后润滑油3-4个月内更换一次。2)打开低封头后,拧开转子U 型槽底部螺栓,每四个月检查刮板更换刮板。3)每二个月打开底轴承,检查底轴承磨损情况,必要时更换底轴承。4)根据物料性质应定期用温水或溶剂浸泡、清洗内筒体。5)每一个月向机械密封腔加密封液一次,密封液为20#机械油。
    留言咨询

分离膜材料相关的耗材

  • MCI GEL精细分离填料
    MCI GEL精细分离填料可分为以下几种系列:MCI GEL精细分离填料报价,MCI GEL精细分离填料系列,MCI GEL精细分离填料型号1、离子交换树脂系列键合磺酸盐的阳离子交换树脂MCI-GEL SCK、CK、AFR系列键合季铵盐的阴离子交换树脂MCI-GEL SCA、CA、CDR系列2、生物分离树脂系列用于生物分离CQK、CQA离子交换树脂系列,基体是聚羟基甲基丙烯酸酯类(HMA)。用于生物分离色谱CQH疏水反应树脂系列,基体是聚羟基甲基丙烯酸酯类(HMA)。用于生物分离的尺寸排阻色谱的CQP系列树脂,聚羟基甲基丙烯酸酯类(HMA)。3、吸附树脂系列用于反相色谱分离的MCI-GEL CHP系列产品,基体是聚苯乙烯和二乙烯基共聚物或聚甲基丙烯酸酯。CHP树脂和HP树脂系列是对应的,有不同尺寸的中、小粒径的树脂颗粒,以满足提高分离效率和精细分离的需要。下面详述了CHP系列精细分离填料的性能表征。用于环境水中富集有机化合物的合成吸附剂产品型号基体官能团对抗离子粒径mm比表面积应用 CSP800 St-DVB -- -- 50 600m2/g 吸附非离子化合物 CHPA25 St-DVB QA Cl- 2020m2/g 吸附阴离子化合物 用于SPE预处理的螯合树脂产品型号官能团粒径 mm包装应用 CHL10P 亚氨基二乙酸 120 100g 金属 CHL20P 聚氨 120 100g 金属 CLB10P 葡糖胺 120 100g Bron
  • 糖分离填料
    Sunny聚合物系列层析填料采用世界上最先进的聚合物微球制备技术聚合,严格控制比表面积、孔径结构、粒径大小,表面性能,使其具有分辨率高、载量大、刚性强、耐酸碱、耐高温、反压低、使用寿命长及非特异性吸附低等特点,克服了硅胶色谱填料pH使用范围窄、操作温度受限、使用寿命短的缺点。n Sunny-Carb产品简介Sunny-Carb是采用世界上最先进的高分子合成技术,以聚苯乙烯/二乙烯基为基材合成的新一代填料,其刚性强,粒径大小均一(见下图),反压低,并具有独特的孔结构分布。与传统的只能用于低压的聚合物填料相比具有更高的分辨率和选择性,而且可以克服硅胶填料pH值适用范围窄的限制。从实验室制备到大规模工业化生产,Sunny-Carb显示出其独特的优越性。 Sunny-Carb电镜图 l 主要技术指标 物理性质刚性的、球形单分散性微球平均孔径50±5μm比表面积180m2/g孔容~15px3/g载量110mg/g化学稳定性异丙醇、甲醇、乙醇、乙腈、丙酮等CV值≤5% l Sunny-Carb对甜菊糖苷的分离Sunny-Carb对Stevioside和Rebaudioside A的分离效果图l 用Sunny-Carb 制备Stevioside和Rebaudioside A甜菊糖苷纯化前色HPLC谱图:Stevioside纯度 43% Rebaudioside A 纯度38%纯化后的Stevioside纯度~98% 纯化后的Rebaudioside A纯度~98%检测方法:流动相:乙腈:水=80:20 检测波长:210nm进样量:20ul 流速:1.0ml/minl CIP/SIP稳定性现在的生物制药监管部门对生物制药企业整个生产过程要求有更严格、更有效的清洗方法,来确保最终产品的高纯度。目前FDA等接受的最常用的清洗方法是使用NaOH去除来自柱子上的和与纯化系统关联的下游组分的残留物,硅胶反相层析填料的缺点是在碱性条件下化学稳定性差,而Sunny-Carb填料NaOH具有极好的稳定性,适用于CIP/SIP 的清洗方案。l 化学稳定性几乎适用于所有水溶液(包括:1M NaOH;1M HCL),和其他有机溶剂如异丙醇、甲醇、乙醇、乙腈、丙酮等。l 物理和热学稳定性Sunny-Carb层析填料可以耐受40bar的压力、120℃的高温,物理性质和热稳定性很好。 l 再生试剂/洗脱试剂l 与水互溶的有机溶剂(甲醇、乙醇、丙酮、异丙醇等)去除疏水性化合物。l 纯溶剂 再生因油和消泡剂而污染的树脂。l 碱(0.1-2%NaOH)加有机溶剂洗脱弱酸化合物等。l 酸(0.1-2%HCl)加有机溶剂洗脱弱碱化合物等。l 稀氧化剂(0.5%)如过氧化物加强蛋白质去除。l 热氮或蒸汽除去挥发性物质。
  • 精细分离填料MCI GEL CHP20/P120/P120
    一 MCI GEL CHP20/P120基本性质 众所周知,在色谱分离中,为了得到较好的分离效率和得率,需使用尺寸较小的颗粒,以满足提高分离效率和精细分离的需要。 CHP20/P120是一种用于反相分离色谱分离的CHP系列,基体是聚苯乙烯和二乙烯苯基共聚物或聚甲基丙烯酸酯。CHP树脂和HP树脂是对应的。CHP20/P120粒径有两种范围:37-75um和75-150um。 等级名称 MCI GEL CHP20/P120 粒径分布 37-75um 75-150um 平均粒径 55um 比表面积 520m2/g 细孔容积 1.17ml/g 最频度半径 30.0nm 二 MCI GEL CHP20/P120的应用举例 1) MCI GEL CHP20/P120用于新疆孕马尿提取物中伴随物质的研究 利用精细分离填料MCI GEL CHP20/P120和Sephadex LH-20对孕马尿中除结合雌激素外的其他成分进行分离及结构鉴定,对所分离的化合物进行含量测定,并对孕马尿提取物生产工艺过程中的各中间体以及经MCI GEL CHP20/P120柱分离纯化后的孕马尿提取物进行成分监测。 方法:1)以MCI GEL CHP20/P120为分离材料,以甲醇-水为洗脱溶剂对孕马尿提取物进行梯度洗脱,得到各不同馏分。2)以Sephadex LH-20为分离材料,以甲醇-水和甲醇-氯仿为洗脱溶剂对所得的各馏分进行再分离。3)对所分离得到的化合物以核磁共振的氢谱、碳谱及二维谱为依据,进行结构解析。4)对分离得到的两个化合物进行含量测定。5)对孕马尿提取物生产工艺过程中的各中间体以及经MCI GEL CHP20/P120柱分离纯化后的孕马尿提取物成分进行检测。 2) MCI GEL CHP20/P120用于羟基红花黄色素A的提取工艺改进 HPLC(High performance liquid chromatography)高效液相色谱法测定红花提取物中羟基红花黄色素A的含量,为进行羟基红花黄色素A的提取工艺筛选提供依据。2)对羟基红花黄色素A进行提取工艺改进,提高羟基红花黄色素A的收率。方法:1)采用HPLC法测定羟基红花黄色素A的含量,以甲醇:乙腈:0.7%磷酸(26:2:72,V:V:V)为流动相,柱温25℃,检测波长403nm,流速1.0ml/min。 2)探讨不同除杂工艺:澄清剂法、醇沉法、大孔树脂法、澄清剂结合大孔树脂法、澄清剂结合小孔树脂法(MCI GEL CHP20/P120)对羟基红花黄色素A的纯度及收率的影响 3)采用单因素试验设计及正交试验设计安排试验。 3) MCI GEL CHP20/P120用于土大黄中糖苷类化学成分的研究 采用溶剂法提取土大黄的化学成分,常规硅胶层析、MCI GEL CHP20/P120层析及制备薄层色谱分离纯化,根据化合物的物理、化学性质和波谱方法鉴定化合物。结果:鉴定了5个化合物,分别为:orcinol glucoside,clicoemodin,rumexoside C,chrysophaneine和aloesin。 4) MCI GEL CHP20/P120用于凤尾茶的化学成分研究 利用Sephadex LH-20和MCI GEL CHP20/P120进行分离和纯化,通过理化方法及光谱分析鉴定其结构。结果:从凤尾茶水提液中分离得到5个化合物,分别鉴定为2,6-二甲基-8-羟基-2,6-辛二烯酸-8-O-&beta -D-葡萄吡喃糖苷(Ⅰ)、圣草素7-O-&beta -D-葡萄吡喃糖苷(Ⅱ)、木犀草素7-O-&beta -D-葡萄吡喃糖苷(Ⅲ)、山柰酚3-O-芦丁糖苷(Ⅳ)、芦丁(Ⅴ)。 5)MCI GEL CHP20/P120用于中药地锦草芹菜素糖苷类化合物 的研究 为了研究中药地锦草抗HBV的活性物质基础,采用大孔树脂,采用Sephadex LH-20、MCI GEL CHP 20P等色谱方法,从地锦草70%乙醇提取物中分离得到5个芹菜素苷类化合物,通过MS、NMR、2D-NMR等波谱分析手段鉴定了化合物的结构,分别为:芹菜素-7-O-(6-O-没食子酰)-&beta -D-葡萄糖苷(1),芹菜素-7-O-&beta -D-芹糖(1&rarr 2)-&beta -D-葡萄糖苷(2),芹菜素-7-O-&beta -D-芦丁糖苷(3),芹菜素-7-O-&beta -D-葡萄糖苷(4),芹菜素(5)。化合物1为新化合物,化合物2、3为首次从该植物中分得。 需要详细的信息请和绿百草联系,或登陆网站www.greenherbs.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制