污染源监测市场

仪器信息网污染源监测市场专题为您整合污染源监测市场相关的最新文章,在污染源监测市场专题,您不仅可以免费浏览污染源监测市场的资讯, 同时您还可以浏览污染源监测市场的相关资料、解决方案,参与社区污染源监测市场话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

污染源监测市场相关的资讯

  • 工业锅炉治理新增污染源监测市场超200亿
    过去十余年,我国集中对电厂排污进行治理,但从实际情况看全国范围空气质量&ldquo 不好反差&rdquo ,其中一个重要原因是,我国60万台的各类型锅炉中绝大部分为能效低下的工业燃煤锅炉,工业燃煤锅炉的环保设施建设严重不足,整体污染控制水平低,且工业锅炉出于供暖等需要,多靠近城市及居民区,加之排放高度低,不利于污染物的及时扩散,实际已成城市雾霾主因,治霾必治本,对工业燃煤锅炉的治理工作势在必行。   政府管理思路转变 政策成催化剂   政府环境管理思路转变,政策成催化剂。十余年的以总量减排为目的的电厂治理,已使我国电厂污染控制达到甚至超过世界先进水平,下一步,针对空气质量持续恶化的局面,大气治理的重点将转向以污染物综合治理为目的的工业锅炉治理,工业锅炉治理行业拐点已现:   (1)政府环境管理思路转变,治霾不力已迫使政府大气环境管理思路由狭义的减排转向全盘统筹、污染物综合治理。   (2)针对工业锅炉整治的政策频发,其中锅炉排放标准重新修订,相关排放限值均大幅降低,标准已定,治理已成必然。   锅炉治理 开启千亿市场   民生证券预计,工业燃煤锅炉将催生4000亿元的新环保市场,与&ldquo 十一五&rdquo 脱硫、&ldquo 十二五&rdquo 脱硝相比,市场规模毫不逊色,而且惠及面更广:   (1)除尘、脱硫工程超2000亿元,据民生证券估算,为达到新标准所规定的排放限值,全国存量燃煤锅炉中70%以上需要改造高效除尘器、75%以上需要进行湿法脱硫改造,仅工程市场就达2110亿元   (2)10t/h以下规模的小容量燃煤锅炉需淘汰,替换为新型节能环保锅炉,节能环保锅炉替换市场空间近2000亿。工业锅炉治理开启,大气治理景气周期将延续至&ldquo 十三五&rdquo 末,除尘、脱硫及在线监测等多个相关领域均有望受益。   环境监测厂商最为受益   对工业锅炉治理所涉及的污染源监测、除尘、脱硫及新型节能环保锅炉4个领域进行了梳理,最受益为监测板块:   (1)工业锅炉治理带来的污染源监测新增市场超200亿元,预计未来3年行业年复合增速不低于50%,且监测市场竞争格局稳定,龙头企业弹性最大   (2)脱硫因工业锅炉更注重经济性最优,电力脱硫企业进入工业锅炉领域后能否保持现有竞争格局存在一定不确定性   (3)除尘及新型节能环保锅炉领域分别新增市场空间960亿元和近2000亿元,相当于各自现有市场规模的5-10倍,行业弹性大,但因门槛较低、集中度不高。
  • 水污染源在线监测标准解读及解决方案
    水污染源在线监测标准解读及解决方案12月4日,“水污染源在线监测标准解读及解决方案” 主题网络研讨会将在仪器信息网平台举行。为规范污水监测的相关技术要求,2019年12月25日,生态环境部发布了4项水污染源监测技术规范,这四项标准于2020年3月24日起实施,为我国的水污染治理提供坚实可靠的支持。 本次会议,将邀请环境监测总站专家及哈希水质分析仪器公司的产品专家,讲解水污染源在线监测系统相关标准,带来水污染源在线监测最新解决方案。主题:水污染源在线监测标准解读及解决方案参加费用: 免费参加方法: 文章底部,点击“阅读原文”即可报名开始时间: 2020年12月4日星期五下午14:00-16:00观看平台: 仪器信息网 专家介绍左航,中国环境监测总站高级工程师,主要研究领域为水质在线监测技术和分析方法的开发研究以及标准化等工作,主要负责的课题有:《水环境监测现代装备发展策略研究》、《水环境监测现代装备技术转化平台》,组织制定《化学需氧量(CODCr)水质自动在线监测仪技术要求及检测方法》、《氨氮水质自动在线监测仪技术要求及检测方法》、《铅水质自动监测仪技术要求与检测方法》、《COD光度法快速测定仪技术要求及检测方法》、《水污染源在线监测系统(CODCr、NH3-N等)安装技术规范》、《水污染源在线监测系统(CODCr、NH3-N等)验收技术规范》和《水污染源在线监测系统(CODCr、NH3-N等)运行技术规范》、《水污染源在线监测系统(CODCr、NH3-N等)数据有效性判别技术规范》等10余项标准的制修订工作。黄林,哈希高级定制品及系统集成经理,从事水质在线监测事业18年,有着多年的仪器硬件研发、软件开发、分析应用的经验。常年负责水质在线系统的研发和技术支持工作,参与诸多领域的水质相关监测技术方案的编写和相关应用项目的开展。在水污染源、地表水等水质监测领域有着丰富的经验。不要犹豫,报名及获取更多资讯,点击下方的阅读原文,报名参与吧。END
  • 陕西41家重点污染源实现环保在线监测
    陕西渭南市污染物排放现形大屏幕 41家重点污染源实现环保在线监测   近日,陕西省渭南市环境管理信息平台系统建设完成,41家重点污染源实现环保在线监测,各重点污染源的污染物排放情况、空气质量和水质量等各项数据在监测大屏幕上一目了然。   据了解,过去,渭南市进行环境执法,首先要设法采集样本,然后才能进行分析检验,得出数据往往得十几天。现在,通过环境管理信息平台系统,可以对重点污染企业实行全天候监控,从而告别了“执法难”,也使各级环保部门的执法更为客观公正。   该系统是陕西省环境监控管理系统渭南子系统,是用一个地理信息平台把环境管理、污染源实时在线监测、应急指挥等方面科学集成一体,具有三方面功能。一是可同步接受管理渭南市11个县(市、区)重点污染源实时在线信息,实时测控减排总量和控制具体计划减排指标。二是建立市级联动应急指挥系统,预防重大事故发生,减低污染事故的污染范围和强度。三是实时采集市内重点企业各类污染物的排放数据,监控污染物处理设施的运转状况,监测环境质量状况,并进行存储、分析。通过系统可以了解渭南市的环境污染物总量,实现污染物排放总量控制,及当地环境质量动态变化等,从而为环境管理部门提供了解企业的“窗口”,为全市的环境治理提供决策依据。

污染源监测市场相关的方案

污染源监测市场相关的论坛

  • 固定污染源监测监督管理 ? 解读③ | 加强固定污染源执法监测 助力环境监管效能再提升

    固定污染源监测监督管理是深入打好污染防治攻坚战的基石,是精准治污、科学治污、依法治污的重要抓手,是排污许可制度的重要支撑。《“十四五”生态环境监测规划》也明确提出要坚持国家指导、省级统筹、市县承担,深入推进执法监测机制优化增效。  生态环境部近日印发了《关于进一步加强固定污染源监测监督管理的通知》(以下简称《通知》),从压实生态环境部门执法监测责任、强化环境监测和执法联动两个方面对固定污染源执法监测工作提出了具体要求,擘画了固定污染源执法监测的蓝图,为进一步规范和强化执法监测明确了方向,为深入打好污染防治攻坚战提供了坚实保障。  在生态环境部的悉心指导和关心下,上海市积极探索固定污染源执法监测工作,创新工作方式方法,形成了一些有效的做法和制度。《通知》印发后,上海市紧紧围绕《通知》的落地实施,进一步优化执法监测工作机制,推动固定污染源监测监督管理上新台阶,推进生态环境治理能力和治理体系现代化,为提升环境监管效能提供坚强有力的支撑保障。  强化质控,固本培元。质量控制是保证固定污染源监测数据的真实性、准确性和可比性的关键环节,是固定污染源监测工作的生命线。上海市高度重视固定污染源监测质量控制工作,苦练“内功”,在认真执行固定污染源相关监测技术规范的基础上,针对现场监测监管难点及薄弱环节,制定固定污染源现场监测移动端使用技术要求,会同浙江省和江苏省联合发布《长三角生态绿色一体化发展示范区固定污染源废气现场监测技术规范》,切实加强现场监测质量控制;明确环境监测报告技术复核流程,确保监测全过程的合规性、监测数据的准确性和监测报告的有效性。发布《上海市生态环境监测社会化服务机构管理办法》,从“事前”备案管理、“事中”分级分类监管、“事后”信用评价和激励惩戒机制等方面规范社会化监测服务行为,提高监测数据质量;试点开展固定污染源自动监控运维机构信用评价工作,有序推进运维机构的分级分类监管。  测管协同,联动增效。《通知》提出强化环境监测和执法联动。上海市印发《固定污染源生态环境监督管理办法(试行)》,明确市、区、乡镇(街道)固定污染源监管范围,厘清生态环境部门内部监管、监测、执法“三监联动”工作职责,建立“三监联动”工作机制,强化部门协作和市区协同,对固定污染源监督管理实施全流程和闭环管理,提升监管效能;印发《上海市环境执法监测暂行规定》,进一步明确执法监测定义、回避处理原则和现场监测、执法联动流程,优化执法、监测协作配合机制,提高监测数据在执法中的有效运用;规范污染源自动监控设施运行监管和自动监测数据执法应用,明确固定污染源自动监控设施的运行及数据审核机制,进一步规范了自动监测数据的执法应用。组织监测机构及执法机构开展自动监控专项执法检查及练兵比武活动,严厉打击数据弄虚作假和自动监控设施不正常运行等行为。  科技引领,智慧赋能。上海市重视信息化技术在固定污染源监测管理中的应用,印发《上海市固定污染源信息库建设及动态管理规定(试行)》,建立了固定污染源信息库,根据建设项目环境影响评价、排污许可证发证和登记情况、生态环境监管需求和监管结果、环境信用评价结果等实施动态更新,并与执法部门执法对象库实现了统一;编制上海市现代化生态环境智慧监测体系建设方案,依托上海市污染源综合管理信息系统,汇集自行监测、执法监测、自动监测数据,加强走航监测、遥感监测、预警监测等技术业务化应用,支撑非现场监管和执法,利用大数据、人工智能等手段提升监管效能。  在上海市固定污染源监测监督管理各条线同志的努力下,上海市初步构建了职责明确、协同联动的执法监测管理机制。下一步,上海市生态环境系统将继续以习近平生态文明思想为指引,进一步加强固定污染源执法监测管理,服务深入打好污染防治攻坚战。  [b]一是持续完善环境执法监测机制。[/b]确保执法监测工作有法可依、程序规范、留痕溯源、数据精准,细化环境监测和环境执法的责任及工作任务。强化自动监测数据的日常审核和执法应用,加强对异常数据的原因分析,继续开展自动监测设备比对抽测,对比对不合格且经核实未按相关标准规范运维的排污单位严格执法。  [b]二是不断提高执法监测监管效能。[/b]加强便携快速现场原位走航监测、无人机/船监测、遥感监测等新技术应用,推进大数据融合智慧监测。利用大数据、人工智能技术充分进行数据挖掘和异常行为分析,提高执法精准性。实现监测技术基础数据的信息化和现场监测的智能化,持续提升固定污染源非现场监管智能分析和监管能力。  [b]三是建设高质量的监测技术人才队伍。[/b]加强对监测人员的培训,重点培养专业人才队伍。继续开展监测人员和执法人员的大练兵大比武,积极做好应急监测演练工作,不断提高监测技术人员的专业能力,不断强化技术人才资源储备,持续满足对执法监测工作的新要求。

  • 【转帖】污染源监测管理办法

    污染源监测管理办法  第一章 总 则  第一条 为加强污染源监测管理,根据《中华人民共和国环境保护法》第十一条的规定制定本办法。   第二条 本办法适用于产生和排放污染物单位的排污状况监测。放射性污染源、流动污染源监测不适用本办法。   第三条 污染源监测是指对污染物排放出口的排污监测,固体废物的产生、贮存、处置、利用排放点监测,防治污染设施运行效果监测,“三同时”项目竣工验收监测,现有污染源治理项目(含限期治理项目)竣工验收监测,排污许可证执行情况监测,污染事故应急监测等。   第四条 凡从事污染源监测的单位,必须通过国家环境保护总局或省级环境保护局组织的资质认证,认证合格后可开展污染源监测工作,资质认证办法另行制订。污染源监测必须统一执行国家环境保护总局颁布的《污染源监测技术规范》。   第二章 任务分工  第五条省级以下各级环境保护局负责组织对污染源排污状况进行监督性监测,其主要职责是:   (一)组织编制污染源年度监测计划,并监督实施。   (二)组织开展排污单位的排污申报登记,组织对污染源进行不定期监督监测。   (三)组织编制本辖区污染源排污状况报告并发布。   (四)组织对本地区污染源监测机构的日常质量保证考核和管理。   第六条 各级环境保护局所属环境监测站具体负责对污染源排污状况进行监督性监测,其主要职责是:   (一)具体实施对本地区污染源排污状况的监督性监测,建立污染源排污监测档案。   (二)组建污染源监测网络,承担污染源监测网的技术中心、数据中心和网络中心,并负责对监测网的日常管理和技术交流。   (三)对排污单位的申报监测结果进行审核,对有异议的数据进行抽测,对排污单位安装的连续自动监测仪器进行质量控制。   (四)开展污染事故应急监测与污染纠纷仲裁监测,参加本地区重大污染事故调查。   (五)向主管环境保护局报告污染源监督监测结果,提交排污单位经审核合格后的监测数据,供环境保护局作为执法管理的依据。   (六)承担主管环境保护局和上级环境保护局下达的污染源监督监测任务,为环境管理提供技术支持。   第七条 行业主管部门设置的污染源监测机构负责对本部门所属污染源实施监测,行使本部门所赋予的监督权力。其主要职责是:   (一)对本部门所辖排污单位排放污染物状况和防治污染设施运行情况进行监测,建立污染源档案。   (二)参加本部门重大污染事故调查。   (三)对本部门所属企业单位的监测站(化验室)进行技术指导、专业培训和业务考核。   第八条 排污单位的环境监测机构负责对本单位排放污染物状况和防治污染设施运行情况进行定期监测,建立污染源档案,对污染源监测结果负责,并按规定向当地环境保护局报告排污情况。   第三章 污染源监测网络  第九条 各级环境保护局负责组建辖区内的污染源监测网,领导所辖区域的污染源监测工作。   各级环境保护局所属环境监测站是各级污染源监测网的组长单位。负责安排所辖区域污染源监测网成员单位按照职责范围开展监测工作。   第十条 凡通过国家环境保护总局或省、自治区、直辖市环境保护局组织的资质认证、承认网络章程的监测机构,均可向所在地环境保护局申请加入污染源监测网,经审查合格后,由受理申请的环境保护局批准。参加污染源监测网的各监测机构原有名称、隶属关系、人事管理和经费来源均保持不变。   第十一条 污染源监测网的各成员单位在监测网的统一安排下,可承担本部门、本单位以外的污染源排污监测、防治污染设施运行效果监测和根据环境管理需要开展的各种污染源监测,并对监测结果负责。   第十二条 网络主管环境保护局负责监督污染源监测网做好污染源监测的质量保证工作,并建立相应的质量监督机制,网络主管环境保护局所属环境监测站负责对污染源监测网成员单位进行定期质控考核及技术监督。   第四章 污染源监测管理  第十三条 排污单位所在地环境保护局应根据排污单位的行业特点、环境管理的需要、排放污染物的类别和国家污染物排放标准,规定排污单位在对其污染物排污口、污染处理设施进行定期监测时,应监测的项目、点位、频次和数据上报等要求。   不具备监测能力的排污单位可委托当地环境保护局所属环境监测站或经环境保护局考核合格的监测机构进行监测。   第十四条 建设项目在正式投产或使用前和现有污染源治理设施建成投入使用前,建设单位必须向负责项目审批的环境保护局申请“三同时”竣工验收监测或治理设施的竣工验收监测,监测由环境保护监测机构负责实施,其监测结果是验收的依据。   第十五条 各级环境保护局所属环境监测站可接受环境污染纠纷当事人的委托进行监测,并应及时向环境保护局报告。纠纷当事人对监测数据有异议时,可向上一级环境保护局所属环境监测站申请进行复核。   第十六条 环境监测人员到排污单位进行现场监测时,必须出示有效证件。被监测单位应协助环境监测人员开展工作,任何单位和个人不得以任何借口加以阻挠。   进入军队或保密单位进行监测,应预先通知其主管部门。监测人员执行任务时,必须严格遵守保密规定,为被监测单位保守秘密。   第五章 污染源监测设施的管理  第十七条 各级环境保护局应按国家环境保护总局的统一要求,监督所辖地区排污单位规范其污染物排放口,安装统一的标志牌。   第十八条 国家、省、自治区、直辖市和市环境保护局重点控制的排放污染物单位应安装自动连续监测设备,所安装的监测设备必须经国家环境保护总局质量检测机构的考核认可。   污染源监测设施一经安装,任何单位和个人不得擅自改动,确需改动的必须报原批准安装的环境保护局批准。   第十九条 排污单位应将已安装的污染源监测设施的维护管理纳入本单位管理体系,遵守下列要求:   (一)污染源监测设施应与本单位污染治理设施同时运行,同等维护和保养,同时参与考评。   (二)对污染源监测设施应建立健全岗位责任制、操作规程及分析化验制度。   (三)建立污染源监测设施日常运行情况记录和设备台账,接受所在地环境保护局的监督检查。   第二十条 省以下各级环境保护局可委托所属环境监理机构负责对本地区排污单位安装的污染源监测设施进行监督管理和现场监督检查 所属环境监测站对污染源监测设施进行计量监督和稳定运行的监督抽测,对污染源监测设施采集的监测数据进行综合分析。   第六章 污染源监测结果报告  第二十一条 各级环境保护局负责根据环境管理的需要,明确各类污染源监测数据的有效期限,超过有效期的污染源监测数据不得作为环境管理的依据。   第二十二条 承担由污染源监测网统一安排的污染源监测任务的网络成员单位,应定期向网络负责单位报告污染源监测结果。   已安装自动连续监测设施的污染物排放单位应将监测设备与当地环境保护局监测网直接联网,将监测结果直报环境管理部门。   第二十三条 省以下各级环境保护局所属环境监测站负责定期将污染源监测结果和排污申报数据,在做出适当分析后报告同级环境保护局和上级环境监测站。对在实际监测和数据审核中发现的违法、违规情况,应及时报告同级环境保护局或通报环境监理机构。   第二十四条 各级环境保护局对审核合格或未提出异议的监测数据应直接用于各项环境管理工作。   第七章 处罚  第二十五条 对在污染源监测中不符合国家有关质量保证规定的污染源监测机构,由其上级环境保护局提出限期整改要求,整改期间的污染源监测数据视为无效数据。屡教不改的,由负责其资质认证的环境保护局取消其污染源监测资格。   对在污染源监测过程中弄虚作假、编造数据的污染源监测单位,由负责其资质认证的环境保护局取消其污染源监测资格。   第二十六条 对逾期未安装污染源监测设施或擅自拆除、闲置污染源监测设施的排污单位,由负责对其进行监督管理的环境保护局责令其限期改正。   第二十七条 监测工作人员在履行职责的过程中弄虚作假,发生违法、违规行为的,由其主管环境保护局依照有关规定追究有关人员的责任。   第八章 附 则  第二十八条本办法中规定的污染源监督性监测不得收取监测费用,所需费用由各级环境保护局负责解决。   建设项目“三同时”竣工验收监测、委托监测、污染纠纷监测等所需经费由排污单位或委托方承担,收费持省级以上物价部门颁发的收费许可证并按国家规定的监测服务收费标准执行。   第二十九条 本办法由国家环境保护总局负责解释。

污染源监测市场相关的资料

污染源监测市场相关的仪器

  • 电厂污染源烟气排放及脱硫系统监测污染源排放监测系统被广泛应用到电厂污染源排放和脱硫系统中。对于污染源排放的SO2、NOX 、流量、温度、压力、粉尘、湿度和氧进行连续监测,并可将数据传送到地方环保局,满足环保局对电厂污染排放监测的要求。在脱硫系统中对FGD入口的SO2 、粉尘、氧等用户要求的参数进行连续监测,FGD出口的SO2、NOX 、CO、流量、温度、压力、粉尘、湿度和氧进行连续监测。为用户提供脱硫效率换算所必须的数据,由于稀释法彻底解决了烟气采样、传输中的凝结问题,因而彻底消除了烟气凝结对SO2的吸收,消除了直接抽取法中凝结带来的系统误差,防止了脱硫装置出口SO2 浓度比较低,湿度比较大的情况下,由于烟气凝结而使脱硫出口测量的不准确。由于我们采用了高性能的分析仪,可以在SO2高、低浓度的条件下都能达到理想的精度。稀释法系统是脱硫系统烟气监测的最佳解决方案。钢厂动力锅炉烟气排放的监测随着国家对环保的重视日益增加,所有的污染源排放都将进行烟气排放监测。钢厂就是其中非常重要的监测点。由于钢厂锅炉燃烧有煤和煤气之分,Thermo Scientific 烟气监测系统针对各种情况作出不同的配置用以适应不同条件的烟气排放监测和环保要求。对于烟气中 SO2、CO、流量、温度、压力、粉尘、湿度和氧进行连续监测。可为钢厂环保部门和地方环保局提供实时可靠的监测数据。纸浆厂动力锅炉及碱石灰炉的烟气排放监测Thermo Scientific 烟气排放监测在纸浆厂有着非常成熟的技术和广泛的应用,特别对于纸浆厂烟气排放中总还原硫(TRS)的监测技术非常成熟。在美国具有70%的市场占有率。针对纸浆厂的情况,Thermo Scientific 开发出烟道外干态稀释探头。除总还原硫(TRS)外还对烟气中SO2、NOX、CO、H2S 、温度、压力、流量、粉尘和氧进行连续监测,实时数据可传送到厂DCS系统和环保局。
    留言咨询
  • 污染源烟气连续自动监测系统(CEMS)采用独特的稀释技术,与各种直接采样技术相比有着明显的优势。探头稀释比的恒定控制,使稀释探头无需加热或进行温度、压力补偿,稀释及控制部分简单明了,而且彻底消除了系统腐蚀和堵塞的影响。特别是在目前国家及地方更严格的排放标准下,Thermo Scientific 稀释法污染源烟气连续自动监测系统提供在低浓度烟气条件下的精确测量,SO2可监测到10mg/m3以下浓度,NOX可监测到5mg/m3以下浓度, 颗粒物可以准确测量到5mg/m3,Thermo Scienfitic的稀释法污染源烟气连续自动监测系统在美国占据了75%市场,在中国提供了第一套稀释系统,并且占有国内稀释法的大部分市场。l 稀释系统的特点 连续测量SO2 浓度,SO2排放量、NOX浓度,NOX排放量等参数 采用探头内瞬间稀释技术,彻底消除冷凝水影响,无需跟踪加热采样管线 稀释技术解决了烟气含尘量高而引起的堵塞问题 采用从采样探头开始的全系统动态校准 全汉化中文数据处理和报表生成 样品气传输快,维护工作量小,消耗品用量少 国家技术监督局系统认证,国家环保局认证,IS09001认证l 典型的湿法测量稀释系统采用独特的现场样品预处理的气体采集方式。在采样探头顶部,通过一个音速小孔进行采样,并用干燥的仪表空气在探头内部进行稀释。样品气进入分析仪之前不需要除湿处理,因为样品气经过稀释后(稀释比通常选择在25:1至250:1之间),有效地降低了样品的露点温度,使之低于安装地的环境最低温度,从而避免了样品气在环境温度下产生的结露现象;另一方面,样品气虽然经过稀释,但仍为带湿气体,测量过程是典型的湿法测量。由于稀释探头采样不需要除湿设备,因而无需增加购置除湿设备的成本及其维护费用,除湿设备的损坏会导致湿度增加使样气结露并腐蚀而导致分析仪器故障。稀释法可以彻底避免样品气在采样管线中冷凝结水,这样就无需加热气体传输管线并可避免许多与其他采样技术伴随而来的麻烦。这种测定方法是美国国家环保局(EPA)优选的带湿计算方法,不仅避免了除湿过程中产生的SO2和NOX 损失,而且彻底消除了直接采样法经常发生的由于水份没有从样品中彻底消除而带来的腐蚀影响。稀释法提供带湿样品气测量数值和带湿烟气流量值,因而不再需要为排放量计算提供额外的湿度计。l 稀释法采样探头采样探头所有暴露在烟气中的部分,采用的是精心选择的耐热耐蚀的铝铬镍合金lnconel 600,镍基铝合金 Hastelloy C276或不锈钢304pyrex 玻璃等材料,以避免探头在烟气中被腐蚀。稀释探头采样流量通常为50cm3/min,而非稀释探头采样流量大约是3500cm3/min,因而稀释法探头滤尘负荷更小,更不容易发生探头过滤器堵塞,维护周期长,维护费用低。为保证恒定的稀释比,Thermo scientific 的探头设计采用独特的音速小孔设计。当系统能够满足设定的最小真空度要求时,音速小孔两端的压差将大于0.46倍,此时通过音速小孔的气体流量将是恒定的,温度压力的变化将不会影响稀释比。整个探头的流量控制是依据气动力学原理来完成的,因而无需任何专用电源和电路,具有体积小、安装简单、维护方便的特点。l 简单的采样管线由于稀释样品的露点低而无需跟踪加热,所以连结采样探头和分析仪器的采样管线是无需加热型的。稀释系统的采样管线由四根聚四氟乙烯管组成,其中两根分别用于往采探头输送校准气和稀释空气,一根用于往各种分析仪器输送稀释后的烟气样品,另一根用于探头部分的真空度监测。所有采样管线除真空管线外都是正压,从而避免了由气体汇漏所引入的误差。稀释采样法在样品的采集和传输过程中,不象非稀释采样法那样需要采样泵及若干个流量控制阀,从而减低了购买和运行维护成本,而且减少了故障隐患。l 系统校准稀释系统可在预先设定的时间间隔内自动或手动对仪器的零点及跨度进行系统校准。系统校准是将校准气注入到探头顶部,对系统的所有部件包括探头过滤器、采样管线、探头控制器以及分析仪器进行校准,这种系统校准方式与只对分析仪器进行的部分校准具有本质的区别,是美国环保署(EPA)唯一认可的校准方式。系统校准可由手工完成或由数据处理器自动设定完成,也可以通过网络由远程控制实现。系统采用干燥的仪表气校准零点,采用钢瓶气校准跨度。数据采集及处理系统将规定值与校准数据进行比较,以检验仪器的准确度。l 先进的气体分析技术在气体分析技术方面,Thermo Scientific 采用自行开发生产的世界上最先进可靠的分析仪器。分析系统采用模块化的组合方式,可以根据用户的实际监测要求,灵活地配置系统构成。各项参数独立监测,保证每一台仪器都在最优化的条件下工作,与多参数分析仪器相比,具有结果更准确、维护更便捷的特点。这种系统组合很好地满足了广大客户的实际应用,使Thermo Scientific 在全球范围内享有很高的声望,并占有很大市场份额。Thermo Scientific 是目前市场上普遍采用的紫外荧光法SO2分析仪的发明者,其市场占有率超过70%;它还是化学发光法NOX分析仪的发明者,其市场占有率超过60%;同时,Thermo Scientific 其他气体分析仪器也拥有世界上最大的市场占有率,广泛地受到用户好评。
    留言咨询
  • 污染源烟气连续自动监测系统(CEMS)采用独特的稀释技术,与各种直接采样技术相比有着明显的优势。探头稀释比的恒定控制,使稀释探头无需加热或进行温度、压力补偿,稀释及控制部分简单明了,而且彻底消除了系统腐蚀和堵塞的影响。根据美国1990年清洁空气法案的要求,稀释法为污染源在线检测的首选方法,在美国已经安装的2000多套污染源系统中,有1800多套采用稀释法,其中1600多套采用的是赛默飞世尔科技的系统。在中国,Thermo Scientific不仅提供了第一套稀释系统,而且占有国内稀释法的大部分市场。稀释系统的特点准确的湿法测量——美国EPA优选方法连续测量SO2浓度,SO2排放量、NOx浓度,NOx排放量及烟气浓度等参数采用探头内瞬间稀释技术,彻底消除冷凝水影响无需跟踪加热采样管线稀释技术解决了烟气含尘量高而引有的堵塞问题采用从采样探头开始的全系统动态校准全汉化中文数据处理和报表生成样品气传输快,维护工作量小,消耗品用量少国家技术监督局系统认证,国家环保局认证,ISO9001认证 典型的湿法测量稀释系统采用独特的现场样品预处理的气体采集方式。在采样探头顶部,通过一个音速小孔进行采样,并用干燥的仪表空气在探头内部进行稀释。样品气进入分析仪之前不需要除湿处理,因为样品气经过稀释后(稀释比通常选择在100:1至250:1之间),有效地降低了样品的露点温度,使之低于安装地的环境最低温度,从而避免了样品气在环境温度下产生的结露现象;另一方面,样品气虽然经过稀释,但仍为带湿气体,测量过程是典型的湿法测量。由于稀释探头采样不需要除湿设备,因而无需增加购置除湿设备的成本及其维护费用,除湿设备的损坏会导致湿度增加使样气结露并腐蚀而导致分析仪器故障。稀释法可以彻底避免样品气在采样管线中冷凝结水,这样就无需加热气体传输管线并可避免许多与其他采样技术伴随而来的麻烦。这种测定方法是美国EPA优选的带湿计算方法,不仅避免了除湿过程中产生的SO2和NOX损失,而且彻底消除了直接采样法经常发生的由于水份没有从样品中彻底消除而带来的腐蚀影响。稀释法提供带湿样品气测量数值和带湿烟气流量值,因而不再需要为数据修正提供额外的湿度计。 稀释法采样探头采样探头所有暴露在烟气中的部分,采用的是精心选择的耐热耐蚀的铝铬镍合金Inconel600,镍基铝合金Hastelloy C276或不锈钢304pyrex玻璃等材料,以避免探头在烟气中被腐蚀。稀释探头采样流量通常为2500px3/分钟,而非稀释探头采样流量大约是87500px3/min,因而稀释法更不容易发生探头过滤器堵塞,维护周期长,维护费用低。来完成的,因而无需任何专用电源和电路,具有体积小、安装简单、维护方便的特点。为保证恒定的稀释比,赛默飞世尔科技的探头设计采用独特的音速小孔设计。当系统能够满足设定的最小真空度要求时,音速小孔两端的压差将大于0.46倍,此时通过音速小孔的气体流量将是恒定的,温度,压力的变化将不会影响稀释比。这就使得整个探头的流量控制是靠气动来完成的,因而无需任何专用电源和电路,具有体积小、安装简单、维护方便的特点。 简单的采样管线由于稀释样品的露点低而无需跟踪加热,所以连结采样探头和分析仪器的采样管线是无需加热型的。稀释系统的采样管线由四根聚四氟乙烯管组成,其中两根分别用于往采探头输送校准气和稀释空气,一根用于往各种分析仪器输送稀释后的烟气样品,另一根用于探头部分的真空度监测。所有采样管线除真空管线外都是正压,从而避免了由气体泄漏所引入的误差。稀释采样法在样品的采集和传输过程中,不象非稀释采样法那样需要采样泵及若干个流量控制阀,从而减低了购买和运行维护成本,而且减少了故障隐患。 恒定的稀释比例为保证恒定的稀释比,赛默飞世尔科技的探头设计采用独特的音速小孔设计。当系统能够满足设定的最小真空度要求时,音速小孔两端的压差将大于0.46倍,此时通过音速小孔的气体流量将是恒定的,温度,压力的变化将不会影响稀释比。探头的抽气,是依靠气动抽气器(文丘里管)来完成的,根据气动力学原理,形成稳定的真空度,并保证稀释气体流量的恒定。这就使得整个探头,因而无需任何专用电源和电路,具有体积小、安装简单、维护方便的特点。并且由于气动力学特性,保证了探头的良好重复性。保证了探头的稀释比恒定。稀释系统保证的是稀释比的恒定,而并非给出一个确认的稀释比例。通过稀释比例的恒定,保证系统的准确性。 自动校准功能稀释系统可在预先设定的时间间隔内自动或手动对仪器的零点及跨度进行系统校准。系统校准是将校准气注入到探头顶部,对系统的所有部件包括探头过滤器、采样管线、探头控制器以及分析仪器进行校准,这种系统校准方式与直接采样系统所采用的只对分析仪器进行的部分校准具有本质的区别,是美国EPA唯一认可的校准方式。系统校准可由手工完成或由数据处理器自动设定完成,也可以通过网络由远程控制实现。系统采用干燥压缩空气校准零点,采用钢瓶气校准跨度。数据采集及处理系统将规定值与校准数据进行比较,以检验仪器的准确度,根据美国EPA的要求对数据进行有效性判断,在有效的情况下可以自动进行数据修正。 先进的气体分析技术在气体分析技术方面,ThermoScientific采用自行开发生产的世界上最先进可靠的分析仪器。分析系统采用模块化的组合方式,可以根据用户的实际监测要求,灵活地配置系统构成。各项参数独立监测,保证每一台仪器都在最优化的条件下工作,与多参数分析仪器相比,具有结果更准确、维护更便捷的特点。这种系统组合很好地满足了广大客户的实际应用,使Thermo Scientific在全球范围内享有很高的声望,并占有很大的市场份额。Thermo Fisher是目前市场上普遍采用的紫外荧光法SO2分析仪的发明者,其市场占有率超过70%;它还是化学发光法NOx分析仪的发明者,其市场占有率超过60%;同时,Thermo Scientific其他气体分析仪器也拥有世界上最大的市场占有率,广泛地受到用户的好评。 由于脱硝烟气中要监测的项目有:NH3、SO2、H2O、CO2等参数,所以在常温采样时以上物质会发生反应生成(NH4)2SO3、NH4HSO3、(NH4)2CO3和NH4HCO3。当在高温伴热时烟气中原有的副产物就会分解生成气态NH3、SO2和CO2。因此常规方法和高温伴热都存在不可解决的问题。而赛默飞世尔科技的稀释技术非常出色的解决了以上问题,可准确监测到烟道中NH3,CO2,SO2的数据。这就使得赛默飞世尔科技烟气监测系统在脱硝系统中占有非常大的优势脱硝系统中的CEMS应用,主要面临的技术关键问题是:(1)烟气温度高(2)烟尘含量高(3)烟气中含有NH3。 而采用稀释技术将最大限度地避免或降低这些问题对系统的影响,保证系统稳定运行,准确测量。将烟气稀释后,可降低稀释后的样品气的湿度,有效地防止烟气凝结;稀释采样,烟气抽取量非常小,大约为50-300ml/min(一般为50ml/min),是直接抽取法采样抽气量的几十分之一,因此,探头滤芯的工作负荷也大大降低,有效地提高了探头滤芯的使用寿命和有效工作时间;将烟气稀释后,NH3浓度也被稀释,铵盐的形成温度大大降低,降低了NH3对系统的影响,同时由于凝结问题的解决,也彻底解决了NH3溶解对系统的影响,同时也降低了NH3在传输过程中吸附的影响。因此,稀释法是脱硝系统CEMS的优选方法。 稀释法采样探头(高温、高尘条件)对于粉尘含量较高达到几克甚至上百克每立方米的环境,我们选用PRO2000W型烟道外稀释探头。采用烟道外稀释探头最高可承受摄氏540度高温。并且使用INCONEL600材质可以有效阻止NH3的接触反应。它此种型号探头前端安装一长度为52”的取样探针,安装时探针向下倾斜5度,这样当烟气经过探头前端以50-100CC/min的流速流向探头时,由于样气流速很慢致使大于15 microns的粉尘首先沉积到探针外壁(见图1),然后再进入一温度控制在140°C±5.5°C (285°F ± 10°F)的过滤器。滤芯是由Teflon 包裹的玻璃纤维惰性材质,孔径为0.1 micron 。探头设有反吹装置(见图2)在反吹是高压空气通过反吹管直接作用在滤芯和探针上,可完全清除粉尘。反吹频率视现场实际情况调节。在过滤器出口经过音响小孔后与干燥的稀释空气混合(稀释比例16:1到100:1)。混合后样气(流量5-10L/min)经取样管传送到分析仪器。 探头控制器CTL2000用于探头加热控制,19”机架安装,过滤器/抽气器加热设定温度为140.5°C (285°F);通过在探头上的热电阻测量探头温度,加热温控器可提供报警输出。电源容量:30 W环境温度:-20°C (-4°F) 至 50°C (122°F)重量:18 lbs. (8.3 kg) 采样管线由于稀释样品的露点低而无需跟踪加热,所以连结采样探头和分析仪器的采样管线是无需加热型的。稀释系统的采样管线由四根聚四氟乙烯管组成,其中两根分别用于往采样探头输送校准气和稀释空气,一根用于往各种分析仪器输送稀释后的烟气样品,另一根用于探头部分的真空度监测。 稀释空气净化系统稀释空气和零点校准气采用除尘、除水、除油,以及必要时除CO2和浓度过高的空气本底中的SO2和NOX的仪表空气,它应该是干燥的,露点为-30°C 到 - 40°C , 压力620 ± 68 KPa。赛默飞世尔科技采用专门的空气净化装置,很好地满足了以上要求。 自动校准稀释系统可在预先设定的时间间隔内自动或手动对仪器的零点及跨度进行系统校准。系统校准是将校准气注入到探头顶部,对系统的所有部件包括探头过滤器、采样管线、探头控制器以及分析仪器进行校准,这种系统校准方式与直接采样系统所采用的只对分析仪器进行的部分校准具有本质的区别,是美国EPA唯一认可的校准方式。系统校准可由手工完成或由数据处理器自动设定完成,也可以通过网络由远程控制实现。系统采用干燥压缩空气校准零点,采用钢瓶气校准跨度。数据采集及处理系统将规定值与校准数据进行比较,以检验仪器的准确度,根据美国EPA的要求对数据进行有效性判断,在有效的情况下可以自动进行数据修正。系统校准在美国环保局要求中规定是必须的,无论针对何种采样系统。否则无法判定监测系统的系统误差。
    留言咨询

污染源监测市场相关的耗材

  • 固定污染源监测纯玻璃纤维滤筒
    ANOW超细玻璃纤维滤筒过滤器在符合ISO 9001标准质量体系的一流车间内制造完成过滤器在符合ISO 9001标准质量体系的一流车间内制造完成过滤器在符合ISO 9001标准质量体系的一流车间内制造完成过滤器在符合ISO 9001标准质量体系的一流车间内制造完成过滤器在符合ISO 9001标准质量体系的一流车间内制造完成过滤器在符合ISO 9001标准质量体系的一流车间内制造完成过滤器在符合ISO 9001标准质量体系的一流车间内制造完成过滤器在符合ISO 9001标准质量体系的一流车间内制造完成过滤器在符合ISO 9001标准质量体系的一流车间内制造完成过滤器在符合ISO 9001标准质量体系的一流车间内制造完成查看价格详情请登录--由100%超细玻璃纤维高温加工而成,不含任何粘合剂。具有耐高温(500℃)、重量稳定性好和捕集效率高(0.3μ粒子 99.99%)等优点,通常被用于固定污染源烟尘、烟气、废弃和酸雾等的监测。产品特点尺寸精确、匹配性好100%超细玻璃纤维加工而成捕集效率高技术参数 A系列25mm针头式过滤器专门为HPLC、GPC、GC、LC-MS等分析仪器制样设计,能够最大程度的去除样品中的颗粒,保护您昂贵的仪器。产品特点极低的溶出,背景干扰小多种膜材,满足不同需求样品滞留体积小一次性使用产品质量过滤器在符合ISO 9001标准质量体系的一流车间内制造完成--滤材硼硅玻璃微纤维 执行标准HJ/T 48-1999 《烟尘采样器技术条件》JJG 968-2002 《烟气分析仪》JJG 680-2007 《烟尘采样器》 粘合剂无粘合剂 型号1号 φ32×120mm 2号 φ25×90mm 3号 φ28×70mm DOP截留率(0.3μm)99.99% 颜色白色 最大耐受温度500℃
  • 固定污染源氟化氢采样枪
    固定污染源氟化氢采样枪一、产品概述固定污染源氟化氢采样器,主要是用于固定污染源排放物中氟化氢的采集。该采样枪和枪体均加热控温,气态氟化氢用试剂瓶采集;可广泛应 用于环保、卫生、劳动、安监、军事、科研、教育等部门。二、执行标准HJ688-2013 《固定污染源废气 氟化氢的测定 离子色谱法(暂行)》HJ/T 397 《固定源废气监测技术规范》三、产品特点适用于固定污染源排放物中氟化氢的测定;气态氟化氢采用两路串联2个多孔波板吸收瓶采集;采样气路采用PTFE材料;采样头、枪体全程加热,控制温度185±5℃,数字温度显示;配可放置冰水混合物的小型吸收瓶水箱。配可以调节高度的烟枪架,用于支撑采样枪和吸收瓶;枪体长度可按客户需求定做;皮托管接嘴:6mm接嘴2个 供电电源:单独24V12A电源适配器,2芯航插四、技术参数主要参数采样枪长度测孔直径要求 加热温度参数范围1米≥Ф35mm185±5℃五、标准配置24V12A加热电源适配器冰水混合物吸收瓶水箱4个多孔波板吸收瓶1.5米可调烟架 青岛路博为您提供专业的技术支持和售后服务
  • 聚光热电空气站/污染源PM10/PM2.5纸带
    品质保证 用的久●滤膜韧性好,不易断裂●疏水性设计,低非特异性吸附●化学稳定性高,耐受180℃高温●无纸屑,重量稳定佳,避免孔道堵塞●耐热、阻燃、耐水、纳污量大、过滤精度高、数据准确厚度0.24-3.0mm强度≥1000g过滤颗粒物大小0.3um阻力≤5.2mmH2O(气流比速为0.06 升/分&bull 厘米 2)0.3-0.5μm 标准粒子截留 99.995%尺寸规格(允许盘径误差≤2.0mm)φ40*135*40、 φ40*110*30、φ40*115*30φ40*125*30、 φ50*125*35、φ40*145*40φ28*135*30、 φ50*155*45、φ71*165*45●扬尘滤纸带污染源玻纤pm10pm2.5纸带先河颗粒物空气自动站监测站●监测站扬尘滤纸带空气自动站污染源玻纤pm10pm2.5纸带天虹颗粒物●污染源玻纤空气自动站Metone颗粒物扬尘滤纸带监测pm10pm2.5纸带●烟尘纸带南盾滤纸带空气站纤维纸带pm10pm2.5滤纸带聚光颗粒物●聚光扬尘滤纸带颗粒物空气自动站监测站污染源玻纤pm10pm2.5纸带●热电玻纤pm10pm2.5纸带颗粒物扬尘滤纸带空气自动站监测站污染源 ● API颗粒物扬尘滤纸带空气自动站监测站污染源玻纤pm10pm2.5纸带●空气自动站监测站污染源pm10pm2.5纸带法国ESA颗粒物扬尘滤纸带●空气自动滤纸带PM10/PM2.5纸带β射线纸带污染源在线监控纸带●颗粒物空气自动站日本掘场扬尘滤纸带污染源玻纤pm10pm2.5纸带●德国杜拉格颗粒物扬尘滤纸带空气自动站监测站玻纤pm10pm2.5纸带
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制