血竭

仪器信息网血竭专题为您提供2024年最新血竭价格报价、厂家品牌的相关信息, 包括血竭参数、型号等,不管是国产,还是进口品牌的血竭您都可以在这里找到。 除此之外,仪器信息网还免费为您整合血竭相关的耗材配件、试剂标物,还有血竭相关的最新资讯、资料,以及血竭相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

血竭相关的资料

血竭相关的论坛

  • 血竭素对照的拖尾严重

    仪器:LC-100 二元高压,Exformma 经济型C18色谱柱,5µm,4.6×250 mm,加保护柱。流动相:乙腈-O.05mol/L磷酸二氢钠溶液(50:50);波长为440 nm;柱温40℃,进样量20μl。理论板数按血竭素峰计算应不低于4000。对照品溶液的制备 取血竭素高氯酸盐对照品9mg,精密称定,置50ml棕色量瓶中,加3%磷酸甲醇溶液使溶解,并稀释至刻度,摇匀,精密量取1ml,置5ml棕色量瓶中,加甲醇至刻度,摇匀.即得(血竭素重量=血竭素高氯酸盐重量/1.377)。供试品溶液的制备取本品适量,研细,取O.05g,精密称定,置具塞试管中,精密加入3%磷酸甲醇溶液10ml,密塞。振摇3分钟,滤过,精密量取续滤液1ml,置5ml棕色量瓶中,加甲醇至刻度.摇匀,即得。血竭素的保留时间为6.4,但拖尾因子为3 ,不符合中国药典规定,请教大家如何处理?

  • 【原创大赛】血竭含量测定

    【原创大赛】血竭含量测定

    [align=center]血竭含量测定[/align][color=#333333]1 材料与试剂[/color][color=#333333] 乙腈(色谱级)、磷酸二氢钠、磷酸、甲醇(分析纯)、血竭素高氯酸盐(购自中检院)、血竭样品(客户提供样品)。[/color][align=center][color=#333333][img=,690,260]https://ng1.17img.cn/bbsfiles/images/2019/09/201909121037225741_9698_1858223_3.jpg!w690x260.jpg[/img][/color][/align][color=#333333]2 色谱条件[/color][color=#333333] LC-20AT液相色谱仪(日本岛津),色谱柱:[/color][color=#333333]Zorbax SB C18(250mm*4.6μm*5μm)(安捷伦)[/color][color=#333333],流动相:以乙腈-0.05mol/L磷酸二氢钠溶液(50:50);检测波长为440nm;柱温40℃。[/color][color=#333333]3 样品制备[/color][color=#333333] 标准溶液的制备 取血竭素高氯酸盐对照品,精密称定,置50ml棕色量瓶中,加3%磷酸甲醇溶液使溶解,并稀释至刻度,摇匀,(血竭素重量=血竭素高氯酸盐重量/1.377)。[/color][align=center][color=#333333][img=,567,177]https://ng1.17img.cn/bbsfiles/images/2019/09/201909121038240511_6855_1858223_3.jpg!w567x177.jpg[/img][/color][/align][color=#333333] 供试品溶液的制备 取本品适量,研细,取0.[/color][color=#333333]05~0.15g,精密称定,置具塞试管中,精密加入3%磷酸甲醇溶液10ml,密塞,[/color][b][color=#333333]振摇[/color][/b][color=#333333]3分钟,滤过,精密量取续滤液1ml,置5ml棕色量瓶中,加甲醇至刻度,摇匀,即得。[/color][align=center][color=#333333][img=,568,168]https://ng1.17img.cn/bbsfiles/images/2019/09/201909121038506921_4317_1858223_3.jpg!w568x168.jpg[/img][/color][/align][color=#333333] 小结:通过送检样品我们发现,样品有的是粉末,有的是硬块状,药典中规定研细,但是对于研细程度各有不同,觉得应该要求过筛,这样能保证样品的均匀性,研细的过程每个人操作程度不同,测出来的含量也有差别,本身中药的质量就参差不齐,所以标准规定应该更细一点,有利于数据的统计分析,测试过程中发现在样品准备中还有一点,药典规定振摇3min,是人工用手振摇还是说用机械振荡器振摇,都应该统一,这样数据才能保证更准确。[/color]

  • 【原创大赛】薄层色谱血竭鉴别(3)样品处理注意事项

    【原创大赛】薄层色谱血竭鉴别(3)样品处理注意事项

    [align=center]薄层色谱血竭鉴别(3)样品处理注意事项[/align][align=left][b]小序:在没有自动点板仪的情况下,点板对技术人员的要求是比较高的,经过多次训练,点出来的板不比仪器点的差,实验中也会发现很多问题,并积累一定的经验。[/b][/align][b]1材料1.1药品与试剂[/b] 血竭:五批不同产地的血竭;甲醇:天津市致远化学试剂有限工司(分析纯);乙醇:天津市致远化学试剂有限工司(分析纯);盐酸:洛阳昊华化学试剂有限公司 氢氧化钾:北京化工厂;[b]1.2 仪器与设备[/b] 薄层色谱成像系统:Good See-20E 上海科哲生化科技有限公司;振荡器:调速多用振荡器 金坛市恒丰仪器制造有限公司;薄层板:青岛海洋化工有限公司,100mm*100mm;滤纸:抚顺市民政滤纸厂,中速,定性滤纸(11cm);[b]2方法与结果[/b] 取本品粉末0.5g,加乙醇10mL,密塞,振摇10分钟,滤过,滤液加稀盐酸5ml,混匀,[color=#ff0000]析出棕黄色沉淀,放置后逐渐凝成棕黑色树脂状物[/color][sup][color=#ff0000]【1】[/color][/sup]。取树脂状物,用稀盐酸10ml分次充分洗涤,弃去洗液,加20%氢氧化钾溶液10mL,研磨,[color=#ff0000]加三氯甲烷[/color][color=#ff0000]5ml[/color][color=#ff0000]振摇提取[/color][sup][color=#ff0000]【2】[/color][/sup],[color=#ff0000]三氯甲烷层显红色[/color][sup][color=#ff0000]【3】[/color][/sup],取三氯甲烷液作为供试品溶液。另取血竭对照药材0.5g,同法制成对照药材溶液。照薄层色谱法(通则0502)试验,吸取上述两种溶液各10〜 20μL,分别点于同一硅胶G薄层板上,以三氯甲烷-甲醇(19:1 )为展开剂,展开,取出,晾干。供试品色谱中,在与对照药材色谱相应的位置上,显相同的橙色斑点。[align=left]【1】通过多组实验发现样品振摇后加稀盐酸,所有血竭样品都会有黄色沉淀,但并不是所有血竭都能凝成棕黑色树脂状物,有的没有树脂状物出现,离心去沉淀继续试验,放置时间2-3h保证棕黑色树脂状物出现完全。[/align][align=center][img=,588,309]https://ng1.17img.cn/bbsfiles/images/2019/07/201907090759286371_979_3917489_3.png!w588x309.jpg[/img][/align][align=left] 图一为三个有棕黑色树脂状物出现的样品薄层色谱图,图二为未出现棕黑色树脂状物的样品薄层色谱图,通过图一图二发现是否出现棕黑色树脂状物对色谱图实验结果影响并不明显(图一1点由于产地及加工工艺不同,存在含量多少差异,部分斑点不太清晰,但均存在;样品和对照药材点样量为10-20μL)。【2】加20%氢氧化钾溶液10mL,研磨,(图四)加三氯甲烷5ml振摇提取,提取液点板,(图三)加三氯甲烷1ml振摇提取,提取液点板。[/align][align=center][img=,591,304]https://ng1.17img.cn/bbsfiles/images/2019/07/201907090800410804_7561_3917489_3.png!w591x304.jpg[/img][/align][align=left] 图三加三氯甲烷1mL,样液浓度增加,样品斑点颜色较清晰,而图四加三氯甲烷5mL,样品点颜色较浅,可能干扰结果判断。由于鉴别(3)主要鉴别血竭红素,而血竭红素含量低,增加浓度更能突出血竭红素的斑点。[/align][align=left]【3】加三氯甲烷振摇提取,三氯甲烷层颜色呈淡红色,静置五分钟,三氯甲烷层颜色更深,提取更完全,样品斑点更清晰。[/align][align=center][img=,561,296]https://ng1.17img.cn/bbsfiles/images/2019/07/201907090801342408_7263_3917489_3.png!w561x296.jpg[/img][/align][align=left] 图五是加过三氯甲烷振摇后直接取三氯甲烷层点板,发现三氯甲烷层颜色较浅,样品斑点较浅。图六是加过三氯甲烷振摇后,静置五分钟后,发现三氯甲烷层颜色较图一颜色深,且斑点较清晰。[/align][b]3结果与讨论[/b] 综上所述,影响血竭鉴别(3)薄层结果的因素有:实验最后加三氯甲烷的体积的多少;振摇提取三氯甲烷层显红色是否放置一会。关于加过盐酸,析出棕黄色沉淀,放置后是否凝成棕黑色树脂状物对实验结果影响不大。同时除杂部分也要注意,血竭素比血竭红素含量高,除杂做的不好血竭素也会干扰实验结果。

血竭相关的方案

血竭相关的资讯

  • Science:中国科学界掀起反腐运动
    科学界再一次成为了中国反腐运动的靶心。上周中国共产党的反腐败监督机构中央纪律检查委员会宣布,它发现由中国科技部(MOST)主管的科研基金项目存在弄虚作假,上海复旦大学也发现存在腐败现象。   官方声明并没有很详细地公布细节。复旦大学的调查结果揭示出有涉及研究经费的腐败问题,还有与基础设施管理相关的贪污行为。根据中国教育报的报道,复旦大学的官员预计将在本周对&ldquo 整顿工作方案&rdquo 作出回应。   中国官方媒体新华社称,复旦大学的不法行为还只是冰山的一角。新华社指出:&ldquo 在中国科学界,项目是否获得支持并不取决于项目的价值而是取决于关系。一旦相关部门将经费发放至高校,基本就无人对这些经费进行监管。&rdquo   上周三公布了对中国科技部的调查结果,揭露出一些科研项目成果弄虚作假。科研人员将大量的科研经费挪至他用,并且这之间存在一些利益关系。此外,还存在海外商务旅游等一些违规违法和浪费问题。针对复旦大学的调查,揭示出项目评审立项权力过于集中,存在廉政风险 科研经费管理制度不够科学完善,监管不力等问题。   中国的科研系统充斥着腐败,一些中国事务观察家对此并不表示吃惊。亚利桑那州立大学校长的高级顾问、中国科研专家Denis Simon说:&ldquo 在过去的十年里,中国大大增加了研究和开发(R&D)投入,从不到国内生产总值的1%增长至约2%。由科研经费短缺状况转换为科研经费充足。可获得资金的增长速度比监管资金能力的提升要快得多。在中国政府机关彼此之间的相互制衡、审计和汇报机制还都处于萌芽阶段。&rdquo   这样的制度缺陷使阻碍了中国的科学官员,近几个月来他们一直在努力控制欺诈和不法行为。英国诺丁汉大学中国科学分析家曹聪(Cao Cong)认为:&ldquo 关键在于给予科学界更多的独立性和自主性来处理自己的事物。现在官员们说得更多。&rdquo
  • 韩春雨事件:撤稿验证科学界“自净”机制
    p   备受关注的韩春雨基因编辑论文争议事件近日有了结果,韩春雨团队在英国著名学术刊物《自然》子刊《自然?生物技术》网站上发表撤稿声明。“施普林格?自然集团”大中华区总裁安诺杰告诉新华社记者:“此次撤稿展现并证明了科研群体对于维护科学发现过程基本规律的承诺。” /p p   确实,这次撤稿首先证明了科学界的“自净”机制,也说明了媒体舆论监督的价值,以及学术研究的复杂性。 /p p   科学能够“自净” /p p   “国际科学界有‘自净’机制”,北京大学生物学家饶毅对新华社记者表达了与安诺杰相似的观点。 /p p   一项研究有了数据、形成论文并通过同行评议发表,通常意味着得到了国际科学界的初步承认。但这并不是终点,论文发表后,各国同行会根据论文中的描述来重复实验,如果不能经受这一检验,研究成果就会受到质疑。 /p p   韩春雨团队2016年5月在《自然?生物技术》上发表的关于一种新型基因编辑技术NgAgo的论文就是如此。这篇论文因其所宣称成果的重要性而引发巨大关注,各国同行纷纷跟进。但一两个月后就出现质疑,如澳大利亚国立大学的研究人员加埃唐?布尔焦在网上公开发文表示,他不能重复韩春雨论文中描述的实验,并且在与许多同行的讨论中得知他们也无法重复该实验,因此“我对NgAgo技术有严重的怀疑”。 /p p   2016年11月,《自然?生物技术》就此发表“编辑部关注”。今年初又有消息说韩春雨团队提供了新的数据,但杂志最终认定:“我们判定韩春雨及同事提供的最新数据不足以反驳大量与其初始发现相悖的证据。我们现在确信韩春雨的撤稿决定是维护已发表科研记录完整性的最好做法。” /p p   “维护已发表科研记录完整性”,正是科学界的“自净”机制。论文等科研记录是科学交流的基础,它们必须真实可靠。为了维护这一点,许多科研人员跟在“先行者”后进行没有名利的重复验证。正如《自然?生物技术》社论所说:“那些进行可重复性研究的人,其付出的努力往往得不到回报——这样的工作单调乏味,没有资金支持,还吃力不讨好。”但正是这种对真理的追求让科学不断前进。 /p p   媒体可以监督 /p p   “这显示了论文发表后的同行评议在全天候媒体时代的重要性”,《自然?生物技术》在社论中提到了这一事件中媒体的重要性。社论说,“这无疑是一篇中国去年被报道最多的论文”,开始时媒体大量报道原论文所宣称的重要成果,而质疑声出现后也很快引起媒体注意,“有关该初始报告有效性的正反两方面的声音开始交锋”。显然,媒体在这一事件中发挥了舆论监督作用。 /p p   饶毅也是网络科学媒体“知识分子”的主编,在韩春雨论文发表后,“知识分子”率先报道了论文中所宣称成果的重要性。在质疑声出现后,“知识分子”又刊登了多篇质疑的文章,保持了客观公正。 /p p   “新闻的常规是很快报道事情的重要进展,科学新闻的国际标准是请多个专家读论文后发表评论。但即使这样有时也不能判断其中的问题。好在对科学研究的判断还有时间的考验——同行的重复和验证。”饶毅说。 /p p   的确,新闻的时效性和科学验证的长期性之间存在矛盾,这就要求媒体报道时理解科学验证的特点。《自然?生物技术》社论认为:“这篇NgAgo论文也显示了社交媒体的利与弊。显然,这些平台对于迅速提醒广大科学界留意该论文可能存在的问题发挥了重要作用。但是它们也抬高了人们的预期,以为有关这篇论文的问题是直截了当,可以快速解决的。然而,关于NgAgo的各种问题是无法在几个星期或几个月内就能澄清的,这是有原因的。即使是简单的实验也需要花费数周来准备、实施、分析和解决出现的问题。” /p p   定性不应仓促 /p p   韩春雨团队在《自然?生物技术》刊登的撤稿声明是英文,《自然》方面提供的译文是:“由于科研界一直无法根据我们论文提供的实验方案重复出论文图4所示的关键结果,我们决定撤回这项研究。”不过韩春雨团队也表示:“我们会继续调查该研究缺乏可重复性的原因,以提供一个优化的实验方案。” /p p   韩春雨工作的河北科技大学也声明说,韩春雨团队一直在进行深入的实验研究工作。鉴于该论文已撤稿,学校决定启动对韩春雨该项研究成果的学术评议及相关程序。 /p p   可见,虽然论文的关键成果不能被重复导致撤稿,但各当事方还是在以学术的方式讨论这个问题,并没有仓促定性。 /p p   美国乔治城大学神经科学系教授吴建永说,许多科研人员都有过学术失误,“我个人有过多次体会,自己认为百分之百对的事,实际是错的。我没有因为学术错误被捧上天,或被批得身败名裂,都是一种幸运。” /p p   当然,如果最终调查证实这不是学术失误而是学术不端,也必然会受到相应处理。就在7月27日,中国科技部、教育部、卫生计生委、自然科学基金会、科协等机构联合公布《肿瘤生物学》107篇论文撤稿事件处理结果,其中有的研究人员被认定无过错,一些研究人员被认定不同程度存在过错并追究责任。 /p p   这正是以“实事求是”的态度处理学术问题的最好体现。 /p
  • 杰出女科学家是科学界的珍稀品种
    p style=" text-align: center " img title=" U12776P1T940D4676F24202DT20151010162159.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/4935cd3e-8fc4-4ce3-9ff6-2a65287d6b29.jpg" / /p p style=" text-align: center " 一百年前就获得诺贝尔奖的居里夫人/资料图 br/ p style=" text-align: right "   /p p   一百多年来,女性的社会地位不能说没有改善。但是,她们在科学界的状况可以乐观吗? /p p   因为居里夫人的故事几乎家喻户晓,使世人趋向于高估女性在科学界的地位,低估了女性在科学界面临的困境。事实上,虽然居里夫人一百年前就获得诺贝尔奖,但全世界迄今女性只有12人获13次诺贝尔科学奖。居里夫人一人获得两次(1903年的物理奖、1911年的化学奖),她女儿获1935年的化学奖。而全世界其他女性仅获一次物理奖(德裔美国物理学家迈耶Maria Goeppert Mayer,1963)、一次化学奖(英国化学家霍奇金Dorothy Crowfoot Hodgkin,1964)。其后迄今近半个世纪,女性获10次科学奖皆在生理医学。 /p p   1963年至今,女性没有问津诺贝尔物理奖,1964年至今女性未再获化学奖。自然提醒人们:这些现象是否反映在物理和化学界女性的境遇有待较大改善? /p p   女性在20世纪大量接触科学、进入科学界。女性在科学界做出了重大贡献,除13位诺贝尔奖得主外,数学的Emmy Noether、 物理的Lisa Meisner和吴健雄、生物的Rosalind Franklin都有杰出的贡献。但是,虽然很多专业大学本科生男女数量相似,研究生常常也接近,但是越到后来女性越少。国外到助理教授时,女性比例出现低于男性的现象,国内外科学界正教授女性常常明显少于男性。而女性仅占诺贝尔获奖总数的2%。1999年的统计数据 ,美国国家科学院女性占6.2%,日本学士院0.8%,英国皇家学会3.6%,瑞典皇家科学院5.5%,土耳其科学院14.6%,荷兰艺术与科学院0.4%。2007年 ,中国科学院和中国工程院的女院士不到5.5%。与此同时,科学界的组织领导职位仍以男性占绝大多数。无论是中国科学院、还是德国马普学会,都很少女性研究所所长。 /p p   在浩瀚的科学史上,本文撷取几个与诺贝尔奖有关联的女科学家,从科学上成功的女科学家之历程,看她们的异同、做科学的动力,也涉及家庭和事业的关系。希望本文能起激励华裔女性打破玻璃天花板,突破女性在科学界发展的社会藩篱。 /p p strong   单身女性,情有独钟 /strong /p p   1902年6月16日出生的巴巴拉?麦克林托克(Barbara McClintock)是遗传学家。1983年她81岁时获诺贝尔生理学或医学奖,肯定她30多年前发现的基因跳跃现象(转座子)。 /p p   麦克林托克是由好奇心驱动而从事科学研究的典型。 /p p   终生致力于研究艺术创造原动力的精神分析学家菲利斯?格里纳克认为,巨大的才能或天才之花的必要条件是:在幼儿中发展 “对世界的强烈爱好。”幼年时代的麦克林托克有类似特质。她常对独特的事物具有一种“非常强烈的感情”,她对科学的热爱达到入迷的程度。她自述,在孩提时代,没有感到需要和任何人有感情上亲密的必要。自然世界成了她智力和感情活力的主要中心。通过阅读自然教课书,她获得了其他人从个人的亲密交往中所得到的某种了解和满足。青春期过后,她越来越明显有冲动要干“那种姑娘们不该干的事情”。对体育的爱好让路给对知识的爱好。“我喜爱知识,”她回忆道。“我爱知道各种事物。”在高中,她发现了科学。解答科学难题开始使她滋长着一种快乐。“我解答问题的方法常出乎教师的意料之外& amp #823& amp #823我请求教师,‘请允许我& amp #823& amp #823看我能不能找到标准答案,’而我找到了。那真是一种巨大的快乐啊,寻找答案的整个过程就是一种纯粹的快乐。” 虽然她的母亲不支持她上大学,怕她嫁不出去,她坚持己见,其后也得到复员回家的父亲的支持。而她一生从来没有要结婚的感觉。 /p p   麦克林托克在大学期间的一些经历进一步激励、诱发了她的好奇心。1919年,麦克林托克入读康乃尔大学农学院。1921年秋,她上大学三年级的期中,选修了一门唯一向本科生开放的、她认为特别兴奋的研究生课程《遗传学》。当时很少同学感兴趣遗传学,他们大多热衷于农业学,并以此顺利就业。但麦克林托克却对遗传课很有兴趣,引起了主讲教师赫丘逊(CB Hutchuson)的注意。课程结束后,赫丘逊打电话给她说,我们还有专为研究生开设的其它遗传学课程,你要不要来选修。她知道作为一个学生,不仅自己感兴趣,老师也开始欣赏她了。老师的邀请进一步强化了她的兴趣。麦克林托克欣然接受了邀请,从此就非正式地获得了研究生的身份,并踏上遗传研究的道路。在大学三年级末,就完全走上了成为一个职业科学家的道路。 后来,她在康奈尔大学植物学系注册正式为研究生,主修细胞学,副修遗传学和动物学。细胞学的染色体和遗传学的交叉研究就成为她研究的方向。 /p p   获得博士学位后,麦克林托克在康内尔大学农学院的试验地里种下第一畦玉米,开始进行基因研究。她没和人结婚,但是和玉米是终身相守。她用玉米做出了许多重要的发现。她42岁时当选美国科学院院士。此后她经过对玉米进行交配实验和实地观察,发现了“转座基因”。基因在染色体上作线性排列,基因与基因之间的距离非常稳定。常规的交换和重组只发生在等位基因之间,并不扰乱这种距离。在显微镜下可见的、发生频率非常稀少的染色体倒位和相互易位等畸变才会改变基因的位置。可是,麦克林托克发现单个的基因会跳起舞来:从染色体的一个位置跳到另一个位置,甚至从一条染色体跳到另一条染色体上。麦克林托克称这种能跳动的基因为“转座因子”(目前通称“转座子”,transposon)。20世纪50年代她把这个发现在一个理论框架下提出,认为转座是基因表达的主要调控机理之一。当时的科学界没有接受她的理论,对转座现象的重要性也没有很快意识到。有人嘲笑“她一定是发疯了”。在遭受冷遇的30多年时间里,她虽然为人们不接受她的理论而不高兴,并在1951年后她拒绝在工作单位冷泉港实验室作学术报告,但是她继续开展自己的研究。 当动物中也发现转座现象后,科学界认可了她对DNA跳跃现象的发现,虽然她的基因表达调控理论不重要、也没有普遍意义。 /p p   麦克林托克“对生物的钟情”是她创造力的主要源泉。驱动她一生在生物学世界孜孜以求的主要力量,是她对自然科学、生命世界的巨大好奇心。她曾说过,“重要的是培养一种能力去发现一个异乎寻常的籽粒并使它可以被理解”,“如果(有什么事情)出了格,那必定有个原因,你就得查明这是怎么回事”。 /p p   strong  “做科学与做母亲可二者兼得” /strong /p p   在获得诺贝尔奖的12位女科学家中,有几位终身未婚(麦克林托克、萝莎琳?雅洛、乐薇?芒塔琪妮),还有长期单身的。有的是性格所致,有的是因为女科学家受家庭和社会压力,难以兼顾家庭和事业。用一位女生物学家的话说“(对女科学家来说)婚姻不是他们所要考虑的事情。你若要献身于科学,那么你就要伪装起来,不能正常地装束打扮& amp #823& amp #823你不能结婚 你不能有孩子。” /p p   但这并不是做杰出女科学家的必要牺牲。居里夫人对家庭非常照顾。她结婚后一直给家里记账,为了长女的教育,她和朋友给一群小孩开了两年的课。她也讲究休闲。 /p p   科学与家庭不是非此即彼、互不相容的关系。J?R?科尔和 H?朱克曼在20世纪80年代研究发现,“对大多数妇女而言,科学与做母亲可二者兼得。” 居里夫人、迈耶、霍奇金的故事表明,科学研究与婚姻家庭呈互补关系,而且科学文化、科学精神可以在一个家族内部传承,形成科学家家族。有趣的是,获物理学和化学奖的4个女性科学家,都有科学家族。 /p p   马丽亚?居里(Marie Curie,1867-1934)是物理学家兼化学家。居里夫人的故事广为人知。但是通常是少年儿童版。她最早的流行传记是次女写的,一些艰难的、当时认为不利于科学家形象的材料给省略了,而有些特殊情况,当时没有看清,事后才清楚。居里夫人在巴黎的索邦念研究生第一年(1897到1898)非常有运气。这年她的研究奠定了自己两度诺贝尔奖,而且还生了一个三十年后会获诺贝尔奖的长女。有这样运气的人,世上不多见。她的课题是步发现X射线的伦琴和发现放射性现象的贝克勒尔后尘。居里夫人开始并没有一个雄心勃勃的计划,课题原创性不高。她到丈夫皮埃尔所在的巴黎市立工业物理和化学学院,拿到片子在全校找可以有放射性的材料。在这个过程中,她发现了钋和镭的原材料。她和皮埃尔两人的共同实验记录从1897年12月6号开始,到1898年2月17号就发现了钋的原材料。时间跨度一共只有两个月。1898年7月18号,居里夫妇的工作正式在法国科学院宣读,发现了钋,提出了放射性的概念。1903年,她获索邦的物理学博士学位。7月中旬,得知他们夫妇俩和贝克勒尔因为放射性而获当年诺贝尔物理奖。 /p p   居里夫人在研究生期间特别顺利,但她的一生却颇坎坷。她第一个恋人(Kazimierz Zorawski)的家长嫌她家穷不许他们结婚(她等待不成后去巴黎,他以后成为波兰著名数学家,一生后悔自己听了家长的话)。1903年诺贝尔颁奖时只请了皮埃尔演讲,没请居里夫人。1905年,皮埃尔出车祸去世对居里夫人是很大的打击,她曾有一年每天给去世的丈夫发寄不出去的信。1911年,居里夫人因发现元素镭和钋而获诺贝尔化学奖。但是,同年她和物理学家朗之万的恋情被曝光,化学奖委员会主席建议她写信表示“自愿”不领奖。她虽然坚持领奖,但其后因抑郁症,领奖后没有回法国而是到英国朋友家休养了约一年。1934年67岁的居里夫人去世逝于长期无防护地接触放射性物质导致的白血病。1935年她的长女爱琳和女婿获奖,爱琳先和外祖母一样患结核、59岁和母亲一样逝于白血病。居里夫人的次女伊婺是钢琴家、记者。1937年伊婺出版《居里夫人》一书,她丈夫曾代表联合国儿童基金接受诺贝尔和平奖。和她父母、姐姐、姐夫不同,她到2007年以102高龄去世。居里的科学家族通过长女的后代延续至今:外孙女Hé lè ne Langevin-Joliot是物理学家(而且和朗之万的孙子结婚)、外孙Pierre Joliot是生化学家。 /p p   诺贝尔物理奖得主玛丽亚?苟帕?迈耶(Maria Goeppert Mayer)是德裔美国物理学家,她父亲是德国哥廷根的教授,她是家族第七代教授,她父亲从来不愿她做家庭妇女。哥廷根大学在20世纪初数学和物理都非常好,座右铭是哥廷根外无生活。玛丽亚?苟帕聪明、漂亮,从小在教授堆里长大,邻居里有大数学家希尔伯特,她的大学和研究生都在哥廷根,起初喜欢数学后来转成理论物理。她的博士论文委员会有三个诺贝尔奖得主。1930年获博士,并和美国人迈耶结婚后到美国定居。丈夫在大学做教授、系主任,而她三十年没有正规教职,只能兼职。但她喜欢科学,长期坚持研究,她说,“我工作多年,没有丝毫报酬,只是为了研究物理学时有着无穷的乐趣” 。她和多位教授合作,最初包括丈夫迈耶。四十年代她与德国物理学家汉斯?詹森等分别提出“核壳层结构”的解释,她写好文章以后,听说詹森等也有文章,要求编辑等詹森的文章到一道发表。其后,她和詹森联系,继续合作,1955年共同出版“核壳层结构基本理论”一书。1963年他们共同获奖。 /p p   英国科学家、牛津大学教授朶萝西?霍奇金(Dorothy Crowfoot Hodgkin)患有类风湿关节炎,手足受严重影响。她凭着毅力,克服了病痛的折磨。1964年,她因解开青霉素和维生素B12的结构获得诺贝尔化学奖。她对中国很好,她自己是第一个解胰岛素结晶的专家,但是当她看到中国的研究结果后,向世界上热情介绍中国科学家的工作,说中国的胰岛素结晶是最漂亮的结晶,分辨率比她的还要高。霍奇金也和科学家族有关:丈夫家多年有很多科学家。祖先Thomas Hodgkin(1798-1866)于1832年发现何杰金氏淋巴瘤(Hodgkin’s lymphoma)。在她本人得化学奖奖的1964年前后几年内,家族还有两个获奖者:1963年获生理奖的英国剑桥大学教授Alan Hodgkin是她丈夫的堂兄弟,1966年获医学奖的美国洛克菲勒大学教授劳斯(Peyton Rous)是Alan Hodgkin的岳父。他们家族现在还有科学家:Alan Hodgkin的儿子Jonathan Hodgkin是剑桥大学研究线虫的发育生物学家。朶萝西?霍奇金不仅热爱科学,而且关心公益,政治左派,丈夫和老师都曾为英国共产党党员,而她也到越南抗议美国,并曾十多年担任国际科学家反战组织Pugwash的主席。 /p p   家庭对于这些女科学家不是累赘,而可以并存,或相得益彰。 /p p   strong  合作的伙伴和友好的环境 /strong /p p   女科学家和夫妻关系以外的科学家合作不如男科学家常见。这一方面可能是因为历史上男子相对长期习惯形成同盟关系,另一方面,在科学家年富力强的时期,男女之间易于碰撞出感情的火花,科研合作关系和情爱关系之间的尺度有时难以把握,对科学合作关系的影响有时是正性、有时是负性。 /p p   犹太裔英国科学家萝莎琳德?富兰克林(Rosalind Franklin)孤军奋战,而与她竞争的沃森和克里克却紧密合作。 /p p   1953年,沃森和克里克在英国《自然》杂志上发表论文《脱氧核糖核酸的结构》,提出了DNA双螺旋结构。这篇简短的文章从开头、结尾和致谢总共不到一页。但这篇划时代的文章中,有一句话意思是说,我们在做这项研究的时候,对富兰克林的研究成果只是模糊地知道一点。这句话是一个谎言,因为沃森和克里克对富兰克林的成果不是模糊的知道,而是知道的很清楚。 /p p   富兰克林1921年生于伦敦,早年毕业于剑桥大学,专业是物理化学。1945年,当获得博士学位之后,她前往法国学习X射线衍射技术。此时,人们已经知道脱氧核糖核酸(DNA)可能是遗传物质,但是对于DNA的结构,以及它的机制还不甚了解。就在这时,富兰克林加入了研究DNA结构的行列,1951年,富兰克林受伦敦大学国王学院John Randall之聘任,与威尔金斯(Maurice Wilkins)共同进行DNA的X-光分析。富兰克林以前研究煤和其它无机物的机构,回英国后做DNA是分派的工作,并不完全清楚DNA的重要性。 /p p   富兰克林在伦敦大学国王学院成功地拍摄了DNA晶体的X射线衍射照片。她也知道碱基在里面,磷酸在外面。1954年因为发现蛋白质& amp #945 螺旋结构而获诺贝尔奖的Linus Pauling,曾在1953年提出一个DNA核酸的模型,在这个模型中,Pauling错误地认为DNA是三螺旋结构,而且碱基是在外面。沃森和克里克也曾犯同样的错误,但他们和富兰克林讨论时,富兰克林纠正了碱基在外的错误。如果她不指出碱基在内,沃森和克里克就缺乏提出碱基配对的一个非常重要基础。富兰克林后来在伦敦伯贝克学院的合作伙伴克卢格(1982年诺贝尔化学奖得主)看了她的笔记和论文打字稿,证明她独立提出DNA双螺旋结构。但是她没有提出碱基配对。 /p p   1962年,克里克、沃森和威尔金斯因为发现DNA双螺旋结构而分享了诺贝尔生理学或医学奖,而富兰克林已经在4年前因为卵巢癌而与世长辞。“如果她还活着或者诺贝尔奖早些授予双螺旋的话,获奖名单将不是克里克、沃森和威尔金斯,而是克里克、富兰克林和沃森”。 这是很多人的共识。美国作家Anne Sayre 于1975年出版的《罗莎琳德?富兰克林和DNA》一书中,全面记述了富兰克林的科学成就。 /p p   富兰克林是被人叫去做DNA结构,她没有意识到DNA的重要性,她对解DNA结构的兴趣是有的,是因为工作要好好做。而沃森知道DNA的重要性,当时老想着做了可以拿诺贝尔奖。富兰克林工作环境对她很不友好,她也没有平等的合作者,而沃森和克里克有非常紧密的合作。 /p p   诺奖对科学发现的眷顾,时间常常难预计。有人在做出成果的次年就被授予诺奖,而有人等了30甚至40年才被授予诺奖——如果科学家活得足够长,直到诺贝尔奖评委醒过来。麦克林托克是这方面的典型例证,而富兰克林是一个反例。“长寿是坚守的一种形式,对于诺贝尔奖来说,它就象别的因素一样必需” 。另外一方面,诺贝尔奖只是科学研究的副产品, 不是莎琳德?富兰克林们追求的终极目标。 /p p strong   作为科学家的女性 /strong /p p   19世纪以来,世界经历了两次女权主义运动的高潮。女权主义运动的第一次浪潮发生在19世纪下半叶到20世纪初 女权主义运动的第二次浪潮是在20世纪的60-70年代。女权主义运动挑战了传统分工。原有的分工让男性控制所有的公共领域——工作、运动、战争、政府,有时使女性成为家庭中没有报酬的工人。女性要求享有人的完整权利,挑战男女不平等关系,挑战造成女性无自主性、附属性和屈居次要地位的权力结构、法律和习俗 。20世纪后半叶, 女权主义思潮从政治运动、意识形态向文化界、学术界弥漫, 包括人文、社会科学和自然科学。女权主义也从寻找“女性在科学中相对缺席现象”的原因为起点, 对科学活动中的性别偏见进行了深入的批判。 /p p   在这一历史过程中,科学界的女性数量递增,有人崭露头角。但女科学家在迈向科学之巅的征途上,仍面临艰难险阻。在20世纪上半叶,首要的险阻是女性应固守在家庭支持男人事业的观念。幸运的是,居里、迈耶、霍奇金和富兰克林都有较为开明的父母。家庭环境为她们在科学界的脱颖而出提供了一定的条件。 /p p   在科学女性们谈婚论嫁的年龄,有人选择了婚姻,有人选择了终身以科学为伴。迈入婚姻殿堂的科学女性,有人把更多的精力放在照顾家庭方面 也有人同丈夫进行科学合作。迄今为止,夫妻携手共同摘取诺贝尔奖的例子至少有三个:居里和居里夫人、约里奥-居里夫妇、科里夫妇(Gerty and Carl Cori)。 /p p   制约女性科学家发展的另一个因素是工作场所、环境及制度。在20世纪上半叶,大多数教育和科研机构对女性的入学、工作都有性别限制,对女性予以平等对待甚至优厚待遇的机构就更少。“自由、平等和不拘礼节的交流,都是一个好场所的财富” ,在美国获得诺贝尔奖的六位女性中,四位科学家与纽约的汉特学院或者圣路易斯的华盛顿大学有关。埃里昂和雅洛是汉特大学的毕业生,捷克裔的科里夫人和意大利人蒙塔尔西尼的获奖研究都在美国圣路易斯的华盛顿大学做出。居里夫人一家创了诺贝尔奖记录,科里夫人与她丈夫在华盛顿大学医学院的实验室,一共培养了8位诺贝尔奖得主,可能创了实验室记录。著名女科学家如此不随机的分布,也许说明有一些场所的差别。 /p p   哈佛前校长劳伦斯?H?萨默斯曾把女性在科学领域成功的几率比男子低的原因归咎于男女先天的性别差异,“尽管人们更愿意相信男女表现上的不同取决于社会因素,但是,我觉得这点还需要进一步研究。”尽管他陈述的是自己的个人观点,但他以哈佛校长的身份参与到一场历时已久的话题、以经济学家的方式抛出了一个备受争议的观点,因而受到广泛关注,是他最后逼迫辞职的原因之一。男女先天性别差异是否导致在他们才能不同,是不容易明确解答的科学问题。它和社会问题交织在一起,难以分开原因和结果。对女性不平等对待、缺少机遇、缺少支持体系,使女性难以获得男性的平等机会。,在社会因素不能排除以前,谈自然因素,引起人们怀疑是否故意延续歧视女性的传统。 /p p   另外,也可以听1977年诺贝尔生理学医学奖得主耶洛在斯德哥尔摩宴会的演讲,她说,“我们不可能期待在短期的未来,所有追求的女性都将获得平等的机会。但是如果女性开始向这个目标努力,我们必须相信自己,否则其他人不会相信我们。我们必须把我们的渴望与我们获得成功的能力、勇气与决心结合起来,我们必须懂得,使那些后来的女性的道路宽松一些是我们每个人的责任。如果我们去解决困扰我们的许多问题,这个世界就不会承受人类一半智力的损失。” /p p   我们希望本文说明著名女科学家和男科学家一样,不是刻板的,而是多种多样的,她们有着各异的背景和生活,有科学才能、有一定机遇、遇到和克服了不同的问题,在科学上作出了影响人类的工作。 /p p   我们祝愿更多热爱科学的女性,突破现实中不尽人意的限制和不便,以敏锐的触角探索世界万象,使科学之花结出更多的芳香之果。 /p p style=" text-align: right "  文/贾宝余 饶毅 br/ /p p /p /p

血竭相关的仪器

  • 电化学由于其在电池、燃料电池、腐蚀、合成和催化等各个领域的广泛应用而受到越来越多的关注。在电化学系统中,会发生各种复杂的过程,包括物质的吸附、解吸和扩散,表面重建,电荷转移,表面和物种之间化学键的形成或断裂以及发生在电化学界面化学反应等。因此,电化学界面的结构决定了整个电化学系统的电化学响应以及材料的性质和性能电化学的研究主要涉及电化学界面的结构、性质和性能之间的内在关系,以促进电化学设备的合理设计。电化学表征技术主要基于电信号的测量,包括电流和电势,这些方法可以根据电化学理论分析电信号来获得丰富的信息,包括界面性质的热力学和动力学信息、表面上反应物的数量以及电极的反应性。然而,由于反应物的化学指纹信息缺乏,很难在没有经验的情况下确定化学结构。另外,从整个电极表面的响应测量得到的电信号,是针对整个电极的,对于非均匀电极的结构和性能无法进行研究。因此,需要开发具有丰富化学信息和高空间分辨率(低至几个纳米)的原位表征方法,以全面了解电化学界面和过程。 电化学-针尖增强拉曼光谱( EC-TERS)是一种具有纳米尺度空间分辨率分子指纹信息的技术,可以用于实现上述目标。 EC-TERS联用优势● 分子水平的一致性:拉曼光谱可以提供分子水平的信息,可以检测到电化学界面上的单个分子。这使得我们能够研究电化学反应的瞬间变化。● 高空间分辨率:通过使用针尖增强拉曼光谱(TERS)技术,可以在纳米探针上实现高空间分辨率。这使得我们能够研究界面的局部结构。● 可以在液体环境下工作:拉曼光谱可以在液体环境下进行测量,这对于研究电化学修饰过程非常重要。传统的电化学表征技术通常需要在干燥的条件下进行测量,而拉曼光谱可以在多孔溶液中直接进行测量。● 化学指纹信息:拉曼光谱可以提供化学指纹信息,通过分析拉曼光谱的峰位和强度,可以研究反应的中间体、吸附物和反应产物。● 非破坏性测量:拉曼光谱是一种非破坏性测量技术,不需要对样品进行特殊处理或标记。这使得我们能够对电化学界面进行实时监测。EC-TERS方案电化学-针尖增强拉曼光谱测试系统系统采用倒置显微镜结构,底部激发,底部拉曼信号收集。兼容常规拉曼测试、常规电化学拉曼测试,针尖增强拉曼测试。电化学池位于XY压电位移台上,可以进行纳米级的步进移动; 探针链接XYZ压电位移台,可进行三维精细调节;从而实现探针-激光-样品三位一体。 电化学-针尖增强拉曼光谱测试系统技术参数 光谱分辨率2cm-1激发光源532nm激光器,100mW633nm激光器,15mW光谱仪焦距320mm,配置3块光栅探测器≥2000*256像素,300-1000nm响应,峰值效率高于90%,芯片深度制冷到-60℃常规拉曼空间分辨率1um@XY方向
    留言咨询
  • SELECT SERIES Cyclic IMS功能强大,发挥极致性能。重新定义科学界限。SELECT SERIES Cyclic IMS将最新的环形离子淌度分离与最先进的高性能飞行时间质谱联用,助力研究人员充分发挥科学发现的巨大潜力。突破离子淌度分离的界限提供可变的高分辨率离子淌度分离引入执行IMSn实验的独特能力。创新的环形离子淌度离子淌度技术已在多种应用中得到成熟运用,与质谱联用时,可发挥以下优势:-可按形状和m/z进行分离,能够分离异构体提供更加清晰的质谱数据测量离子碰撞截面(CCS)。环形离子淌度(cIM)装置采用循环路径,可最大限度减少仪器体积,同时提供精确的碰撞截面值(0.5% RSD)、多通道变量、高分辨率(400)离子淌度分离和IMSn。 Cyclic IMS可根据质量数和淌度选择离子,cIM的这一特有功能为学术界和行业的研究提供了无与伦比的灵活性和能力。借助极致的离子淌度分辨率探索更多奥秘这款仪器采用的设计和控制软件能够实现一系列实验,其中包括采集Tof数据、单通道离子淌度,还能够扩展淌度分辨率以匹配样品的复杂性。 离子淌度分辨率随淌度装置的长度而增加,因此也随通道次数而增加。充分发挥科学发现的巨大潜力独特的仪器设计有利于执行先进的离子淌度实验。IMSn选择 - 扩展特定淌度范围的分辨率,例如特定物质的离子。喷射出所需淌度范围外的离子(未采集)。将剩余物质留在cIM中继续执行分离过程。这种“修整”方法可以多次反复运用,例如,可以用于增加所选离子的专属性,或防止cIM中出现“环绕”现象,该现象是指在多通道实验中,高淌度离子赶上低淌度离子。进行先进的结构表征IMSn激活 - 在淌度分离期间,可以切除一部分淌度分离的物质,并将这些离子发送到预阵列存储装置。喷射出不需要的离子,然后根据需要在碰撞诱导解离条件下将存储的离子重新进样至阵列中,随后进行淌度分离。然后可以将产物离子发送到Tof用于检测,或者可以进行进一步循环淌度选择,从而提供独特的IMSn能力。让您对结果充满信心为进一步提升新型环形离子淌度分离能力,让您对数据充满信心,Cyclic IMS还配备了最新的TOF技术。XS传输装置可维持离子淌度分离的保真度,同时调节离子束以获得最佳的飞行时间性能。新型偏置oa-Tof配备双增益检测系统,可提供更高的灵敏度、分辨率100,000 (FWHM)、可靠的精确质量测量(低 ppm)和更宽的动态范围。掌控仪器新型MassLynx能够对仪器进行交互控制,有助于设置循环IMS方法,让用户可以全面掌控仪器并设置复杂精细的IMSn实验。 Mobility Miner数据可视化软件经过专门设计,能够容纳来自选择系列环形IMS的数据。这款软件提供了增强的数据可视化工具和数据导出功能。 重要的是,该软件还提供了一个持续发展平台,以满足质谱专家日益增长的需求。
    留言咨询
  • 异味分析作为食品安全、环保领域当中的重要组成部分已经越来越多的得到世界范围内的关注。可靠地异味分析将对食品安全、环境保护、医疗卫生,乃至公安刑侦方面起到不可替代的作用。现阶段,我国主流的异味分析是通过嗅辨师对气味的类别和浓度来进行人工识别,以及通过GCMS来对异味物质进行分析这两种途径来完成。2014年3月,美国《科学》杂志刊登的最新研究曾指出,人类的鼻子至少能够区分出1万亿种不同的气味,远远高于多年来科学界公认的1万种。但是事实上,无论是1万还是1万亿种,没有人能用得上这么多。一个合格的嗅辨师需要熟悉大约3000种气味,需要分辨和记忆400余种常见气味。相对于通过嗅辨师进行主观判断这种不确定性较大的人工确认方式来说,使用分析仪器的GCMS法进行确认的客观性科学性准确性无疑更高。但是异味样品的复杂性,标准品又很难获取,以及气味的一些感官信息的缺失又造成了现行的GCMS确认依据的不完善。因此目前的异味分析工作大都是采用上述两种方式结合的方式,这就造成了检测门槛高,检测精度差,检测结果并不十分尽如人意的局面。针对这情况,岛津特别开发了GCMS Off-flavor Analyzer异味分析系统。该系统配备了GCMS主机(GCMS-QP2020或GCMS-TQ8040),以及专门为异味分析开发的异味数据库,并对引起异味的物质以及异味的感官信息(如气味描述以及气味阈值)进行了整理。加配全自动样品前处理单元,为用户在异味分析方面需求提供全面解决方案。 GCMS Off-flavor Analyzer异味分析系统特点:专用数据库,包含异味分析的关键信息一、通过大量实际案例的积累,特别为异味分析建立的专用数据库二、基于数据库可以自动创建仪器方法,可对样品进行快速定性半定量分析三、包含异味及其相关组分的感官信息(气味特征描述、气味阈值)专业化的分析系统,可以检测出气味阈值水平范围内的异味成分一、 登记化合物可使用三种不同极性的色谱柱进行有效检测二、 可通过MRM/SIM方式对在阈值水平范围内的异味进行检测三、 无需释放真空即可快速更换色谱柱
    留言咨询

血竭相关的耗材

  • 三菱化学精细分离填料DIAION® HP20SS
    绿百草科技现货提供HP20SS,HP20SS是HP20直接聚合成小粒度的品种,粒度分布在75~150&mu m。化学结构及其物理结构都和HP20相同。在制备与制程规划上,HP20SS这种宽孔聚合基体对于小的生化分子具有良好的动力学和吸附容量。进样时,HP20SS表现良好的平衡压力与色谱分离,对多种小生化分子也提供在SMB方面的应用。 等级名称DIAION® HP20SS 化学构造 外观密度(G/L) 680 水含量(%) 55-65 粒度大小 在150&mu m 15% max. 150-63&mu m 70% min. 至63&mu m 20% max. DIAION® HP20SS的应用 HP20SS用于对显色络合物的固相萃取根据2-(2-喹啉偶氮)-5-二乙氨基苯胺(QADEAA)与钯的显色反应及HP20SS反相固相萃取小柱对显色络合物的固相萃取,建立了一种测定痕量钯的方法。 HP20SS用于天然结合雌激素的纯化利用HP20SS对孕马尿中获取的结合雌激素提取物及除结合雌激素外的其它成分进行分离纯化及结构鉴定,对所分离的化合物进行含量测定,并对孕马尿提取物生产工艺过程中的各中间体以及经HP20SS柱分离纯化后的孕马尿提取物进行成分监测。 HP20SS对含羞草成分进行分离纯化利用Diaion HP-20、Toyopearl HW-40、HP20SS、Sephadex LH-20、RP18及硅胶等柱色谱法对海南含羞草成分进行分离纯化.根据理化性质和波谱方法(1H-NMR、13C-NMR、1H-1H COSY、HSQC、HMBC、ESI-MS、IR等)鉴定化合物的结构。 HP20SS分离国产血竭中的化学成分用甲醇提取,Sephadex LH-20、HP20SS和硅胶柱色谱分离国产商品血竭中的化学成分,用现代波谱方法进行结构鉴定。 HP20SS对猕猴桃中多酚类物质的纯化以中华猕猴桃为原料,采用有机溶剂浸提法提取、柱层析法分离纯化其中的多酚类物质。
  • PSP1可编程普克尔盒驱动器
    PSP1可编程普克尔盒驱动器的激光脉冲斩波 300ps-1ns,波长为1064nm, 可调触发延迟装置,可用脉冲终结器,PSP1可编程普克尔盒驱动器在科学界的应用十分广泛。PSP1可编程普克尔盒驱动器参数: 输出振幅3.5kv为50? ,可调度70-100% 脉冲宽度可调 300ps-10ns,25ps步骤 触发延迟约31 ns 抖动 20ps s 由极大到极小 远程控制 通过RS232或以太网控制触发阈值可调 PSP1可编程普克尔盒驱动器本地或远程控制: 脉冲宽度 触发启用/禁用 振幅 远程状态监测就地控 EEPROM电源配置可编程 110 / 240V,交流电源 PSP1可编程普克尔盒驱动器规格:? 没有通道1 ?输出振幅约3.5kv,可调低70%,到50? ?脉冲长度 <300ps-10ns,约25ps步骤 ?上升时间 ≥150 ps ?下降时间 200ps +脉冲长度/ 10 ?触发延迟 固定约31 ns ?触发要求≥4V,脉冲振幅为50欧姆, <2ns的上升时间 ?最大重复率 ≥100Hz ?抖动 <20ps 从极高到极低 ?监视器输出成比例 约×1000衰减 ?触发同步输出 ?本地显示/控制LED指示灯电源 ?电源接通/断开由本机开关装置控制 ?本地/远程控制开关 ?使用LED和键盘进行本地控制? 触发启用/禁用 ?脉冲宽度设置 ?远程控制触发启用/禁用? 脉冲宽度设置 ?状态监测包括脉冲宽度读出 ?连接器输入电源,AC,110/240V ?脉冲输出 ?触发同步输出 ?成比例的监视器输出 ?触发输入 ?抑制输入 ?以太网
  • C-flat有孔碳膜 ,300目金网,R 1.2 / 1.3
    C-flat和Au-flat于2005年首次推出,已成为结构生物学界的行业标准TEM载网。在很大程度上,冷冻电镜和单颗粒分析(SPA)技术的快速增长的推动下,数百万个C-flat载网已被研究者使用,用来鉴定包括病毒和膜蛋白在内的结构。 C-flat是一种超平坦、多孔的碳支持膜,用于透射电子显微镜(TEM)。与竞争的多孔碳膜不同,C-flat是在没有塑料的作为中间环节的情况下制造的,因此它是干净的,没有残留物。优势C-flat带来更好的数据集。采用专利的技术制成,C-flat提供超平坦的表面,从而有更好的颗粒分散和更均匀的冰厚。C-flat的精确制造工艺消除了诸如多余碳和孔周围边缘等伪影。应用C-flat有孔碳膜提供理想的样品支持,可在冷冻透射电镜中获得高分辨率数据,使其成为单颗粒分析、冷冻电子断层扫描和自动 TEM 分析的理想选择。冷冻电子断层扫描(cryoET)和单颗粒分析(SPA):许多研究人员报告说,C-flat&trade 的超平坦表面能够获得均匀的冰厚和孔区域内均匀的颗粒分布。与其他多孔支撑膜相比,这种最佳颗粒分布可收集出更好的数据。标配2μm孔尺寸。自动透射电镜C-flat提供一系列与Leginon等自动数据收集软件兼容的常规分析站点。这种兼容性,加上许多研究人员报告的更均匀的冰厚度和颗粒分布,使每个网格产生更高质量的目标位

血竭相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制