低阻抗率计

仪器信息网低阻抗率计专题为您提供2024年最新低阻抗率计价格报价、厂家品牌的相关信息, 包括低阻抗率计参数、型号等,不管是国产,还是进口品牌的低阻抗率计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合低阻抗率计相关的耗材配件、试剂标物,还有低阻抗率计相关的最新资讯、资料,以及低阻抗率计相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

低阻抗率计相关的厂商

  • 400-860-5168转0935
    雷迪美特中国有限公司(Red Matrix China Limited)专注于小电流电化学分析传感在各领域的交流合作、结合本地化的要求,不断创新和完善产品。 PalmSens BV由荷兰电化学科学家Kees Van Velzen成立于2001年,公司使命:为传感应用发展小型便携的电化学工作站,技术先进,应用到位,价廉物美。 2004年,推出EmStat的PCB版,满足OEM应用 。 2011年,推出多通道MultiEmStat3。 2013年,推出PalmSens3EIS含交流阻抗;同时推出EmStat3和3+。 2015年,带蓝牙无线控制的EmStat3-Blue 面世,真正适合户外使用。 2017年,推出第四代的旗舰产品PalmSens4。 2018年,推出多通道MultiPalmSens4。 2019年,推出Sensit 系列,手机版本的Smart让分析工作更加小巧便携。 2020年,推出Sensit BT。 2021年,推出EmStat4S。 2022年,推出多通道MultiEmStat4。 产品包括: - 便携式恒单位/恒电流/交流阻抗分析仪 - 多通道恒电位仪/恒电流/交流阻抗分析仪 - 代工(OEM)服务,提供应用提供软件和硬件平台,协助开发自有品牌 - 配套电极和电解池等 雷迪美特中国有限公司将秉承为广大实验室工作者服务的宗旨,提供全球优质的产品和本地化的专业服务,做到最好! 更多信息请拨打400-860-5168转 0935或发邮件与我们联系!
    留言咨询
  • 金恒科技仪器是一家专业的实验室服务商。主营三菱硫氮氯元素分析仪,库仑容量水分测试仪,自动电位滴定仪,阻抗仪(电阻率测试仪),粉体电阻率测试仪;优秀的仪器品质;专注的技术服务。我们的目标是以客户的事业为核心,以客户共发展。
    留言咨询
  • 瑞士苏黎世仪器是世界领先的测试测量仪器制造厂家,其产品广泛地应用在各种先进的研发领域。苏黎世仪器的产品涵盖中频MF、高频HF和超高频UHF,频段齐全,功能丰富。产品系列有:锁相放大器、锁相环、任意波形发生器、阻抗分析仪等等。苏黎世仪器的全数字锁相放大器系列,带宽DC-600MHz,配套图形化操作软件LabOne,除了具有锁相的全部功能,同时兼具更多的测试测量功能:示波、频谱分析、扫频、频率特性分析、触发等,还可扩展任意信号发生器、LCR阻抗分析仪、数字转换器、BOXCAR平均器、PID控制器等等,带给您无与伦比的测试体验,极大的简化实验环节,并保证同步与精准。
    留言咨询

低阻抗率计相关的仪器

  • 仪器简介:FRA (Frequency Response Analysis software) 频率响应分析软件是专用于控制和分析处理电化学频率响应(又称:交流阻抗)数据的软件;主要特点: 可提供10Hz ~ 1 MHz全范围一次性测量,无需进行分段测量; 可全范围进行单个或多个正弦波测量; 可提供多种交流阻抗的测量方法,例如: Frequency scan at a single potential常规的单电位下的频率扫描阻抗测量方法; Potential scan with at each potential a frequency scan电位频率扫描; Potentiostatic Time scan恒电位下的时间频率扫描; Frequency scan at a single current单电流下的频率扫描; Current scan, with at each current a frequency scan电流频率扫描; Galvanostatic Time scan恒电流下的时间频率扫描。 可显示多种曲线形式,包括:Nyquist、Bode、Epsilon等; 可基于EQUIVCRT进行曲线的模拟和拟合; 在Nyquist图中找圆; 进行Kramers-Kronig试验。
    留言咨询
  • 低阻抗测试仪MCP-T380 400-860-5168转1375
    仪器介绍:表面阻抗仪主要应用于对样品表面涂层,表面镀膜,表面油漆,表面贴面及电路板等形式的低阻抗测量,以确定样品的表面是否均匀和无任何细微断裂。特点 LORESTA-EP 手持单元 可配置多种探头测量低阻抗 测量精确稳定 专利的 4 针探头技术和数据存储 查找只需按下启动按钮,确认自动测量功能,可自动保持当前的测量值电池寿命可以采用镍氢电池组可以方便地替换新增探头校准模式。检查探头校准片(另售),以确认Roresuta AX测试值的准确性测量数据可以导出到USB存储器阻抗计 &bull 手持,轻体 &bull 便携式 &bull 大液晶显示器使操作简单 &bull 精确而稳定的测量 MCP 探头 &bull 一次接触样品,即可完成测量 &bull 内置针,恒定针压力 &bull 定内阻和导线阻抗已经除外 应用 导电性油漆,导电性糊状物,导电性塑料,导电性橡胶,导电性薄膜,金属薄膜,抗静电材料, EMI 防护材料,导电性纤维,导电性陶瓷等。 应用于低阻抗测量范围,带 4 针探头 测量范围: 10-2 ~ 106 Ω 用途 工业生产,质量控制,研发仪器参数测量方法 4 针探头,恒流方法 测量范围 10-210-1100101102103104105106支持电流 100mA 10mA 1mA 100 uA 10 uA 1 u A 测量精度 ± 1.0% ± 20dgt ± 1.0% ± 5dgt ± 0.5% ± 5dgt ± 0.5% ± 3dgt ± 2.0% ± 5dgt 显示器 液晶 电源 直流 6.5V , 350mA 4 针探头 MCP 探头( ASP , ESP , PSP , BSP , QPP , TFP ) 数据输出 RS232C 尺寸,重量 W100 X D230 X H45 mm , 500g 标准附件 ASP 探头 MCP-TP03P ( 4 针,内置针长 5mm, 针尖 0.37R ) 交流适配器 MCP-TA05( 直流 6.5V , 350mA 充电电池 )
    留言咨询
  • MCP-T360 低阻抗分析仪 400-860-5168转1375
    仪器简介:MCP-T360技术参数:MCP-T360技术参数 测量方法 4 针探头,恒流方法 测量范围 10-2 10-1 100 101 102 103 104 105 106 支持电流 100mA 10mA 1mA 100 m A 10 m A 1 m A 测量精度 ± 1.0% ± 20dgt ± 1.0% ± 5dgt ± 0.5% ± 5dgt ± 0.5% ± 3dgt ± 2.0% ± 5dgt 显示器 液晶 电源 直流 6.5V , 350mA 4 针探头 MCP 探头( ASP , ESP , PSP , BSP , QPP , TFP ) 数据输出 RS232C 尺寸,重量 W100 X D230 X H45 mm , 500g 标准附件 ASP 探头 MCP-TP03P ( 4 针,内置针长 5mm, 针尖 0.37R ) 交流适配器 MCP-TA05( 直流 6.5V , 350mA 充电电池 ) MCP-T360可选探头 用于非均衡样品,内针长 4mm ,针尖 &Phi 2 ,弹簧压力 240g/ 针 MCP-TP08P 用于小样品,内针长 1.5mm ,针尖 0.26R ,弹簧压力 70g/ 针 MCP-TP06P 用于微小样品,内针长 1.5mm ,针尖 0.26R ,弹簧压力 70g/ 针 MCP-TPQPP 用于长样品,内针长 2.2mm ,针尖 0.37R ,弹簧压力 210g/ 针 MCP-TP05P 用于薄样品,内针长 1mm ,针尖 0.15R ,弹簧压力 50g/ 针 MCP-TFP 探头检测器 1 W 用于 ASP , ESP 探头, MCP主要特点:MCP-T360仪器介绍: 表面阻抗仪主要应用于对样品表面涂层,表面镀膜,表面油漆,表面贴面及电路板等形式的低阻抗测量,以确定样品的表面是否均匀和无任何细微断裂。 特点 LORESTA-EP 手持单元 可配置多种探头测量低阻抗 测量精确稳定 的 4 针探头技术和数据存储 阻抗计 &bull 手持,轻体 &bull 便携式 &bull 大液晶显示器使操作简单 &bull 精确而稳定的测量 MCP 探头 &bull 一次接触样品,即可完成测量 &bull 内置针,恒定针压力 &bull 定内阻和导线阻抗已经除外 应用 导电性油漆,导电性糊状物,导电性塑料,导电性橡胶,导电性薄膜,金属薄膜,抗静电材料, EMI 防护材料,导电性纤维,导电性陶瓷等。 应用于低阻抗测量范围,带 4 针探头 测量范围: 10-2 ~ 106 &Omega 用途 工业生产,质量控制,研发
    留言咨询

低阻抗率计相关的资讯

  • 3i流式KOL|清华大学王文会教授团队在阻抗流式细胞术上取得系列进展
    本文作者:王文会 清华大学精仪系 长聘副教授王文会,清华大学精仪系长聘副教授,博士生导师,入选国家海外高层次人才引进计划青年项目。主要从事微操作器件和系统、机器人自动化技术、及其在生命科学仪器领域的应用研究工作。项目来源包括国家重点专项、科技创新2030—“脑科学与类脑研究”重大项目、国家自然科学基金仪器项目、面上项目等;在Small,Lab Chip,Small Methods,Biosensors and Bioelectronics,Analytical Chemistry,IEEE Trans等期刊上发表50多篇SCI论文,获得授权发明专利12项(包括2项美国专利)。近年的研究兴趣在于单细胞操控和理化特性表征技术、系统及应用。清华大学王文会教授团队在阻抗流式细胞术上取得系列进展对单细胞生物特性的表征有助于揭示细胞的基本结构、功能信息及其病理状态,基于单细胞的研究可以更深层次揭示生命的本质和规律,对生命科学研究、疾病诊断和个性化医学意义重大。细胞内的生理变化常伴随着化学和物理修饰重组,可以通过生物化学和生物物理的方法对单细胞进行表征。生物化学方法通常利用生化标记识别细胞及其状态,特异性高,但是需要先验知识且检测成本高。而生物物理方法利用细胞的机械、电学等固有表型特征,能够实现对单细胞的快速无创无标记表征,方便对细胞进行后续操作如分选、培养和组学分析等。目前,单细胞生物物理特性表征已有不少经典方法,如原子力显微镜、光镊和膜片钳等,提供了有效的手段,但是这些技术检测流程繁琐、系统复杂且通量低。而作为一种能够精确操控微尺度流体的新兴手段,微流控技术所需样本体积小、生物相容性高且响应速度快,使得其成为当前单细胞研究中不可或缺的工具。微流控技术不断地应用于单细胞生物物理表征。在电学特性方面,研究者已成功利用电旋转、电阻抗谱和阻抗流式技术测量细胞膜电容等电学参数;在机械特性方面,研究者基于诱导变形原理,成功利用光、机、电、声等物理场实现对细胞杨氏模量等机械参数的测量。从Coulter计数器发展而来的阻抗流式细胞术IFC具有通量大的优势,在技术和应用上取得了很大的进展,但在提取单细胞的本征参数方面还存在低效、解算慢、模态单一、准确性未知、易堵塞等问题。基于常用的电阻抗流式器件结构和测量架构(图1),清华大学王文会教授团队近年在解决以上这几个问题方面取得了一系列进展。图1. 阻抗流式细胞术基本架构针对单细胞本征特性是否可用阻抗流式表征的问题,利用最小流阻流体捕获原理(Lab on a Chip, Outside Front Cover, 2021, 2486-2494 Lab on a Chip, Outside Back Cover, 2016, 4507-4511),设计U型微流道结构(图2),可以使同一个细胞以流式流经一组IFC电极后,到达设有另一组EIS电极的捕获点位。在两组电极处分别进行阻抗流式测量和阻抗谱测量,结果发现离散的阻抗流式数据点与阻抗谱数据吻合度极高,在三个量级的流速(10-1000 nL/min)下,其相对偏差5%,证明了阻抗流式术可以替代阻抗谱实现对单细胞阻抗本征参数的提取,同时该结构也允许流式和阻抗谱测量同时进行,实现在通量和准确性上的相互补充(Analytical Chemistry, 2019, 91(23): 15204)。图2. 阻抗流式细胞术与阻抗谱互补针对电学本征参数的计算往往通过复杂的生物物理模型离线拟合,耗时较长,难以满足下游操控分析环节的实时在线需求的问题,提出了神经网络赋能的实时在线电学本征参数提取技术,基于神经网络实现对单细胞电学本征参数的加速求解(图3)。相比传统的梯度拟合计算方法,单细胞事件的推理时间约为0.3 ms,速度提升了10000倍,在实验部署中,电学本征参数测量通量接近100/秒。获得的本征参数用于细胞分类,可将准确率从不到80%提升到93%。通过让同一批细胞来回往复测量区进行十次电学测量,本征参数的变化4%;对细胞的染色与培养表明,细胞仍保持活性且增殖率和控制组的细胞没有特别明显的差别,证明电学表征不会显著影响细胞活力(Lab on a Chip, Outside Back Cover & 2021 Hot Articles, 2022, 240-249)。图3. 神经网络加速求解细胞电学本征参数针对阻抗流式通常只求解电学特性参数的局限,提出基于阻抗数据的电学-机械双模态本征参数提取技术(图4)。利用流道结构和电极的空间耦合以及阻抗测量的高时空分辨率特性,使阻抗信号同时包含细胞电学特性及通过收缩通道过程中挤压的动态形变信息。通过构建电阻抗-细胞形变映射模型,发现测量电阻与细胞伸长量成正比,从而能够将测得的阻抗信号定量映射到细胞机械形变。同时采用分时复用传感策略,利用差分传感信号将电脉冲和幂律时变阻抗信号以分时复用的方式集成,从而实现单细胞电学-机械双模态本征特性表征。在不需要使用相机的情况下,仅使用阻抗数据后,测量的通量大幅提高。通过获得的数据,首次发现1 μM级浓度的细胞松弛素可能是诱导处理细胞骨架发生显著变化的阈值。针对常用的细胞分类任务,基于神经网络利用电学-机械双模态本征参数实现了明显高于基于单一电学特性和机械特性的93.4%高分类准确率,相比电学和机械特性分类准确率的绝对值分别提高了12.3%和5.1%,说明单细胞生物物理特性的多模态测量能够更特异地对细胞进行表型分析(Small Methods, Back Cover, 2022, 6(7), 2200325 Small, Frontispiece, 2023, DOI: 10.1002/smll.202303416)。图4. 使用电阻抗同时求解电学-机械学本征特性参数针对单细胞电学表征准确性未知的不足,利用辛醇辅助脂质体组装方法合成了类细胞大小的脂质体,以脂质体作为单壳模型粒子,结合阻抗测量芯片与测量系统构建了测量平台,提出了单细胞电学模型测量准确性评估和相应的补偿技术(图5)。研究发现,当传感区尺寸接近被测粒子时,通过模型拟合得到的电学本征参数与真值的相对误差小于10%,此时电极间距与流道宽度主要通过影响测量体积分数而对测量准确性产生影响,从而基本验证了单细胞电学测量模型的准确性。但是由于电学测量模型通过对流道中间高度电场强度进行建模计算,共面电极产生的电场在流道高度方向的不均匀衰减将导致流道高度对电学模型测量准确性的影响最大,测量相对误差高达30%(ACS Sensors, 2023, 8(7), 2681–2690)。而这种误差,可以通过在流道中设计合适的电极,将粒子的空间位置与电极上的响应信号对应起来(Analytical Chemistry, Supplementary Cover, 2023, 95(15), 6374-6382)。这样,通过响应信号,推导出粒子的瞬间空间位置,代入对应的电学模型中,即可实现更为准确的单细胞电学特性测量。图5. 合成类细胞脂质体评估电阻抗测量的准确性及位置误差估计针对窄流道电阻抗易堵塞的问题,提出了在阻抗流式术中使用非导电粘性鞘液的方法(图6)。此前的研究还没有搞清使用流道和鞘液在阻抗测量方面的准确性是否有变化,以及使用什么样的鞘液性能更好。因此,首先在流道MC和鞘液SC上下游两处布置了电极测量阻抗,发现文献中报道过的辛醇和去离子水表现不一样,其中去离子水作鞘液时,阻抗准确性降低显著,而辛醇则变化不大。由此推断鞘液-主流道溶液界面的稳定性至关重要。通过使用具有不同粘性的PEG溶液作为鞘液,实验证明粘性越高,鞘液-主流道溶液界面的稳定性越高,准确性越高。此外,PEG溶液还能让阻抗测量的信噪比(1.42x)、灵敏度(7.92x)都有所提升,在半小时的实验中没有观察到堵塞或堵塞的迹象。从获得的电阻抗信号中解算出细胞电学参数,并用于典型的细胞分类应用,其准确度可达93%,与不使用鞘液的阻抗流式取得的最好表现相当(Lab on a Chip, Inside Back Cover, 2023, 23, 2531-2539)。图6. 使用非导电粘附鞘液提升电阻抗测量性能以上这些进展,丰富了阻抗流式细胞术的技术体系,提出的技术和方法对平台的架构关系并不是紧密耦合,其适用性较为宽广,可在阻抗流式细胞术的不同平台实现中灵活选用。致谢:感谢国家自然科学基金的资助,NSFC (no. 62174096, 52105572)。
  • 国内首次光伏发电宽频阻抗现场实测成功
    近日,中国电力科学研究院新能源研究中心(以下简称“中国电科院新能源中心”)联合国网宁夏电力有限公司在宁夏回族自治区海原县第六十六光伏电站,顺利完成光伏发电宽频阻抗现场实测。这是国内首次对光伏逆变器完成全工况扫频实测试验,表明我国在探索和解决新能源并网宽频振荡等方面取得新的突破。据了解,电力系统受扰后会产生几赫兹到几千赫兹的振荡,造成系统功率传输不稳,威胁电网安全稳定运行。随着国内新能源发电装机规模的快速发展,新能源基地宽频振荡风险日益增大。阻抗特性分析是新能源宽频振荡问题分析与策略验证的有效手段。此次现场实测的组串式光伏逆变器具有单机容量小、同一发电单元内多机耦合强等特点,给阻抗特性实测提出更大挑战。据介绍,6月5日,宁夏海源县330千伏变电站出现69赫兹超同步振荡。该变电站接有3个风电场、5个光伏电站,新能源总装机容量1220兆瓦。在振荡发生后,中国电科院新能源中心依托可再生能源并网全国重点实验室,通过仿真分析,复现了现场震荡现象,精准定位振荡风险源,并提出采用逆变器多参数协调优化的阻抗重塑振荡抑制方法。8月24日,在宁夏中卫第六十六光伏电站,中国电科院新能源中心利用新能源发电宽频阻抗测量装置,对振荡抑制策略改造前后光伏逆变器阻抗特性进行了宽频带(2—1000赫兹)、全工况(大功率、中功率、小功率)扫频实测试验,证实现场光伏逆变器震荡抑制策略优化成功。国网宁夏电力有限公司称,此次现场实证试验的成功,进一步验证了阻抗特性分析及阻抗重塑技术在解决实际工程振荡问题的有效性,是探索和解决新能源并网宽频振荡问题的又一里程碑事件。试验为宽频振荡问题的分析和解决提供新思路、新方法、新装备,为解决沙戈荒、深远海等大规模新能源基地宽频振荡问题,提升新能源基地并网稳定性及送出能力提供了技术支撑。
  • R&S推出全新LCX测试仪,强化高性能阻抗测量产品组合
    R&S LCX系列的LCR表能够用于传统的阻抗测量以及针对特定元件类型的专门测量,并提供研发所需的高精度以及生产测试和质量保证所需的高速度。用于高精度阻抗测量的R&S LCX LCR测量仪。   罗德与施瓦茨推出的新款高性能通用阻抗测试仪系列能够覆盖广泛的应用领域。R&S LCX支持的频率范围为4Hz至10 MHz,不仅适用于大多数传统家用电源的50或60 Hz频率以及飞机电源的400 Hz频率,还适用于从低频震动传感器到工作在几兆赫的高功率通信电路的所有设备。   对于选择合适的电容、电感、电阻和模拟滤波器来匹配设备应用的工程师来说,R&S LCX提供了市场领先的高精度阻抗测量。与此同时,LCX还支持以生产使用精度进行更高速度的质量控制和监控测量。测试方案包含生产环境所需的所有基本软件和硬件,包括远程控制和结果记录,仪器的机架安装,以及用于全系列测试的夹具。   R&S LCX使用的自动平衡电桥技术通过测量被测设备的交流电压和电流(包括相移)来支持传统的阻抗测量。然后用该数据来计算任何给定工作点的复阻抗。作为一种通用LCR测量仪,R&S LCX涵盖了许多应用,如测量电解电容和直流连接电容的等效串联电阻(ESR)和等效串联电感(ESL)。   此外,除了全方位的阻抗测量之外,用户还可以测试变压器及测量直流电阻。为了研究元件的阻抗值在不同频率和电平下的变化,选配装置R&S LCX-K106能支持以频率、电压或电流作为扫描参数,进行动态阻抗测量。   R&S LCX系列推出两个型号:R&S LCX100的频率范围为4 Hz至300 kHz,R&S LCX200的基本配置频率范围为4 Hz至500 kHz,可选配覆盖高达 10 MHz 所有频率的选件。两种型号均配备出色的测量速度、精度和多种测量功能。包括:配备大型电容式触摸屏和虚拟键盘,支持所有主要测量工作的点击测试操作。   用户也可以使用旋钮设置电压、电流和频率值。不常用的功能则可以使用菜单操作。设置、结果和统计数据可以显示在屏幕上,还能导出以便进行自动后处理。用户最多可选择四个测量值并绘制成时间曲线,将最大值和最小值显示在屏幕上,一目了然地进行通过/失败分析。   罗德与施瓦茨的子公司Zurich Instruments AG生产的MFIA阻抗分析仪作为R&S LCX的完美补充,能够支持更多材料的阻抗研究。通过MFIA,研究人员可以表征半导体或进行材料研究,范围包括绝缘体、压电材料、陶瓷和复合材料,组织阻抗分析、细胞生长、食品研究、微流体和可穿戴传感器。

低阻抗率计相关的方案

  • 低阻抗锂离子电池的电化学阻抗谱测试
    电化学阻抗谱(EIS)是获取电化学系统信息的一种强有力的测试方法。它常常被应用在测试新型的能源转换和存储类电化学器件(ECS),包括电池,燃料电池和超级电容器。EIS可以被用到新设备发展的各个阶段,一直从半电解池反应的机理和动力学初始评估到电池包的质量控制。
  • 微流体阻抗测试
    电阻抗测量技术广泛应用于材料科学、生命科学、食品安全、疾病诊断等领域。基于电阻抗检测的流式细胞仪作为无标记、非侵入式技术而被广泛的应用于细胞的计数、分选、捕获、分离及鉴别等。随着电阻抗测量技术的快速发展,基于电阻抗测量的流式细胞仪正向着快速的、高通量的单细胞分析方向发展。目前,结合荧光激活细胞分选(fluorescent activated cell sorting,FACS)的荧光标记技术可以快速、准确的实现高通量的细胞分选。但是,FACS技术有两个主要缺点:一是需要使用标记和抗体对细胞进行修饰,这意味着有可能会改变研究对象 二是FACS设备非常昂贵且操作复杂。基于电阻抗检测的微流控技术由于无需对测量对象做标记,也不会侵入到其内部,从而不会对其造成任何破坏。此外,微流控电阻抗检测技术所用的样品量较小,而且基于电阻抗检测的设备易于操作和携带。所以,基于电阻抗检测的微流控技术为细胞检测提供了一个全新的分析方法。
  • 电化学阻抗谱的应用及其解析方法
    交流阻抗发式电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。

低阻抗率计相关的资料

低阻抗率计相关的论坛

  • 三菱化学高阻抗率计

    反垄断!日东精工(原三菱化学)高阻抗率计MCP-HT800,低阻抗率计MCP-T700,日元报价630000左右,换算汇率及运输保险费,到国内也就3,5w顶天了,国内某些供货商报价7.8w,本次公司购买量较大,通过其它渠道采购省了近10w,真心黑,正常利润很正常,翻倍了这就有点过了吧!不知这种定价是否合理,个人经验分享,各位圈友们供参考,勿入坑

  • 【分享】什么是输入、输出阻抗?(二)

    在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75Ω,所以300Ω的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附件中,有一个300Ω到75Ω的阻抗转换器(一个塑料封装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大)。它里面其实就是一个传输线[url=http://www.midiqi.com/Shop/Product.asp?ClassId=155][color=#810081]变压器[/color][/url] [url=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=1499][color=#810081]油浸式电力变压器10KV级S11-M[/color][/url] ,将300Ω的阻抗,变换成75Ω的,这样就可以匹配起来了。这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用[url=http://www.midiqi.com/Shop/Product.asp?ClassId=291][color=#0000ff]欧姆表[/color][/url] [url=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=14419][color=#0000ff]欧姆表PROVA 700 Milli[/color][/url] 来测量。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配,如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。 为了帮助大家理解阻抗不匹配时的反射问题,我来举两个例子:假设你在练习拳击——打沙包。如果是一个重量合适的、硬度合适的沙包,你打上去会感觉很舒服。但是,如果哪一天我把沙包做了手脚,例如,里面换成了铁沙,你还是用以前的力打上去,你的手可能就会受不了了——这就是负载过重的情况,会产生很大的反弹力。相反,如果我把里面换成了很轻很轻的东西,你一出拳,则可能会扑空,手也可能会受不了——这就是负载过轻的情况。另一个例子,不知道大家有没有过这样的经历:就是看不清楼梯时上/下楼梯,当你以为还有楼梯时,就会出现“负载不匹配”这样的感觉了。当然,也许这样的例子不太恰当,但我们可以拿它来理解负载不匹配时的反射情况。 Q:什么是电流[url=http://www.midiqi.com/Shop/Product.asp?ClassId=4][color=#0000ff]控制器[/color][/url] [url=http://www.midiqi.com/Shop/ShowProduct.asp?ProductId=1164][color=#0000ff]凸轮控制器KT10[/color][/url] 件? A:如果这个器件的输出参数大小和输入的电流参数大小有关,就叫该器件是“电流控制器件”,简称“流控器件”。 “电流控制器件”输入的是电流信号,是低阻抗输入,需要较大的驱动功率。例如:双极型晶体管(BJT)是电流控制器件、TTL电路是电流控制器件。Q:什么是电压控制器件? S:如果这个器件的输出参数大小和输入的电压参数大小有关,就叫该器件是“电压控制器件”,简称“压控器件”。 “电压控制器件”输入的是电压信号,是高阻抗输入,只需要较小的驱动功率;例如:场效应晶体管(FET)是电压控制器件、MOS电路是电压控制器件。 Q:为什么BJT是电流控制器件而FET和MOS是电压控制器件? S:BJT是通过基极电流来控制集电极电流而达到放大作用的;而FET&MOS是靠控制栅极电压来改变源漏电流,所以说BJT是电流控制器件,而FET和MOS是电压控制器件。 更多技术论文请详见:[url=http://www.midiqi.com/][color=#810081]买电器网[/color][/url](MIDIQI.COM) [url=http://www.midiqi.com/Knowledge/Index.asp][color=#810081]知识库[/color][/url]

  • 浅析pH计的输入阻抗及其测量方法

    pH计是我们较熟悉的一款用于测量液体介质酸碱度值的测量仪器,配上相应的离子选择电极就可以测量离子电极电位的MV值。随着科学研究的发展和生产技术的进步,使用pH计进行水分的定量定性分析,已成为各类物质理化分析的基本项目之一,也是各类物质的重要质量指标。下面,中国测量工具网的小编就给大家介绍一下pH计的输入阻抗及其测量方法。一、输入阻抗用pH计测量溶液的酸度时,玻璃电极和甘汞电极在溶液中组成了化学原电池。它具有电动势E和内阻r。因此,pH计的输入阻抗和原电池的内阻就可以等效。E表示原电池的电动势,它的数值同被测溶液pH值等有关;r表示原电池的内阻,它由3部分组成,主要由pH计玻璃电极的内阻(108Ω左右)所决定;甘汞电极的内阻为104Ω左右;被测溶液的内阻为(103~105)Ω。R表示pH计的输入阻抗,它是pH计输入端各部分元器件电阻的并联值。原电池内阻r同输入阻抗R是串联关系。根据串联电阻分压原理可知,当原电池内阻r为109Ω时,pH计的输入阻抗应比原电池内阻大1000倍以上,也就是在1012Ω以上。因此,就能忽略原电池r上压降的影响,使得进入pH计输入端的电压接近原电池电动势。当pH计的输入阻抗不够大时如果其输入阻抗同原电池内阻相等,原电池中就会有一半压降降在内阻上pH计上显示的数值仅为原电池电动势的一半。即使pH计输入阻抗比原电池内阻大一到两个数量级计在测量时也还会出现不稳的现象。这是因为pH计的输入阻抗和原电池的内阻并非都是一个完全稳定的常数,它们是随着环境温度和湿度等变化的。所谓pH计的输入阻抗,就是从pH计的两个输入端看进去所呈现的阻抗。计的输入阻抗不仅与其输入端高阻抗管有关,还与输入端的读数开关、玻璃电极插孔、输入屏蔽线的绝缘电阻和输入端滤波电容漏电阻有关。因为从原理上说,它们的绝缘电阻都与输入端高阻抗管是并联关系。如读数开关和玻璃电极插孔都安装在pH计的机壳中,它们和机壳之间都有一个漏电阻。电极上的电压信号是通过屏蔽线进入到高阻抗管的输入端的,输入端滤波电容也是接地的。因此。它们的绝缘电阻或漏电阻起码要比高阻抗管的阻抗大两个数量级以上。如果上述元器件中有一个绝缘电阻达不到要求,就会影响pH计的输入阻抗。如果上述元器件受污染,就要进行清洗。清洗溶剂应用乙醚而不是乙醇,清洗后要用电吹风将它们烘干,通过清洗后的元器件绝缘电阻一般都能达到要求。二、pH计输入阻抗的测量方法pH计的输入阻抗无法直接测量,可用间接测量法得到。R取1000MΩ从电位差计向pH计输入电压E0在开关K接通(R短路)的情况下,用pH计测得的毫伏值为E0;再断开开关K,R接通pH计测得的毫伏值为Ei,则可得到下列公式:Ei=(Ri×E0)/(RRi)(1)式中:Ri——pH计的输入电阻。由式(1)可得到Ri=(R×Ei)/(E0-Ei)(2)三、计算实例选一台0.01级pH计,按图2所示接线。R取1000MΩ,从电位差计向pH计输入电压300mV,在开关K接通(R短路)的情况下,pH计的示值为300.0mV;再断开开关K(R接通),pH计的示值为299.8mV。将测得的数据代入式(2),可得Ri=(R×Ei)/(E0-Ei),Ri=1.50×1012Ω

低阻抗率计相关的耗材

  • AWA8551阻抗管
    概述:AWA8551型阻抗管是参照GB/T 18696.2-2002(ISO 10534-2:1998)中介绍的传递函数法的基础上开发的,与采用驻波比法测量的阻抗管相比,具有测试效率高、测量参数齐全,能够一次性测量出整个测试频段的声反射因素、吸声系数、声阻抗率和声导纳率。同时,8551型系列阻抗管采用铝合金材质,重量轻、尺寸小,样品安装及拆卸方便。可广泛用于科研院所和企业新材料声学特性的研究、以及现场材料的吸声测量。 技术指标:标准:参照GB/T 18696.2-2002(ISO 10534-2:1998)《声学 阻抗管中吸声系数和声阻抗的测量 第2部分 传递函数法》。测试方法:传递函数法。应用范围:测试垂直入射时材料的反射因素、吸声系数、声阻抗和声导纳。可以用于现场材料测试,科研院所和企业新材料声学特性的研究。测量频率范围:50 Hz—6.3 kHz材质:铝合金传声器:两个经过相位配对的1/4”测试电容传声器样品尺寸:100mm和29mm信号输出功放:AWA5871功率放大器数据采集设备:AWA6290M双通道分析仪或AWA6290B四通道分析仪 软件:信号发生器软件+AWA6290型信号分析软件
  • 高阻抗本征硅基片
    太赫兹高阻抗本征硅基片 除了人造金刚石,高阻抗的本征硅(高阻硅)材料是适合极宽范围从(1.2 μm) 到mm (1000 μm甚至8000um)波的各项同性晶体材料。和钻石相比,它要便宜的多,并且生长制造更容易。而且他尺寸更大,更容易制造,THZ技术的快速发展,就基于该优点。对于THZ应用,我们提供在1000 μm (对于更长波长,3000甚至8000微米)透过率达到50-54%的High Resistivity Float Zone Silicon (HRFZ-Si)。高阻抗浮区本征硅材料,和相关光学元件。 合成电解质硅的介电常数由传导率决定(例如:自由电子-载流子浓度)。图3显示的是在1THZ下,不同纯度下的硅的介电常数.低掺杂的介电常数接近真实值,大约等于高频介电常数。随着掺杂浓度的提高,真实的介电常数将变成负数,而且不能被忽略。介电常数表征的是THZ波的传输损耗特性。损耗系数可以用下面的公式计算:tanδ=1/(ω*εv*ε0*R), 这里 ω – 圆频率, εv – 真空下的介电常数(8.85*10-12 F/m)。ε0 –硅的介电常数(11.67), R是电阻值。例如,1THZ下,10 kOhm 阻值的HRFZ-Si损耗系数为1.54*10-5。 1mm厚度的高阻抗本征硅窗片的太赫兹时域光谱仪测试数据高阻抗本征硅产品 - 高阻抗硅衬底/基片/窗片- 高阻抗硅球透镜- 高阻抗硅分束镜- 高阻抗硅镜头 1,高阻硅基片 2,高阻硅F-P标准具 3,高阻硅太赫兹半球透镜 4,高阻硅太赫兹子弹型透镜 5,高阻硅镜头 6,高阻硅棱镜
  • TDR阻抗电缆线 特性阻抗电缆线
    用于阻抗测试仪测试,TDR阻抗测试仪专用,用于H045/H085/H150机型
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制