混合填料

仪器信息网混合填料专题为您整合混合填料相关的最新文章,在混合填料专题,您不仅可以免费浏览混合填料的资讯, 同时您还可以浏览混合填料的相关资料、解决方案,参与社区混合填料话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

混合填料相关的资讯

  • 智能高效混合浓缩省心组合,3年质保无忧购!
    智能高效混合浓缩省心组合,3年质保无忧购!MFV智能氮吹仪+MultiVortex多样品涡旋混合器MFV智能氮吹仪Detelogy热销爆款MFV系列智能氮吹仪,经典圆盘主机上引领革新,全系列具备氮吹通道分组控制、氮吹针一键快速升降、数字微调阀清晰微调、5寸高清触屏控制等一系列性能优势,还可兼容试管、离心管、梨形瓶、圆底烧瓶、烧杯等多种规格的浓缩管。 *可根据需求定制专属样品支架样品通道分组控制⭐通过分组控制器,直接快速开关多个氮吹通道,无需逐个调节⭐可自由组合不同的氮吹通道开启数量,进而有效节省氮气量⭐分组控制器有序规整氮吹通道,样品架旋转自如,氮气管路不易打结氮吹针一键升降⭐按下按钮,可随时根据样品液面调整氮吹针高度,松开后立即固定⭐氮吹针位置可平移调节,保证针口正对样品液面中心 氮吹针支持快换⭐氮吹针采用316不锈钢材质特制,支持多种清洗和消毒方式⭐可选配兼容一次性移液枪头的两用型氮吹针管,兼容性更佳 数字刻度盘微调阀⭐通过每氮吹通道上的数值显示,可清晰微调相应通道的气流强度⭐浓缩多个样品时,各个氮吹通道气流可设为同一档位,有效保障平行性⭐没用到的闲置氮吹通道可完全关闭,避免浪费氮气 曲面水浴观察窗⭐无需暂停浓缩进程和抬升样品管架,即可随时观察样品状态⭐可开启照明功能,观察更清晰,便于调节氮吹针和观察水浴锅水量 便捷式快插排水⭐水浴模块整体经严格防护涂层工艺处理,耐用性更佳⭐ 具备快插式排水口,便于定期更换水浴锅用水,延长使用寿命 一体化触屏控制⭐5寸触摸彩屏控制,显示水浴温度、氮气压力和浓缩时间⭐PID技术精确控温,可设自动预热,浓缩完成后自动报警提示 MultiVortex多样品涡旋混合器圆周式涡旋振荡可使样品基质与溶剂、分散填料、萃取盐进行充分的液液、固液混匀,常用于在食品、肥料、化妆品、生物组织等样品前处理流程,近年新兴的QuEChERS快速样品前处理技术中, 单台MultiVortex多样品涡旋混合器在实现高通量前处理的基础上,可支持更高转速,并可轻松实现多段自动变速涡旋运行。高通量,兼容多种规格样品管: 高转速,应对各类难溶样品⭐转速范围:200-3000rpm,3mm圆周振幅⭐轻松应对各类溶液、分散填料、萃取盐 高清屏,实时监控还可存方法⭐5寸触屏上支持自动程序时模式,可随时启停⭐根据不同样品,可存12个涡旋方法程序⭐每方法中可设多达6段自动变速,渐进提速 智能高效应用方案(示例 )方案一:土壤农残测定称取10 g试样(精确至0.01 g),于100 mL塑料离心管中,加入10 mL水和10 mL乙腈,将配置好的样品置于12位圆盘试管架上,设置方法程序,添加多段变速,涡旋振荡10 min,运行过程中随时启停,结束自动蜂鸣报警。加入5 g~7 g 氯化钠,再次涡旋1 min后,设置3000 r/min变速涡旋5 min。取上清液直接上样固相萃取柱,收集全部滤液。水浴氮吹洗脱液(温度设置为50℃),将氮吹针调至适宜高度,缓慢吹入氮气,使液面持续微微抖动,浓缩至近干状态,用甲醇复溶,过0.22 μm滤膜后待测。方案二:GB5009.284-2021 食品中香兰素、甲基香兰素、乙基香兰素和香豆素的测定称取1 g奶粉试样(精确至0.01 g)于50 mL试管中,加入10 mL水和微量盐酸溶液,将试管放至12位圆盘型试管支架上,设置MultiVortex方法程序,涡旋1 min。运行开始后,样品开始混合。预设运行时间结束后,自动提示,无需人员值守。第一次涡旋完成后,在试管中加入20 mL乙腈,再次涡旋1 min。超声完成后,加入5 g氯化钠,变速涡旋2 min。离心后,取上清液至试管中,把试管转移至MFV智能氮吹仪中,40℃下氮吹至近干,倒计时结束后自动报警提示,定容待测。
  • 科学家提出“固态溶剂法”制备混合基质膜
    南京工业大学教授金万勤团队在分离膜领域取得新进展,提出“固态溶剂法”制备出超薄超高掺杂量的混合基质膜。9月22日,相关研究成果在线发表在《科学》上。  据介绍,膜技术具有分离能耗低等优势,但其发展普遍受限于渗透性和选择性的制约关系,将高性能无机填料掺杂在聚合物中制备混合基质膜,有望突破这一瓶颈,成为近年来国际研究前沿。然而,面临填料团聚和界面缺陷的重大挑战,混合基质膜仍未大规模应用。金万勤团队是国际上较早开展混合基质膜研究的团队之一,长期以来一直致力于解决这两大难题。  “我们提出将聚合物作为固态溶剂,溶解填料的前驱体并将其涂覆在多孔载体表面形成超薄膜层,而后将聚合物中的前驱体原位转化成填料。”论文第一作者、南京工业大学博士陈桂宁介绍,区别于传统的“合成填料—分散填料—填料与聚合物混合”制备混合基质膜的复杂工艺,该方法仅需在聚合物中溶解高含量前驱体,即可实现高含量填料的均匀超薄化掺杂,同时以填料为主体相的新型混合基质膜结构有利于填料之间形成贯穿孔道,为分子提供超快传输通道。  实验表明,“固态溶剂法”制备的混合基质膜厚度仅为50纳米,填料掺杂量高达80%以上,实现了膜渗透性和选择性数量级的提升。基于超薄膜层和填充的贯穿筛分孔道,该混合基质膜表现出类无机膜(纯填充相)的优异分离性能,氢气/二氧化碳分离性能高出现有聚合物膜和混合基质膜1~2个数量级。  “‘固态溶剂法’主要依靠聚合物膜的加工制备技术,因此易于放大制备成超薄的平板型和中空纤维型混合基质膜。”论文的共同通讯作者、南京工业大学教授刘公平说,该方法适用于不同类型的填料和聚合物基质,表现出良好的规模化制备前景与膜材料普适性。  “研究首次从实验上证明了超薄超高掺杂混合基质膜的可行性,也为发展基于纳米材料的超薄分离膜及功能涂层提供了新思路和理论技术基础。”论文通讯作者金万勤介绍,该混合基质膜在碳捕集等过程极具应用潜力,有望助力我国双碳战略目标的实施。在国家重点研发项目的资助下,团队正在开展混合基质膜的放大制备与应用技术研究。
  • 高选择、高灵敏、高通量——色谱填料发展的方向
    p style=" line-height: 1.75em text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 仪器信息网讯 /span /strong span style=" font-family: 宋体, SimSun " 2020年7月14日,由中国化学会色谱专业委员会指导,仪器信息网、上海分析仪器产业技术创新战略联盟、北美华人色谱学会、中国科学院兰州化学物理研究所联合主办,上海分析技术产业研究院协办的“第五届色谱网络会议(iCC 2020)”,在云端盛大开幕。为让更多网友了解色谱填料技术进展,会议特设“色谱填料新技术”专场,并吸引了1200多位来自不同领域的网友参与。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/86bdb18a-b7c1-414a-bacf-93d0ae60b651.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/90ff8f81-f372-4efd-b111-9fd2c8a6063f.jpg" title=" 2_副本.jpg" alt=" 2_副本.jpg" / /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 本场会议由中国科学院兰州化学物理研究所研究员邱洪灯主持,他介绍:“色谱已成为应用最为广泛的仪器分析方法之一,色谱分离的核心是色谱柱,而色谱分离材料则是色谱柱的灵魂。目前,我国色谱填料产业化关键技术基本来源于国外,我国高端色谱分离材料制备关键技术还有一定差距,色谱填料和色谱柱严重依赖进口,自主研制高效色谱“芯”至关重要。” /span /p p style=" line-height: 1.75em text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 色谱分离新材料、新技术 /span /strong /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 迪马科技副总裁兼全球技术总监李广庆在其报告中介绍,新型色谱分离材料主要有四大类。第一类是基质、配体与色谱柱,主要包括Type C硅胶、聚合物和金属氧化物微球材料;杂化材料和金属有机骨架材料;硅烷化试剂设计与合成;填料制备自动化和色谱柱二维设计。第二类为快速分离材料,主要有UHPLC和核壳材料、整体柱、纳米材料和方法开发自动化。第三类为高选择性分离材料,主要是分子印迹、限进介质、免疫亲和材料;极性修饰、混合模式和多功能型分离材料;过渡金属配位型分离材料;多维色谱。第四类为微分离材料,包括基质分散和吸附剂填充微萃取技术、微流控芯片技术等。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 宋体, SimSun " 碳纳米材料修饰硅胶色谱固定相 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 碳纳米材料一般用作样品前处理方面,不过色谱填料也有不少研究。邱洪灯提到,仅仅将碳纳米材料填充到柱子里做填料,由于其吸附能力很强,容易拖尾,分离效果往往不尽如人意。因此需要对其进行修饰,如氧化纳米金刚石修饰、燃烧刻蚀法多孔石墨烯等。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 碳量子点作为碳纳米材料中的一种,与其他碳纳米材料相比,具有颗粒较小、有丰富的功能基团,容易制备、改性等优点。在报告中,邱洪灯具体介绍了各种碳点修饰硅胶新型色谱填料,他认为该新型材料具有很好的应用前景,有望进一步开发。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 宋体, SimSun " 多孔骨架材料 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 多孔骨架材料在色谱分离和样品前处理中具有良好的应用潜力,相关研究也促进了色谱领域的发展。南开大学副教授杨成雄介绍,2007年,Cooper课题组首次提出共轭微孔聚合物的概念,其种类和性能多样孔径可调、比表面积大,且稳定性和可复合型都很好。不过,共轭微孔聚合物在样品前处理和色谱分离中的应用仍处于起步阶段。其团队从多孔骨架材料合成方法入手,通过修饰、制备复合材料等手段脱产了其在色谱分离的应用。多孔骨架材料在污染物去除和样品前处理中有良好的应用潜力,其中色谱分离的应用有待进一步研究。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 宋体, SimSun " 绿色溶剂及材料 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 毕文韬介绍,化学分析过程所产生的废弃物,易燃和腐蚀性物质约占55%,有毒物质约占42%,具有反应活性的物质占3%,这些废弃物对环境有一定的影响。因此,发展无污染或者少污染的绿色分析化学技术是必然趋势,也将逐渐成为分析化学领域的前言。在液相色谱绿色化方面,主要是流动相和固定相的绿色化。流动相可采用超临界流体、离子液体、水等代替有机试剂。而固定相方面,可通过提高分离效率,减少流动相的消耗;也可对固定相进行改性,从而摆脱流动相对有机溶剂的依赖,其中离子液体固定相的分离效果是比较好的。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 宋体, SimSun " 混合模式色谱固定相 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 混合模式色谱是在一根色谱柱上能够实现两种或者多种分离机理共同主导的分离技术,特点为分离选择性高、样品容量高、分辨率高以及一次分离中可以提供多种作用力等特点。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 王路军在报告中介绍,混合模式色谱起源于19世纪60年代初,随着技术的进步,目前色谱工作者将一系列新材料如MOF、COF、石墨烯、碳点等用于混合模式固定相的研究。该技术可用于中药成分分析、生物催化、蛋白质成分分析、环境污染物分析等诸多领域。由于具有诸多优势,因此,混合模式色谱能够为复杂样品的分析提供一种新的解决途径,为手性分离与分析机理的研究提供新的思路。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 宋体, SimSun " 新型材料富集材料 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 生命科学需要先进的分离方法和技术,但生物分离由于生物样品种类多,包含着数万种蛋白、蛋白分布不均一性和动态变化、样本个体和病例阶段的产异性等原因,所以比较难,迫切需要开发对生物分子具有特异性识别、灵敏响应和智能捕获能力的新型材料,解决生物分离、分析领域中的问题和挑战。卿光焱首先具体介绍了基于二肽的糖肽捕获材料,糖识别既是主客体化学中的一个重大挑战,也是分析糖链结构和糖肽功能的前提,还是获取糖肽类生物标记物的关键。结果显示,基于二肽的糖肽捕获材料可从1000倍的BSA干扰中富集得到32个糖肽位点,此外这种材料还对糖链连接的同分异构体能进行精确区分。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 他还具体介绍了基于动态共价化学的唾液糖链捕获材料、智能的糖肽捕获材料和器件。他提到,生物分离的过程中蕴含了丰富的相互作用机制、科学的认识界面上的分子机制并利用材料对分离的过程进行精确、动态调控是研究关键。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 除了以上新型色谱分离材料外,安捷伦应该用工程师吴翠玲还具体介绍了脂肪萃取技术在脂质组学中的应用,她通过样品分析系统的阐述了SPE方法与传统LLE相比,在脂质组学分析中,可提高分析结果的重复性,节约时间,且过程环保。 /span /p p style=" line-height: 1.75em text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 新型色谱填料发展趋势:高选择性、高灵敏度、高通量 /span /strong /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 分离材料性能直接关系到分离的效率以及检测结果的准确性,因此研究与开发高性能的新型材料一直是分析化学领域最重要的课题。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 随着技术的不断发展和需求的变化,色谱填料将朝着高选择性、高灵敏度和高通量的方向发展。比如,开发高强度、超微粒径液相色谱填料,以适应超高效、快速和高灵敏度的应用需求;开发小粒径核壳型填料和新型硅胶整体柱,以提供分析速度快、柱压低和简单易行的液相色谱分析方法等。相信随着色谱填料国产水平的不断提高,我们将最终摆脱严重依赖进口的现状! /span /p p br/ /p

混合填料相关的方案

  • 纳米碳材料作为填料的分散方法的优化
    在众多类型的膜材料中,醋酸纤维素(Cellulose Acetate-CA)是最古老的材料之一,改性后的CA具有生物相容性好、脱盐性好、电位通量高、韧性好、成本相对较低等特点,使其仍然是一种非常有前景的材料。最近,混合基质膜材料(Mixed Matrix Membrane Materials-MMMS)受到高度重视,这主要归功于它们在增加机械稳定性、较低的塑化和抑制降解等方面的性能改进。纳米碳材料作为合适的填料在最终混合基质制备的膜上产生了新的先进性能。碳纳米管(CNTs),包括单壁和多壁SWCNTs和MWCNT碳纳米管、氧化石墨烯和石墨烯纳米板结构(GO,GNPS)目前处于膜技术用填料的第一线,可提高最终膜材料的各项物理化学性能。本论文使用高纯度碳纳米管、醋酸纤维素和二丙酮醇制备了混合基质膜,并研究了分散方法(主要是超声和转子-定子系统)对混合基质稳定性的影响,以及最终膜结构特性的影响。
  • 在微型混合挤出机器和流变仪内带混合添加剂 的 PET 的制备与分析
    带有掺入多种添加剂的 PET 样品和普通纯树脂的 PET样本可以在特定时间段内进行混合。在混合期间,在集成的裂狭缝毛细管内测定混合成物 / 分降解物。当混合物准备就绪时,将其转移到微型注模机中,以便制备圆片盘形试样。利用这些圆片盘,在旋转流变仪上对聚合物熔体进执行流变试验。目的在于证明在微型混合挤出机器内仅使用 7g 样本进行的试验可用于快速筛选 PET和添加剂,还可给出指示聚合物的化学回收指示作用。
  • 海能仪器:微波消解预混合饲料的产品配置单(微波消解仪)
    预混合饲料组成复杂,质量优良的预混料一般包括6、7种微量元素,15种以上的维生素,2种氨基酸,1~2种药物及其他添加剂(抗氧化剂和防霉剂等),且各种饲料添加剂的性质和作用各不相同,配伍关系复杂。本次消解应用于样品中痕量元素的测定,取样量大,可以根据实际情况酌情调整。

混合填料相关的论坛

  • 看图解读畅谈之五:色谱柱填料硅胶键合

    看图解读畅谈之五:色谱柱填料硅胶键合

    1:C18简称:ODS柱,即18烷基键合硅胶填料,由于C18是长链烷基键合相,有较高的碳含量和更好的疏水性,具有广泛的应用。C18柱选用的原则:选用经过烷基化封尾的填料,可以防止碱性化合物的拖尾现象。选用含碳量高的柱子,可以增加保留。选用较短的柱子可以提高分离效率。选用小颗粒度的填料可以提高分离度。对于分子量大的组分,选用大孔径填料的柱子。2:C8 C4 等短链烷基键合相适合做极性小,以减弱保留,缩小分析时间。3:苯基柱:柱上由于苯基的存在也属于反相柱,不过苯基有不同的物理特性是分析同时含极性和非极性复杂混合物的最佳选择。4:氰基柱属于中等极性基团,正相反相都能应用。其在用于正相色谱时,可使用如正己烷的低极性流动相,在用于反相色谱时,可使用甲醇或水的强极性流动相,适用于ODS上分离时间太长的组分的分离,以及在ODS上最优化色谱非常困难的场合。http://ng1.17img.cn/bbsfiles/images/2015/03/201503232046_539250_2960432_3.png请各位朋友根据以上的描述以及亲身的经历和体会,对上述几种不同类型的色谱柱发表自己的观点,找出它们的使用范围和使用的注意事项。

混合填料相关的资料

混合填料相关的仪器

  • Eshmuno®采用聚乙烯醚基架,刚性强,‍亲水性好‍,平均粒径为85 µm或50 µm,高流速下背压更低。另,Eshmuno®在触手结构与配基密度上做了相应的优化,使得Eshmuno®系列填料在与目标蛋白的结合过程中,能够更好地克服空间位阻,达到更快速的传质,从而加速生物药剂的制备过程。优点:- 下游加工的生产能力优越- 更高的选择性和HCP去除- 活性触手吸附- 稳健、安全的装柱程序- 切实地节约成本和时间分类:- Eshmuno® A层析填料Eshmuno® A填料含有一种默克专有的配基,源自金黄色葡萄球菌蛋白A的C域,为五聚体形式。在大肠杆菌中,该配基被重组表达。生产过程中,未使用动物源性产品。将该配基固定在Eshmuno®介质(基于聚乙烯醚的硬质、亲水聚合物)上即合成Eshmuno® A蛋白A亲和层析填料。 Eshmuno® A为刚性、高载量、耐酸碱的层析填料,用于含Fc的蛋白质的纯化。与竞品相比,它的优势在于耐酸、耐碱和去除聚集体,有效地去除聚体可以减少含Fc蛋白质纯化工艺中层析之后步骤的负担。- Eshmuno® CMX层析填料Eshmuno® CMX是一种基于Eshmuno®树脂技术的混合模式层析填料,它创新地将弱阳离子交换性能与疏水相互作用结合在一起,为单克隆抗体,融合蛋白和ADC药物的纯化以及低分子量杂质和HCP的分离提供了高选择性。 Eshmuno® CMX填料的优势在于:工艺整合降低成本(通过减少层析步骤和降低缓冲液消耗);提升纯化性能(更高的回收率,高选择性和出色的载量);提升用户体验(更宽的操作空间,简化工艺开发过程,基于硬质基架更容易装柱)。- Eshmuno® P层析填料Eshmuno® P填料选用了高度稳定的Eshmuno®基质与特异性的配基相结合的可靠技术,将多糖抗原(A & B)固定到亲水性聚乙烯醚的Eshmuno®基质上。Eshmuno® P anti-A, Eshmuno® P anti-B是两种不同的亲和层析填料,分别用于有效去除anti-A和anti-B凝集素。 Eshmuno® P的优势在于:降低患者风险,提高经济效益,提高产品质量,操作灵活。- Eshmuno® CPX层析填料Eshmuno® CPX填料是强阳离子交换层析填料,采用了可靠的Eshmuno®填料技术。Eshmuno® CPX填料为50 µm粒径圆球基质,配套默克专有的触手技术,下游纯化工艺中在聚集体去除方面表现出色,同时动态载量依旧表现卓越。 Eshmuno® CPX填料的优势在于:优异的抗体单体/聚体分离效率;中间纯化工艺的高分辨率;优异的动态载量表现;满足高通量纯化需求;硬性基质,易于装填;卓越的低反压,高流速特性。- Eshmuno® CP-FT层析填料Eshmuno® CP-FT阳离子交换(CEX)填料是为在流穿前沿层析操作模式下有效去除mAb聚集体而特别设计的,与传统的结合/洗脱CEX层析相比,载量提高了10倍。Eshmuno® CP-FT填料有助于提高生产灵活性并简化工艺,从而降低了mAb下游纯化的总成本。 Eshmuno® CP-FT的优势在于:提高性能(流穿模式去除mAb聚集体,效果优越;载量及产品回收率高);降低成本(填料和缓冲液体积显著减少;层析柱、缓冲罐等更小因而生产占地面积更小);简化工艺(低盐工艺条件,其后的离子交换步骤之前无需稀释;处理体积显著减少,改善了病毒过滤和超滤处理的经济效益);提高易用性(硬质基架,高流速,更易装填)- Eshmuno® S层析填料Eshmuno® S填料是Eshmuno®系列离子交换填料的第一个成员。它是强阳离子交换剂,在直接捕获与蛋白A之后步骤中具有高生产能力。与其他阳离子交换剂相比,它显示了优越抗体结合力。而且,Eshmuno® S填料能够采用高得多的流率,而生物分子仍与触手强力结合。 Eshmuno® S的优势在于其对所感兴趣的生物分子的高选择性。Eshmuno® S填料有效地去除HCP,因而选择性比传统层析填料更高。由于Eshmuno® S填料具有优良的压力流动特性,您的下游加工可获得杰出的生产能力(超过40 mg/mLh),为mAb的生产节约客观的制造成本。- Eshmuno® CPS层析填料Eshmuno® CPS阳离子交换填料在高盐条件下,在重组蛋白纯化工艺中具有高动态载量和高分离效率的优点。Eshmuno® CPS填料的耐盐性已被证明可支持直接上样高电导率样品,降低对稀释的需求。直接节约了缓冲液和时间,减少生产所需占地空间,简化生产步骤结合高效纯化,从而可提高整体的生产效率。 Eshmuno® CPS的优势在于:在高电导率水平下具有优异的结合载量;强阳离子交换剂,无疏水集团,便于工艺开发;刚性基质颗粒,支持更高的流速,易于装柱;节约成本和时间,从而提高生产效率。- Eshmuno® HCX层析填料作为最新的创新性Eshmuno®填料系列产品之一,Eshmuno® HCX填料是一款智能型混合模式填料,结合了默克著名的触手(tentacle)结构和全新的亲水聚乙烯醚基质。因此即使在盐浓度高的传统阴阳离子交换,或是流穿模式的应用,Eshmuno® HCX填料都有出色的表现。 Eshmuno® HCX的优势在于:在高盐浓度下更高的载量;产量优越的生产效率;出色的选择性;刚性基质,易于装柱;优异的压力流速性能。- Eshmuno® Q层析填料Eshmuno® Q阴离子交换填料兼具Eshmuno®填料的触手结构与新型亲水聚乙烯醚基质。Eshmuno® Q填料在典型的阴离子交换应用(例如以流穿模式去除杂质,或在血液制品加工时分离血液因子)中,效果杰出。 Eshmuno® Q的优势在于:卓越的生物分子下游工艺产率;高流速,低背压;优异的杂质去除;稳健安全的装柱流程;优秀的化学稳定性 更多信息,e.g., 填料性能,详细参数列表等,可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询
  • 1. PharmPrepTM P吸附剂PharmPrepTM P吸附剂是默克的硅胶吸附系列的最新产品。其颗粒为完美的球形,有10 µm和20 µm两种粒径。这些新型吸附剂的孔径为10 nm,非常适合用于短肽(如胰岛素)和其他生物制药、制药API(如抗生素和荷尔蒙)的纯化步骤。这种高孔隙度硅石以喷雾干燥方式生产,各批纯化质量始终如一,确保优异的质量标准和遵从法规。 PharmPrepTM P吸附剂的优势在于:高效生产纯化短肽;优异的高载量能力和选择性;高比表面积;在多次柱充填后,纯化表现依然保有优异的再现性;机械稳定性高,因而寿命长;优异的化学稳定性。2. LiChroprep® 吸附剂在提纯高附加值化合物的科研、中试和生产中,制备层析工艺扮演了重要角色。在制备层析纯化应用领域,不规则的吸附剂被认为是有效和经济的选择。LiChroprep® 硅胶吸附剂,具有多孔性和不规则的特点,分为15-25 µm、25-40 µm和40-63 µm粒径范围,表现了良好的分离性能和足够的稳定性,且拥有非常高的性价比。3. 硅胶60填料用于液相柱层析。所有吸附剂均采用相同原料,保证了填料一致的选择性,显著节约了工艺放大的时间和工作量。4. 氧化铝90填料用于制备液相柱层析。由于标准氧化铝的吸附性弱于硅胶填料,适用于特别限定的pH范围。所有吸附剂均采用相同原料,保证了填料一致的选择性,显著节约了工艺放大的时间和工作量。 更多信息,e.g., 详细参数列表等,可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询
  • ProSep® Ultra Plus是一种蛋白A亲和层析填料,是当前市场上动态结合载量及通量较高的一种亲和树脂。根据在填料粒径与孔径上的优化,抗体动态载量随着每一代的ProSep®填料而增加。基于原有ProSep®填料的成熟技术,ProSep® Ultra Plus具有较同类树脂产品更大的处理能力和产率。此外,其硬性基质有利于后续规模放大,也增强了操作的灵活性,为抗体生产商节约设备,缩小占地面积,及在短期内生产大量高浓度产品提供了极大的便利。ProSep® Ultra Plus的优势在于:动态载量最高;成熟技术;通量高,实现最大产率;操作灵活;易于放大;运行成本低。了解更多:更多信息,e.g., 填料表现,详细性能列表等,可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询

混合填料相关的耗材

  • 汇通色谱 DRP混合模式填料 其他色谱配件
    混合模式指色谱介质上配基包含两种或两种以上的作用模式,能够与目标生物分子发生多种相互作用,并且其功能往往具有互补性或协同性。混合模式DRP填料的基底是一类使反相色谱填料,由于键合了不同数量的强阴离子基团(A)和强阳离子基团(C)与传统色谱方法相比,同一表面上的离子交换功能和疏水作用均有显著提高。其中A10意味着键合了10%的强阴离子基团,C10是键合了10%强阳离子交换基团。 混合模式ZEOsphere DRP填料的主要优点:(1)较高的选择性。样品在单一模式分离较差,混合模式情况下可以更好的分离除去杂质;(2)显著的高负载容量。负载量比反相色谱要高1-10倍,这可以成为半制备柱和制备色谱柱新的发展方向;(3)更强的分离效率。可以替代两个或多个单一模式色谱柱,这样可以避免材料的浪费和过度消费, 降低了生产成本;(4)更高的收率。单次分离纯度能达到95%以上,收率在70%以上。 DRP 混合模式填料介绍:随着科学技术的发展,人们需要分离分析的样品越来越复杂,尤其是多肽、蛋白质类生物样品的复杂性使得单一模式色谱难以满足分离分析的要求。混合模式色谱因其独特的分离性能,可以在一次分离中获得与多维色谱相当的分离效果,而且可以避免多维色谱系统结构复杂、流动相兼容性差、分析时间长等问题,成为近年来的研究热点之一。混合模式指色谱介质上的配基包含两种或两种以上的作用模式,能够与目标生物分子发生多种相互作用,并且其功能往往具有互补性或协同性。混合模式DRP填料是的基底一种将反相色谱填料,由于键合了不同数量的强阴离子基团(A)和强阳离子基团(C), 与传统色谱方法相比,同一表面上的离子交换功能和疏水作用均有显著提高。其中A10意味着键合了10%的强阴离子基团,C10是键合了10%强阳离子交换基团。 混合模式填料的固定相: DRP混合模式填料类型参数: 混合色谱固定相在分离样品时能够提供多重保留机理,同时可以通过改变流动相中有机相与水相的比例、pH 值的高低、盐浓度的大小等多种方法改变分离选择性,与单一机理的色谱固定相相比,混合色谱固定相选择性好、载样量高,还可以降低分析成本,提高分析效率。目前混合模式色谱固定相在多肽、蛋白质、药物分子等复杂样品分离中表现出比传统色谱固定相更好的分离选择性。 实例:利拉鲁肽分离纯化、胰岛素、胸腺法新、索玛鲁肽等,更多信息欢迎咨询联系。
  • 152-2750S-X3填料/凝胶渗透色谱填料
    2015版中国药典 农药残留量测定法 供试品溶液的制备:取供试品,粉碎成粉末(过三号筛),取约1.5g,精密称定,置于50ml聚苯乙烯具塞离心管中,剧烈振摇提取1分钟,再加入预先称好的无水硫酸镁4g与氯化钠5g的混合粉末,再次剧烈振摇1分钟后,离心(4000转/分)1分钟。精密吸取上清液10ml,40℃减压浓缩至近干,用环己烷乙酸乙酯(-1∶1)混合溶液分次转移至10ml量瓶中,加环己烷-乙酸乙酯(1∶1)混合溶液至刻度,摇匀,转移至预先加入1g无水硫酸钠的离心管中,振摇,放置1小时,离心(必要时滤过) ,取上清液5ml,过凝胶渗透色谱柱(400mm×25mm,内装BIO-Beads S-X3填料 以环己烷-乙酸乙酯(1∶1)混合溶液为流动相 流速为每分钟5.0ml)净化,收集18~30分钟的洗脱液,于40℃水浴减压浓缩至近干,加少量正己烷替换两次,加正己烷1ml使溶解,转移至弗罗里硅土固相萃取小柱[1000mg/6ml,用正己烷-丙酮(95:5)混合溶液10ml和正己烷10ml预洗]上,残渣用正己烷洗涤3次,每次1ml,洗液转移至同一弗罗里硅土固相萃取小柱上,再用正己烷-丙酮(95:5)混合溶液10ml洗脱,收集全部洗脱液,置氮吹仪上吹至近干,加异辛烷定容至1ml,涡旋使溶解,即得。2015版中国药典 农药残留量测定法样品制备净化所需产品:编号:AA400253 凝胶渗透色谱柱(空柱) 400mm*25mm 152-2750 BIO-Beads S-X3填料 200-400目,100g/瓶 HSC-12B 12位圆形水浴氮吹仪 57057 弗罗里硅土固相萃取小柱 1000mg/6ml,30支/盒 Bio-Beads S-X3填料(200-400目)介绍: Bio–Beads S–X 3介质是中性、多孔的聚苯乙烯二乙烯基苯微球体,用于亲脂性多聚物和有机洗脱溶质的分子量 排阻层析。分子量400–14,000 的排阻范围,可用于分离分子量小的有机多聚物和其它疏水物质,如杀虫剂、灭鼠 剂、多环芳香化合物和不饱和脂类。使用不同的洗脱剂会影响排阻极限。用Bio–Beads S–X 介质分离需要可流动的 洗脱剂,因此,该介质必须在层析柱内使用。 Bio-Beads S-X 介质是中性、多孔的聚苯乙烯二乙烯基苯微球体,用于亲脂性多聚物和有机洗脱溶质的分子量排阻层析。 Bio-Rad Bio-Beads S-X3填料的主要应用:1.食品中有机氯农药多组分残留量的测定GB/T 5009.19-2008中即采用该介质来分析农药残留。 2.可用于分离分子量小的有机多聚物和其它疏水物质,如杀虫剂、多环芳香化合物和不饱和脂类。3.食品中苏丹红1号,2号,3号,4号残留量测定凝胶净化。 4.2015版中国药典农药残留检测法 凝胶渗透色谱填料产品信息:产品编号:152-2750 产品名称: Bio-Beads S-X3 填料 规格:40-80um(200-400目) 100g/瓶
  • 混合模式聚合物SPE柱 12113100
    产品特点:混合模式聚合物SPE柱 12113100混合模式聚合物SPE柱Bond Elut NEXUS 和Bond Elut NEXUS WCX* 大填料粒径对于粘性样品具有出色的流通性* 无需预处理,节省了时间并提高了通量* WCX 对某些样品(例如季铵类药物)具有较高的选择性Bond Elut NEXUS 是一种超纯的聚合物吸附剂,具有双模式孔隙和高比表面积。NEXUS 具有非极性保留机理,无需预活化过程。由于其填料粒径较大,使其成为从高粘度样品(如马尿)中萃取目标样品的理想选择。Bond Elut NEXUS WCX 是一种弱阳离子交换吸附剂(采用了与NEXUS 相同的聚合物基质),对季铵类药物和合成类固醇等具有出色的选择性。订购信息:Bond elut nexUs 和 Bond elut nexUs wcx说明单位部件号 大容量型(lrc)柱管30 mg,10 mL50/包1211310060 mg,10 mL50/包12113101 直管型柱30 mg,1 mL100/包1210310060 mg,3 mL100/包1210310160 mg,3 mL,NEXUS WCX100/包12102157200 mg,6 mL30/包12103102200 mg,12 mL20/包12253101500 mg,12 mL20/包12253102500 mg,20 mL20/包12253103Bond elut nexUs 96 孔板说明30 mg60 mg1 mL 圆孔板A49620302 mL 方孔板A3962060

混合填料相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制