内因子

仪器信息网内因子专题为您提供2024年最新内因子价格报价、厂家品牌的相关信息, 包括内因子参数、型号等,不管是国产,还是进口品牌的内因子您都可以在这里找到。 除此之外,仪器信息网还免费为您整合内因子相关的耗材配件、试剂标物,还有内因子相关的最新资讯、资料,以及内因子相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

内因子相关的资料

内因子相关的论坛

  • 影响纤维吸湿的内因有哪些方面,一般的影响规律如何!

    影响纤维吸湿的内因有哪些方面,一般的影响规律如何! (1)亲水基团的作用,亲水基团越多,亲水性越强,吸湿性越好,大分子聚合度低的纤维,若大分子端基是亲水基团,吸湿性较强。 (2)纤维的结晶度。结晶度越低,吸湿能力越强。 (3)比表面积和空隙。纤维比表面积越大,表面吸附能力越强,吸湿能力越好,纤维内孔隙越多,吸湿能力越强。 (4)伴生物和杂质。不同伴生物和杂质影响不同,棉纤维棉蜡,毛纤维中油脂使吸湿能力减弱,麻纤维的果胶和蚕丝的丝胶使吸湿能力增强。

  • 【原创大赛】【开学季】+织物摩擦色牢度仪‘不听话’的‘内因’

    【原创大赛】【开学季】+织物摩擦色牢度仪‘不听话’的‘内因’

    织物摩擦色牢度仪‘不听话’的‘内因’摩擦色牢度是纺织品色牢度检测中的一个重要检测项目,在强制性标准中对摩擦色牢度也有明确要求,同时摩擦色牢度也是评价纺织品质量的一个重要的标准,在实际的检测中有着重要的意义。摩擦色牢度仪一般分为手动和电动两种,两种仪器各有优势,一般国标用电动摩擦仪的较多,电动摩擦仪是有一个小型电机带动,带动导杆,运用由一个直径MM的圆柱体摩擦头,并施以向下的压力为N,直线往复动程MM,然后完成一个摩擦过程,电动摩擦仪的优点就是运行速度和运行的距离是固定死的,能有效控制,减少人为误差;缺点就是有一定的声音,使用和保养不当的话会容易损坏这不,我们的电动摩擦仪‘不听话’了,竟然不能自己计数了,也就是说,本来每个样品摩擦十次,电动摩擦仪计数显示自动从十到零,然后自动停止,但是现在不能自动计数了,哪怕你摩擦100次也会不停止,当然也可以人工计数,手动停止,但是这样对仪器不好,也容易造成计数有偏差,有可能看错了会计数多一次少一次的,这样的话,就失去电动摩擦仪的作用了。停止使用,立即通知电工,但是对于这样的问题,电工也搞不懂,说这个还是不别乱拆,万一拆了造成更多的损坏就麻烦了,这么简单的问题都解决不了,估计只能叫做电工了,没有办法,立即和仪器厂家联系,安排检修事宜,厂家工程师的建议是让电工查看一下,应该不是什么大问题,我只能说电工搞不定,没有查出原因,请帮忙处理一下。第四天,厂家来人了,挺酷的一个小伙子,看看吧http://ng1.17img.cn/bbsfiles/images/2014/09/201409251616_515607_2154459_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/09/201409251617_515608_2154459_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/09/201409251617_515609_2154459_3.jpg 首先通电试机,不行,关电http://ng1.17img.cn/bbsfiles/images/2014/09/201409251618_515610_2154459_3.jpg http://ng1.17img.cn/bbsfiles/images/2014/09/201409251618_515611_2154459_3.jpg 内部构造,是不是挺简单 http://ng1.17img.cn/bbsfiles/images/2014/09/201409251618_515612_2154459_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/09/201409251619_515613_2154459_3.jpg 经简单查看,最后是感应的问题,也就是正常情况下,转一圈计数一次,那个感应点,在电机的转轴上,马达转一圈,计数一次,但现在计数感应的那个象纽扣电池一样的东西,竟然掉下来了,竟然就是用胶水粘上去的,不可思议 http://ng1.17img.cn/bbsfiles/images/2014/09/201409251619_515614_2154459_3.jpg不知道还能不能用,用胶水粘上试试吧,赶忙找胶水去,平时不用,现在用的时候,只能到小仓库找了,竟然有一瓶不知道多少月前的胶水,粘上后,试试看 http://ng1.17img.cn/bbsfiles/images/2014/09/201409251620_515615_2154459_3.jpg 装上外壳,再试机,成了小结:仪器是我们实验室检测分析人员手中的战斗武器,我们不能仅仅会使用它,还要学着去了解它,了解它的构造,了解它的原理,这样我们才能真正的成为一起的好朋友,就不会在仪器出现问题的时候再手忙脚乱了,掌握了这些知识,也会成为我们的一种能力,且会更好的服务检测工作。

内因子相关的方案

内因子相关的资讯

  • 拖尾因子、对称因子、不对称因子三者间的关系
    相信小伙伴们在日常测试中会发现,评价色谱峰的峰形对称性,有拖尾因子、对称因子、不对称因子三种参数。而目前使用的分析软件,ChemStation工作站中的对称因子,Empower工作站中的USP拖尾因子,Chameleon工作站中并没有对称因子参数,是以不对称度评价的。这三种参数的关系是什么,有什么区别,今天小编就和大家聊一下。理想条件下,色谱峰应该具有高斯型的特征:式中,χ等于(t-tR)/σ,t是时间,σ=W/4,y是峰高。色谱图中的真实峰通常会稍稍偏离对称的高斯峰形,通常会或多或少带一点拖尾。如下图所示: 拖尾因子:Tailing factor常用Tf表示,以峰高5%处计算。不对称因子:Asymmetry factor常用As表示,以峰高10%处计算。对称因子:Symmetry factor常用S表示,与不对称因子As互为倒数关系。As和Tf值的关系大概可以表达为:As≈1+1.5(Tf-1)所以一般来说As的值在一定程度上大于Tf的值。峰形随着不对称因子(As)和拖尾因子(Tf)而变化。当As或者Tf=1.0时,对应的是一个完美的对称色谱峰,在这种情况下,两个色谱峰可以很好地彼此分开。然而,随着峰拖尾的程度加重,它们之间的分离也变得糟糕。多数情况下峰拖尾的程度并不是很严重(Tf欧洲药典(EP)和英国药典(BP)规定进行有关物质或含量测定时,除另有规定外,色谱图中定量用对照品溶液的色谱峰对称因子应为0.8~1.5。美国药典(USP)中出现了对某些化合物拖尾因子要求不大于2.0。日本药典(JP)中没有具体规定拖尾因子的范围。从各国药典对拖尾因子范围的约束来看,拖尾因子并没有一个数值范围的确定标准,在实际的色谱实验中需要具体问题具体分析。
  • 2014年SCI影响因子发布 CNS影响因子上升
    北京时间7月30日,备受关注的汤森路透《SCI期刊分析报告》(Journal Citation Reports)新鲜出炉,该份报告涵盖82个国家237个大类10927本期刊。今年公布的是这些杂志2013年的影响因子,今年新增了379种期刊,同时也剔除了33种期刊,因为它们自引率过高。   在本次罗列的所有杂志中,56%的杂志影响因子均有所提高,而另外的44%杂志影响因子呈下降趋势。   2013年,在所有杂志中,引用次数超过500的杂志只有3本,它们分别为Nature、PNAS和Science。   在医学类期刊中,医学类排在第一的是Ca-Cancer J Clin,影响因子为162.500,2012年为153.459,第二的是NEJM,影响因子为54.420,2012年为51.658,CHEM REV杂志上升至第三位,取代去年Nature出版社旗下期刊NAT REV GENET,其影响因子为45.661,而Nat Rev Genet杂志影响因子下降至39.794,2012年为41.063。   CNS三大期刊影响因子的变化历年也颇受外界关注。2013年,三本杂志影响因子均有所上升,其中Nature杂志影响因子为42.351,高于2013年公布的38.597,排名亦大幅上升,在影响因子总中,排名第5。Cell和Science杂志影响因子也均有所上升,分别为33.116、31.477。Cell杂志今年总排名为第16位,Science紧随其后,排名第17名。   影响因子在一定程度上是一本杂志质量高低的标准之一,并且能够带来科学以外太多的东西:教职、基金申请、学术影响力等。尽管很多学者批评过杂志的影响因子,但是在发表论文时,他们仍旧是顶级杂志的拥趸。 最新公布的2013年杂志影响因子排名 Rank Full Journal Title Total Cites Journal Impact Factor 1 CA-A CANCER JOURNAL FOR CLINICIANS 16,130 162.5 2NEW ENGLAND JOURNAL OF MEDICINE 257,469 54.42 3 CHEMICAL REVIEWS 124,463 45.661 4 REVIEWS OF MODERN PHYSICS 37,647 42.86 5 NATURE 590,324 42.351 6 Annual Review of Immunology 16,653 41.392 7 NATURE REVIEWS GENETICS 26,358 39.794 8 LANCET 176,528 39.207 9 NATURE BIOTECHNOLOGY 42,156 39.08 10 NATURE REVIEWS CANCER 36,052 37.912 11 NATURE REVIEWS DRUG DISCOVERY 21,454 37.231 12 NATURE REVIEWS MOLECULAR CELL BIOLOGY 34,124 36.458 13 NATURE MATERIALS 54,962 36.425 14 NATURE REVIEWS IMMUNOLOGY 27,024 33.836 15 Nature Nanotechnology 27,858 33.265 16 CELL 191,226 33.116 17 SCIENCE 537,035 31.477 18 NATURE REVIEWS NEUROSCIENCE 30,120 31.376 19 CHEMICAL SOCIETY REVIEWS 63,071 30.425 20 JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION 124,822 30.387 21 Nature Photonics 18,623 29.958 22 NATURE GENETICS 81,548 29.648 23 PHYSIOLOGICAL REVIEWS 23,974 29.041 24 NATURE MEDICINE 60,002 28.054 25 PROGRESS IN POLYMER SCIENCE 17,446 26.854 26 Annual Review of Biochemistry 20,070 26.534 27 NATURE METHODS24,560 25.953 28 PROGRESS IN MATERIALS SCIENCE 6,903 25.87 29 NATURE IMMUNOLOGY 34,765 24.973 30 LANCET ONCOLOGY 20,565 24.725 31 SURFACE SCIENCE REPORTS 4,410 24.562 32 ACCOUNTS OF CHEMICAL RESEARCH 47,00524.348 33 Annual Review of Astronomy and Astrophysics 8,312 24.037 34 CANCER CELL 24,929 23.893 35 NATURE REVIEWS MICROBIOLOGY 16,774 23.317 36 Nature Chemistry 12,440 23.297 37 PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 21,386 22.91 38 Annual Review of Neuroscience 13,345 22.66 39 Cell Stem Cell 15,492 22.151 40 Annual Review of Pathology-Mechanisms of Disease 2,767 22.128 41 LANCET NEUROLOGY 17,534 21.823 42 TRENDS IN COGNITIVE SCIENCES 18,076 21.147 42 TRENDS IN COGNITIVE SCIENCES 18,076 21.147 44 Nature Physics 20,321 20.603 45 Annual Review of Psychology 11,810 20.533 45 Annual Review of Psychology 11,810 20.533 47 Annual Review of Cell and Developmental Biology 9,22420.241 48 NATURE CELL BIOLOGY 34,482 20.058 49 IMMUNITY 34,787 19.748 50 LANCET INFECTIOUS DISEASES 11,710 19.446 51 ENDOCRINE REVIEWS 13,623 19.358 52 Annual Review of Plant Biology 15,22818.9 53 PHARMACOLOGICAL REVIEWS 11,069 18.551 54 Annual Review of Pharmacology and Toxicology 7,373 18.523 55 Nano Today 3,855 18.432 56 Annual Review of Genetics 7,015 18.115 57 ADVANCES IN PHYSICS 5,02618.062 58 JOURNAL OF CLINICAL ONCOLOGY 130,991 17.879 59 Alzheimers & Dementia 3,821 17.472 60 PROGRESS IN ENERGY AND COMBUSTION SCIENCE 5,978 16.909 61 Cell Metabolism 15,636 16.747 62 Living Reviews in Relativity 1,60016.526 63 Annual Review of Marine Science 1,628 16.381 64 BMJ-British Medical Journal 85,434 16.378 65 ALDRICHIMICA ACTA 1,066 16.333 66 ANNALS OF INTERNAL MEDICINE 47,309 16.104 67 CLINICAL MICROBIOLOGY REVIEWS 12,781 1668 NEURON 71,989 15.982 69 Cancer Discovery 2,210 15.929 70 Nature Reviews Clinical Oncology 3,523 15.696 71 Annual Review of Physical Chemistry 7,570 15.678 72 REPORTS ON PROGRESS IN PHYSICS 11,421 15.63373 Annual Review of Materials Research5,833 15.629 74 Energy & Environmental Science 22,428 15.49 75 Annual Review of Medicine 5,560 15.478 76 ADVANCED MATERIALS 107,567 15.409 77 TRENDS IN ECOLOGY & EVOLUTION 26,806 15.353 78 JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY 79,235 15.343 79 Nature Climate Change 2,871 15.295 79 Nature Climate Change 2,871 15.295 81 MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS 9,547 15.255 82 JNCI-Journal of the National Cancer Institute 37,903 15.161 83 MOLECULAR PSYCHIATRY 13,902 15.147 84 NATURE NEUROSCIENCE 46,095 14.976 85 BEHAVIORAL AND BRAIN SCIENCES 7,017 14.962 85 BEHAVIORAL AND BRAIN SCIENCES 7,017 14.962 87 CIRCULATION 158,661 14.94888 EUROPEAN HEART JOURNAL 36,613 14.723 89 Annual Review of Physiology 8,246 14.696 90 MOLECULAR CELL 52,033 14.464 91 Science Translational Medicine 9,222 14.414 92 PSYCHOLOGICAL BULLETIN 34,080 14.392 92 PSYCHOLOGICAL BULLETIN 34,080 14.392 94 Advanced Energy Materials 5,433 14.385 95 MOLECULAR BIOLOGY AND EVOLUTION 34,971 14.308 96 ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES 23,718 14.137 97 Nature Reviews Neurology 3,257 14.103 98 Molecular Systems Biology 7,195 14.099 99 PLOS MEDICINE 16,975 14 100 GASTROENTEROLOGY 62,445 13.926 101 JOURNAL OF EXPERIMENTAL MEDICINE 64,191 13.912 102 GENOME RESEARCH 30,995 13.852 103FEMS MICROBIOLOGY REVIEWS 8,827 13.806 104 JOURNAL OF CLINICAL INVESTIGATION 96,908 13.765 105 ARCHIVES OF GENERAL PSYCHIATRY 38,622 13.747 105 ARCHIVES OF GENERAL PSYCHIATRY 38,622 13.747 107 AMERICAN JOURNAL OF PSYCHIATRY 43,193 13.559107 AMERICAN JOURNAL OF PSYCHIATRY 43,193 13.559 109 TRENDS IN BIOCHEMICAL SCIENCES 15,910 13.522 110 TRENDS IN PLANT SCIENCE 15,367 13.479 111 GUT 33,059 13.319 112 ASTRONOMY AND ASTROPHYSICS REVIEW 1,071 13.312 113 ARCHIVES OF INTERNAL MEDICINE 39,734 13.246 114 Nature Chemical Biology 12,495 13.217 115 ECOLOGY LETTERS 20,519 13.042 116 Annual Review of Entomology 9,546 13.021 117 Annual Review of Microbiology 9,159 13.018 118PROGRESS IN LIPID RESEARCH 4,382 12.963 119 Nature Reviews Endocrinology 2,753 12.958 120 NANO LETTERS 103,399 12.94 121 Annual Review of Clinical Psychology 2,542 12.921 121 Annual Review of Clinical Psychology 2,542 12.921 123 IMMUNOLOGICAL REVIEWS 13,018 12.909 124 TRENDS IN NEUROSCIENCES 18,523 12.902 125 World Psychiatry 1,459 12.846 125 World Psychiatry 1,459 12.846 127 Psychological Science in the Public Interest 584 12.833 128 ADVANCED DRUG DELIVERY REVIEWS 23,820 12.707 129 GENES & DEVELOPMENT 59,234 12.639 130 EUROPEAN UROLOGY 19,389 12.48 131 Annual Review of Biomedical Engineering 3,486 12.45 132 TRENDS IN CELL BIOLOGY 11,144 12.314 133 Annual Review of Biophysics 1,975 12.25 134 Cell Host & Microbe 7,622 12.194 135 MOLECULAR INTERVENTIONS 1,073 12.143 136 COORDINATION CHEMISTRY REVIEWS 27,922 12.098 137 ACS Nano 58,446 12.033 138TRENDS IN IMMUNOLOGY 8,638 12.031 139 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE 51,564 11.986 140 CELL RESEARCH 8,083 11.981 141 ANNALS OF NEUROLOGY 33,670 11.91 142 Annual Review of Condensed Matter Physics 845 11.909 143 Living Reviews in Solar Physics 582 11.833 144 MATERIALS SCIENCE & ENGINEERING R-REPORTS 5,154 11.789 145 PLOS BIOLOGY 24,324 11.771 146 Nature Geoscience 10,224 11.668 147 NATURE STRUCTURAL & MOLECULAR BIOLOGY 25,691 11.633 148 JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2,239 11.625 149 TRENDS IN GENETICS 11,015 11.597 150 BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 13,505 11.574 151 SYSTEMATIC BIOLOGY 12,226 11.532 152 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 462,510 11.444 153 Autophagy 7,829 11.423 154 ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 215,408 11.336 155 Annual Review of Fluid Mechanics 7,538 11.26 156 JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY 36,389 11.248 157 HEPATOLOGY 53,052 11.19 158CIRCULATION RESEARCH 47,185 11.089 159 Oceanography and Marine Biology 2,180 11.083 160 Annual Review of Phytopathology 5,920 11 161 AMERICAN JOURNAL OF HUMAN GENETICS 33,944 10.987 162 Annual Review of Ecology Evolution and Systematics 16,396 10.977163 Materials Today 4,739 10.85 164 Nature Reviews Gastroenterology & Hepatology 2,342 10.807 165 EMBO JOURNAL 76,176 10.748 166 Nature Communications 17,193 10.742 167 NATURAL PRODUCT REPORTS 7,158 10.715 168 GENOME BIOLOGY 19,687 10.465 169 Annual Review of Nutrition 4,846 10.459 170 ADVANCED FUNCTIONAL MATERIALS 42,244 10.439 171 JOURNAL OF HEPATOLOGY 24,551 10.401 172 REVIEWS OF GEOPHYSICS 7,418 10.4 173 DEVELOPMENTAL CELL 21,439 10.366 174 MOLECULAR ASPECTS OF MEDICINE 3,486 10.302 175 PROGRESS IN NEUROBIOLOGY 11,310 10.301 176 NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS 15,111 10.284 177 Nature Reviews Rheumatology 2,596 10.252 178 BRAIN 44,457 10.226 179 Nano Energy 971 10.211 180 Annual Review of Earth and Planetary Sciences 5,457 10.188 181 Nature Reviews Cardiology 2,196 10.154 182 TRENDS IN MOLECULAR MEDICINE 6,659 10.11 183 QUARTERLY REVIEWS OF BIOPHYSICS 2,529 10.083 184 TRENDS IN BIOTECHNOLOGY 10,767 10.04 185 TRENDS IN PHARMACOLOGICAL SCIENCES 10,912 9.988 186 Perspectives on Psychological Science 3,122 9.955 187 EXERCISE IMMUNOLOGY REVIEW 513 9.929 188CURRENT BIOLOGY 46,037 9.916 189 NPG Asia Materials 654 9.902 190 PROGRESS IN RETINAL AND EYE RESEARCH 3,875 9.897 191 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 565,934 9.809 192 TRENDS IN MICROBIOLOGY 8,763 9.808 193 Advances in Anatomy Embryology and Cell Biology 399 9.8 194 BIOLOGICAL REVIEWS 7,261 9.79 195 ACTA NEUROPATHOLOGICA 12,284 9.777 196 BLOOD 149,865 9.775 197 PROGRESS IN PHOTOVOLTAICS 6,206 9.696 198
  • 影响因子的前世今生
    伴随着科研竞争的日益激烈,如果你正在获取tenure职位、获得基金、评上国家奖或是当选院士的道路上,那么你的一篇最新得意之作发表在哪家期刊比较好呢?论文发表后能得到较大的认同度和曝光率呢?如果你面临着科研选题,哪些期刊的研究情报才是最值得信赖的研究动态呢?一个可供你参考的答案那就是&ldquo 期刊引证报告(Journal Citation Reports,简称JCR)&rdquo ,这是对学术期刊影响力评估的各项指标的概要,其中的一个核心指标就是期刊影响因子。   世界上的期刊成千上万,五花八门,要收录世界所有的期刊显然是不可能的,汤森路透期刊遴选目标是收录相对较为重要的期刊。因此,确保JCR和期刊影响因子有效性是遴选和维护所收录期刊的必要环节。JCR候选期刊除了需要被Web of Science数据库平台及其所包含的其他数据库所收录外,还需要通过一系列包括出版及时性、内容新颖程度、国际多元化、以及其他标准的评估。   根据汤森路透的初衷,期刊影响因子(Journal Impact Factor,简称JIF)作为JCR的一个重要指标,通常被认为代表着期刊的重要性。汤森路透认为,期刊影响因子所具有的优势是直接反映了科学家和学者自己对于最值得关注和有帮助的科学研究的判断。   影响因子在一定程度上虽说是一本杂志质量高低的标准之一,但它还能带来期刊甚至科学以外太多的东西,如教职、基金、奖励、学术影响力等。那么什么是期刊影响因子呢?   根据汤森路透的定义,期刊影响因子即某期刊前两年发表的论文在第三年中平均被引次数。例如,某期刊在2014年影响因子为4.25,说明这本期刊2012年和2013年发表的论文在2014年平均被引用了4.25次。   在汤森路透的一份如何正确使用期刊影响因子的声明中,他们认为:   汤森路透一直强调,作为衡量期刊影响力的常用指标,期刊影响因子应予以恰当的应用,而不是作为评估作者或机构的替代品。   期刊影响因子仅仅是单一数据点,必须严谨地并且联系实际情况加以考虑,因为很多因素都会影响论文在不同学科中的引用情况。   让期刊影响因子作为评估论文本身或者作者的代替品并不合理。   当前,尽管很多人批评学术界对其滥用,但当前取消它,或者马上改革并不是一件一蹴而就的事。今年6月18日,汤森路透公布了年度期刊引证报告JCR。今年的JCR报告涵盖了来自82个国家的237个大类的11149本期刊,其中自然科学领域收录了8618份SCI杂志。今年有272本杂志第一次被收录,与去年相比,53%的杂志影响因子增加。Ca-Cancer J Clin、NEJM以及CHEM REV再次包揽了榜单的前三甲,影响因子分别为115.84、55.873、 46.568。   在今年的JCR报告中,综合性期刊总共只有56个,其中Nature和Science分别位列第1和第2。值得注意的是Nature Communications已经超过了PNAS,而美国《国家科学院院刊》(PNAS)仅以9.674的影响因子排名第198位。 另外今年的排名新加了一个特征因子(Eigenfactor score)。这个数字是衡量一个期刊在其学科中的总体贡献,而一个学科的全部贡献值是100。比如下面的Nature, Science, 和PNAS的Eigenfactor score分别是1.5, 1.2 和1.4。总体来说影响因子和这个系数是高度相关的(r2 = 0.83)。   6月30日出版的PNAS发表了其主编Inder M. Verma的一篇吐槽文章&ldquo 影响力而非影响因子&rdquo ,显然是针对不久前的6月18日汤森路透公布2014年度的期刊引证报告JCR而有感而发。Inder M. Verma是一位来自美国加州圣地亚哥索尔克生物科学研究所的分子生物学家,于2011年11月出任PNAS主编,其职责是确保PNAS的水准得以维持,而大部分的论文审查和出版工作则仍将由PNAS的职员和编委会进行。他还在索尔克研究所自己的实验室里继续从事基因疗法、肿瘤遗传学和炎症的研究。他在文章中说:   当英国哲学家赫伯特· 斯宾塞1864年引入&ldquo 适者生存&rdquo 这个短语时,他万万没有想到可用来概括当前年轻科学家所处的困境。随着教师职位和研究经费竞争的持续白热化,今天的科研人员面临在高影响因子科学期刊上发表论文的巨大压力。但仅在几十年前的1970年代,当我作为一个病毒学家开始我的科学生涯时,我所在的领域普遍认同的是病毒学专业杂志。而只有跨学科的工作才会发表在那些迎合更多读者的期刊上。大多数研究人员阅读和发表论文时很少考虑传说中的所谓期刊自身的影响。教师任命、晋升以及科研项目的获取常常主要基于工作本身的未来可察觉的影响力,而不是依据其研究工作发表在所谓的&ldquo 高影响力&rdquo 期刊上。   不幸的是自那以后变化大潮势不可挡。美国科技情报所(ISI)(后来并入汤森路透)的创始人Eugene Garfield引入了期刊影响因子(JIF)这一概念。其最初的想法是帮助指导图书馆员决定订购那种期刊,自那以后这一指标长期被用于科技期刊的排名。按照Garfield的说法,&ldquo 一份期刊的影响因子基于两个元素:分子是前两年发表的论文在计算年度被引用总数,分母是前两年发表的论文总数(论文和综述)&rdquo 。这一计算方法即便是用来测度期刊的科学影响力时也存在固有的不足。由两年的时间窗口的引用数来决定影响力可能会造成仅少数论文就会对期刊的总体影响力影响巨大尤其是在那些多产且快速变化的研究领域,占了绝大多数引用。(例如,最近在干细胞生物学和基因编辑领域的爆发性增长)。   反思这一缺陷,《自然》杂志在其2005年的一篇社论中认为其当时的期刊影响因子 32.2的89%可归因于有关时段发表的25%论文的贡献。正如Garfield自己所观察到的,从1900到2005年的3800万篇文献中仅有0.5%的论文被引超过200次,有一半论文没有被引用,并且四分之一并非原创性研究论文。此外,基于细微差别(有时精确到小数点后三位)的影响因子对期刊进行排序,以增加标的外观精度和识别力。.   诚然,那种认为选择何种期刊发表论文不重要的想法也是不切实际的,那些激动人心的重要论文常常发表在影响因子高的期刊上。但这种事实并不意味着科学界认为影响因子很有用处,特别是将发表在高影响因子期刊上作为评价某篇论文质量的一个指标。例如,任职于任命/晋升/评估委员会的研究人员如何将申请人的研究论文归入特定的类别:属于低引用的大多数还是高被引的少数?   当提及如何判断研究工作本身的质量和重要性时,没有更好的质量评价替代指标。只好反复使用影响因子,但它既不是一个论文层面的指标,也不是一个比较研究者学术贡献的指标。然而,许多机构的绩效评估非常看重这一数字,目前其对学者的科学生涯进步有着巨大的影响。以至于一些大学的工作申请根本不考虑那些没有一篇作为第一作者的高影响因子期刊上论文的申请人。另外有的机构在给予tenure时考核申请人所发表论文的累积期刊影响因子是否达到一个阈值,如果达不到将会影响其职业进步。有的机构甚至提供巨额的奖励给那些在该影响因子期刊上所发的论文(传说有的按比例缩减!)。   诚然,科学界承担过多的责任,包括书写和评审项目申请和论文,教学,还要阅读成百上千的助理教授申请、tenure以及晋升。因此很容易的将高影响力工作等同于发表在高影响因子的期刊上。但并不是所有高影响力论文发表或能够发表在这种期刊上。需要记住的是什么因素决定一个特定工作最终对科学发展起作用是同等重要的。就PNAS来说,我们要求作者提交120字的工作重要性声明,来指出其在领域的影响力。其他机构和经费部门开始要求候选人陈述其重要论文的重要性,这些都将对评审有帮助。   作为论文重要性和业绩的仲裁者,科学家不能专门依赖于期刊的影响因子,可接受的指标应基于许多考虑,包括趋势分析和按学科领域分析。令人高兴的是科学界已注意到影响因子的负面影响,开始着手认真解决这一问题。&ldquo 科研评价的旧金山宣言&rdquo -这份2012年美国细胞生物学会提出的一系列指南,瞄准研究人员、出版商、经费组织以及其他相关人员-提倡对科研产出的合理评价。在这次会议上,有关不合理使用影响因子的对话已引起科学界注意这一问题。2015年4月在华盛顿举办的152届美国科学院年会上,由 eLife主编Randy Schekman组织了一个研讨会,更加深了上面提到的忧虑。持续的努力能帮助阻止对期刊影响因子的滥用,并减少科学界对其过分依赖。对正在庆祝诞生100年的PNAS来说,我们始终关注的影响力,而不是影响因子。   2013年5月17日,《科学》杂志还以&ldquo 影响因子曲解(Impact Factor Distortions)&rdquo 为题发表了社论。《科学》社论同《科研评价的旧金山宣言(DORA)》的观点一致,这一宣言是一些有识科学家于2012年美国细胞生物学年会之际开会的产物。为扭转科研评价中的曲解,DORA认为科学界应停止使用&ldquo 期刊影响因子&rdquo 来评价科学家个人的工作。宣言认为&ldquo 影响因子不能作为替代物用于评价个人研究论文的质量,也不能用于评估科学家的贡献,以及用于招聘、晋升和项目资助等评审&rdquo 。DORA还提出了以系列改进科研论文评价方式的行动,供基金资助机构、科研机构、出版商、研究人员以及评价机构借鉴。这些建议得到超过150多位知名科学家和包括美国科学促进会(AAAS)(《科学》出版商)在内的75家科学机构签署支持。社论认为这样做的理由如下:   影响因子是基于某一期刊的论文平均被引次数而计算的数字,从未被规定为可用于评价科学家个人。它仅是一个评价期刊质量的指标。但它正日益被滥用于评价科学家个人,人们常常根据论文所发期刊的影响因子对科学家进行排名。基于这一原因,在许多简历中,科学家都要标注其每篇论文所发期刊的影响因子,并且一般会按照3位小数(例如,11.345)的降序排列。并且在一些国家,发表在影响因子低于5.0期刊上论文被官方认为是零价值。正如许多知名科学家多次指出,这种影响因子躁狂症没有意义。   影响因子的滥用具有巨大的破坏性,它鼓励期刊的指标赌博,(影响期刊出版政策),造成一些期刊不愿发表某些领域的重要论文(如社会科学和生态学) ,仅仅因为这些领域的引用较其他领域(如生物医学)要少。并且浪费科学家大量时间,他们不顾一切地为从评估人处获得高分,而滥投高被引期刊(如《科学》)。   但任何&ldquo 对研究者的质量自动打分&rdquo 方式的最具破坏性的结果可能是鼓励&ldquo 跟踪模仿&rdquo (me-too science)。任何评价体系如果是研究人员论文数量增加就带来某种纯粹数字或分数的增长,一般会成为从事高风险和潜在开创性突破的工作的极大的负面激励。因为建立新实验和新方法一般需要多年的努力,而这期间将不会有论文发表。这一指标进一步会阻碍创新,因为它鼓励科学家工作在已经高度热门的领域,因为只有这些领域才会有大量科学家引用别人的工作,而不管工作是否杰出。造成仅有那些十分勇敢的年轻科学家才会冒险从事一些冷门研究领域,除非取消对个人的自动数字评估。   DORA的建议对维护科学健康发展十分关键。作为一个底线,科学家领导人必须承担仔细周到分析其他研究人员科学贡献的完全责任。为了做好这个,需要实际阅读每一研究者少量精选论文,而这一任务不能交由期刊编辑去完成。   这里列出《旧金山宣言》中的具体评价建议全文,以供参考:   总体建议   1.不使用影响因子等评价期刊的指标作为评价单篇研究论文质量的代替指标,也不用来评价某位科学家的贡献,也不用于决定是否聘用、提职或经费资助的指标。   对资助机构   2.明确用于评价资助申请人科研生产力的标准,明确强调一篇文章的科学内容比刊载该篇论文的期刊的计量指标和知名度更重要,特别是对起步阶段的研究人员。   3.科研评价的目的,除了发表的论文外,还应考虑其他所有研究产出的价值和影响(包括数据集和软件等),此外,还应考虑采用包括研究影响力的定量指标在内的更广泛的影响力测度指标,如测度其对政策和实践的影响等。   对研究机构   4.明确用于决定聘用、tenure和提职的标准,明确强调一篇文章的科学内容比刊载该篇论文的期刊的计量指标和知名度更重要,特别是对起步阶段的研究人员。   5.科研评价的目的,除了发表的论文外,还应考虑其他所有研究产出的价值和影响(包括数据集和软件等),此外,还应考虑采用包括研究影响力的定量指标在内的更广泛的影响力测度指标,如测度其对政策和实践的影响等。   对出版商   6.应大大减少强调期刊影响因子作为促销工具,最好不推销影响因子,或只给出一些基于期刊评价的指标(例如,5年影响因子、特征因子,SCImago,出版频次等,以便全面了解期刊的绩效。   7.提供一系列的论文层面的指标,鼓励转向到基于论文科学内容的评价,而非发表论文的期刊的出版指标。   8.鼓励负责任的作者署名,能提供每一作者特定贡献的信息。   9.无论期刊是开放获取还是订阅模式,应去除所有对论文参考文献列表的再利用限制,使其能按照&ldquo 公共领域贡献知识共享&rdquo ( the Creative Commons Public Domain Dedication)原则得以获取利用。   10.去除或减少对论文的参考文献数量的限制,合适情况下,应强制要求引用原创性论文而不是综述论文,以便让首次报道某一发现的作者(们)能得到认可。   对指标提供机构   11.使用来计算所有指标的数据和方法公开透明。   12.允许所提供的数能够不受限制地被再利用,并提供数据的计算步骤。   13.明确声明不能容忍对指标的不当操控行为 明确哪些属于不当操控,以及将采用的打击操控措施。   14.在使用、总计或比较指标时,应考虑文献类别(如综述 vs.研究论文)和不同学科领域的差异。   对研究人员   15. 当参加一个委员会来决策经费资助、聘用、tenure或晋升时,应基于论文的科学内容而非所发表的期刊指标来做出评价。   16.任何时候最适当论文引用方式应是引用首次报道观察结果的原创文献而非综述,让原创作者实至名归。   17.采用一系列论文计量指标和个人指标/支持声明,作为某人所发论文和其它科研产出影响力的证据。   18.挑战不恰当地依靠期刊影响因子进行科研评价的行为,提倡关注特定研究产出的价值和影响的最佳实践。   影响因子在中国流行也是有它存在的土壤和原因的。由于科研竞争的日益激烈,各种评价也日益增多,面对种种科研不端行为,人们需要找到一种相对客观而又简单并且人为因素干预最少的办法。毋庸讳言,从这个意义上来说,影响因子在科研评价中还是发挥了一定的作用。期刊影响因子虽然不能作为研究水平的绝对和唯一的评价指标,在不同学科之间也是无法比较的。但它在同一学科内作为一般性评价指标还是有价值和意义的,一般来说同一学科内影响因子高的刊物的论文发表要求相对较高,文章的总体质量和平均水平也是相对较高的。虽然影响因子并不能完全反映一个科研工作者的水平,但从统计学的意义上讲,同一领域内,发在高影响因子杂志上文章的水平还是要普遍高于低影响因子杂志上的文章。在同行评议还不能做到完全客观和全面时,影响因子总体上还是能反映一些问题的。因此,影响因子评价虽然是有违科研精神的,但目前阶段还是一种较为公平的评价,大家在同一个游戏规则下也是平等的。   然而,影响因子只代表研究热点,不能直接代表研究水平(哪怕是同一个领域的), 因此,影响因子只能作为某种参考,不能唯影响因子是论,更不能赋予其太多的利益和好处。因为,在一些传统学科的老牌刊物,因为其综合性强,加之学科本身并不是十分热门,因而其影响因子并不太高,而一些新的学科其所推出的新期刊反而期刊影响因子很高,他们所发表的论文水平是不能放在一起比较的,更何况在同一高水平期刊中的论文还有好坏之分,有的甚至还会撤稿。   值得注意的是,就在近期,汤森路透又推出了一些最新的期刊评价指标。包括期刊规范化引文影响力、期刊期望引文数等新指标。   期刊规范化的引文影响力(JNCI)与学科规范化的引文影响力类似(关于这一指标,将在后续的文章中介绍),其区别在于JNCI没有对研究领域进行规范化,却对文献发表在特定期刊上的被引次数进行了规范化。每篇出版物的JNCI为该出版物的实际被引频次与该发表期刊同出版年、同文献类型论文的平均被引频次的比值。一组出版物的JNCI值为每篇出版物JNCI值的平均值。JNCI指标能够提供某单一出版物(或某组出版物)与其他科研工作者发表在同一期刊(或同一组期刊)上成果的比较信息。这个指标能够回答,诸如&ldquo 我的论文在所发表期刊上表现如何?&rdquo 之类的问题。如果JNCI的值超过1,说明该科研主体影响力高于平均值,如果JNCI的值低于1,说明其影响力低于平均值。JNCI对于出版社评价论文发表后的影响力水平亦是十分有用的指标,它揭示出那些超过平均水平并提高了期刊被引频次的研究工作。 表:作者层面的CNCI与JNCI指标示例   表格列举了一个在作者层面应用CNCI和JNCI的例子。科研工作者D和科研工作者E的出版物数量与引文数均十分接近。他们的引文影响力也十分接近,h指数也是相同的。如果只从上表中的前四个指标,则不能区分两个科研工作者的科研绩效。实际上,两位科研工作者可能在两个不同的科研领域进行研究,其论文发表的历史也可能完全不同(老论文与新论文)。使用CNCI和JNCI指标,能够让我们更好的了解两位科研工作者与同领域、同文献类型、同出版年的同行的对比情况。从规范化的指标中,我们可以很快发现科研工作者D的CNCI(1.32)与JNCI(1.86)的值都超过了平均值(大于1)。发现科研工作者E的CNCI(0.45)与JNCI(0.72)的值均低于平均值(小于1)。应该注意到JNCI是一个相对的科研绩效评估指标。尽管在很多情况下,CNCI与JNCI可能正相关,但这并不是对所有情况都成立。例如,如果一个科研工作者的CNCI指标高于平均值,JNCI指标低于平均值,这可能意味着该科研工作者在其论文发表的科研领域获得了比平均水平更多的引用,但是这位科研工作者发表的期刊具有非常高的被引频次(例如《科学》或《自然》),因此他/她的论文被引频次低于这本期刊上论文的平均被引频次。   期刊期望引文数(Journal Expected citations)是同一期刊、同出版年、同文献类型的论文的平均引文数。可以通过计算实际/期望引用值的比值,也就是用一篇论文的实际引文数除以该期刊论文的平均引文数,来评估论文的表现。如果该比值大于1,说明论文的引文数高于平均值。例如,2004年,Circulation期刊的篇论文平均引文数为55.34,则期刊期望引文数即为55.34。如果某一2004年发表于Circulation期刊上的论文有30篇引文,则其实际引文数与期望引文数的比值为0.54,说明该论文表现低于平均值。事实上,在很多分析中,期刊实际/期望引文数的比值是一个累积的比值,也就是说,分母(期望引文数)是一组论文集发表的所有期刊期望被引频次的总和,而分子(实际引文数)则为该组论文集引文数的总和。   作者:贺飞 北京大学

内因子相关的仪器

  • 产品概述  ETMS-200-ZG是一款基于传感器法的有毒有害多气体监测仪。监侧仪可同时监测多种有机/无机因子气体(例如VOCs、硫化氢、氨气等),具有工作温度宽,气体传感器配置灵活、人机交互简便等特点。该在钱检测仪适用于化工园区及其周边地区的大气突发性环境事件风险物质监测。产品特点  基于传感器法,可实现对多数机/无机因子气体定性定量监侧  支持恶臭气体的恶臭因子OU值测量计算  采用精细过滤、恒流采样、自动清洗以及伴热等预处理技术,保证传感器有效运行具有开机及运行故障自诊断功能  监侧数据以GPRS无钱通讯方式传输,无需铺设通讯线  气体探测器支持拔插式更换、维护简便  系统防爆设计、集体小、安装简单  可集成气象五参数监测设备
    留言咨询
  • CGF高浓缩生长因子变速离心机TD5A特性:1.采用英锐恩公司单片机及英飞凌公司驱动模块,配合自主研发控制板及大力矩直流无刷电机,运行稳定噪音低,提供舒适的实验室环境。2.具备超速、超温、不平衡、 欠压、过压等多种预警功能,三级阻尼减震,特殊组合减震装置,使电机平稳运行安全可靠,防止样品重悬,实现优异离心效果。3.TFT-LCD真彩显示屏,触屏按键及实体按键双操作模式,设有离心力显示专用键,同时显示设定参数和运行参数,运行中可随时更改参数,无需停机,操作界面直观、简单,方便使用;操作菜单可提供多国语言版本(中文、英文、俄文、葡萄牙文)。4.生物安全气密性角转子采用硅橡胶整体密封圈(欧盟RoHS 2015/863),可避免气溶胶外溢,充分保证工作人员及实验室环境的安全。5.后置奥氏体304不锈钢离心腔配合全钢喷塑外壳、一体冲压成型钢制前脸及三层钢制保护套等安保装置,既坚固耐用,又确保工作人员及实验室使用的安全。6.100V-230V宽电压设计,提高离心机对电压的适应范围(可选配)。7.CGF高浓缩生长因子变速离心机,采用静音机电一体化电机门锁,使用方便,只需轻轻合门盖,即会触发门锁系统,将门盖安全锁定。8.10档加速及10档减速速率控制,可存储20组用户自定义程序,方便调用常用程序,开机为上次使用程序。9.航空锻造铝转子(仅限角转子)及多种聚酰胺纤维适配器可选,可离心各类MTP微孔板、PCR板、细胞培养板和深孔板。10.CGF高浓缩生长因子变速离心机,具备CFDA备案及CFDA生产资质,通过了ISO 9001(2015)认证及ISO 13485(2016)认证。技术参数产品名称TD5A最高转速(r/ min)5500最大离心力(×g)4800最大容量4×250 ml定时范围1-99h59min/连续/短时离心转速精度±50r/min运行程序20组控制及驱动系统大力矩直流无刷电机,微机控制总功率500 w噪音≤60dB电源AC220V 50Hz重量35 Kg外形尺寸(长×宽×高)600×540×360 mm CGF高浓缩生长因子离心机转子参数:产品名称容量TD5A最高转速(r/ min)最大离心力(×g)角转子12×10 ml/15ml55003382水平转子4×250 ml40002780适配器8×50 ml 4000 278024×15 ml 4000 278032×10 ml 4000 278040×5 ml 4000 2780水平转子48×5 ml普通管4000296048×5 ml/2 ml(真空采血管)4000296076×5 ml/2 ml(真空采血管)4000308024×15 ml/10ml5000462032×10 ml/15ml400029604×50 ml500046008×50 ml400029604×100 ml50004800水平酶标板转子2×2×96孔40002360
    留言咨询
  • 属性:类型:实验教学专用装置适用范围:化工原理实验教学、科研小中试表面处理:拉丝处理尺寸:1480mm*580mm*1800mm颜色:灰白型号:LPK-SRID品牌:莱帕克可售卖地:全国区域产品关键词固定床、有效因子、内扩散有效因子、反应工程催化剂颗粒内扩散有效因子测定实验装置介绍催化剂颗粒内扩散有效因子测定实验装置体系为苯加氢制环己烷,催化剂为Ni/Al2O3固体颗粒,装置由管式固定床反应器、预热器、产品冷凝器、气液分离器、液体泵、流量计、湿式气体流量计、温度传感器、冷凝系统和电控系统组成。加热炉为程序控温,开放式炉,开合方便,方便反应器拆装。 可完成以下知识点教学:1、掌握测定气固相催化反应催化剂颗粒内扩散有效因子η及本征反应动力学实验数据。2、掌握实现催化剂的活性评价、活化再生等操作过程。 装置特点:催化剂颗粒内扩散有效因子测定实验装置适用于化工类专业,装置总占地面积0.86平方米,高度1.8米,整体采用欧标铝型材框架,高品质铝合金框架带移动脚轮,具有耐用性。工艺管路可见度高,让实验现象更加的直观。具备超温超压报警系统,保证实验运行的本质安全。配套智能学习系统,通过预习视频、3D仿真、在线考评测试等,培养学生自主学习意识,激发学生学习兴趣,减轻教师教学压力。提供6年质保,解决用户的后顾之忧。
    留言咨询

内因子相关的耗材

  • 70807-100肝素磁珠抗凝血因子III分离纯化磁珠
    肝素磁珠BeaverBeads™ Magrose Heparin系列磁珠具有快速的磁响应性、丰富的肝素密度、很高的物理化学稳定性等特点。该磁珠产品表面所偶联的肝素带有大量负电性硫酸根离子基团,在一定pH值下,可以与带正电的蛋白具有强的结合能力,同时肝素能够通过特异性亲和与生长因子及抗凝血酶AT Ⅲ结合,因此,可通过磁性分离的方式快速、高效地从血浆中一步纯化出目标因子。 与传统柱层析纯化方式相比,Magrose Heparin系列磁珠无需对粗蛋白样品进行预处理(如:反复繁琐的离心,费时费力的过滤操作),此外,无需控制流速及柱压,不需要昂贵的层析设备。对于熟练的操作者来说,在很短时间内就能完成高纯度目的蛋白的提取,且能轻松实现多个样品的平行处理,实现高通量的蛋白纯化。 该磁珠产品可应用于抗凝血因子III、凝血因子、干扰素、核酸结合蛋白、脂蛋白、蛋白合成因子、限制性内切酶、凝血酶及类凝血酶等生物分子的分离纯化。 产品名称编号规格包装单价BeaverBeads™ Magrose Heparin70807-510% (v/v)5mL¥BeaverBeads™ Magrose Heparin70807-10010% (v/v)100mL¥BeaverBeads™ Magrose Heparin70807-100010% (v/v)1000mL¥产品优势1.丰富的结合位点,加强了与配体的特异性结合2.磁响应速度快,减少操作时间3.磁珠具有良好的分散性和重悬性,提高操作的便捷性4.配基具有良好的物理化学稳定性,提高了实验结果的可靠性及可重复性产品特性产品名称BeaverBeads™ Magrose Heparin磁珠粒径范围30~150μm表面基团/含量肝素(~3mg/mL beads)蛋白结合量可达2mg/mL(100% beads)工作温度4℃~30℃悬液浓度20%(v/v)乙醇保存温度2℃~8℃
  • 40ml棕色螺纹样品瓶 印字带书写处
    标准螺纹口样品储存瓶符合国际药典的要求免清洗,可直接使用采用化学惰性佳的聚四氟乙烯(PTFE)密封性能极佳PTFE复合硅胶垫是密封储样的佳选择,可耐强酸强碱,可抗高温及低温冷藏,具有高密封性PE垫片是经济的选择,但不适可腐蚀性的样品储存,不建议长时间存储液体,可作一般储存易见光分解样品可选择棕色样品瓶24-400标准螺纹口样品瓶及盖垫货号产品描述规格包装HM-409540ml透明螺纹样品瓶/24mm27.5*95mm100/PKHM-4095A40ml棕色螺纹样品瓶/24mm27.5*95mm100/PKHM-4095AE40ml棕色螺纹样品瓶/24mm(特级料)27.5*95mm100/PKHM-4095Y40ml透明螺纹样品瓶 印字27.5*95mm100/PKHM-4095AY40ml棕色螺纹样品瓶 印字27.5*95mm100/PKHM-5012050ml透明螺纹样品瓶/24mm27.5*122mm100/PKHM-50120A50ml棕色螺纹样品瓶/24mm27.5*122mm100/PKHM-60140G60ml透明螺纹样品瓶/24mm27.5*140mm100/PKHM-60140AG60ml棕色螺纹样品瓶/24mm27.5*140mm100/PKHM-6014060ml透明螺纹样品瓶/24mm30*125mm100/PKHM-60140A60ml棕色螺纹样品瓶/24mm30*125mm100/PKHM-0022A预组装黑色螺纹实心盖;本色PTFE/本色硅胶垫Φ24mm100/PKHM-0028预组装白色螺纹实心盖;本色PTFE/本色硅胶垫Φ24mm100/PKHM-0022B预组装黑色螺纹实心盖; 优质PE垫片Φ24mm100/PKHM-0030预组装白色螺纹实心盖; 优质PE垫片 Φ24mm100/PKHM-0022EA白色开孔螺纹盖 本色PTFE/本色硅胶垫,Φ24mm100/PKHM-0029黑色开孔螺纹盖 本色PTFE/本色硅胶垫Φ24mm100/PKHM-0031白色实心螺纹盖 铝箔垫Φ24mm100/PK
  • 30ml透明棕色螺纹样品瓶印字带书写处
    标准螺纹口样品储存瓶 符合国际药典的要求免清洗,可直接使用 采用化学惰性佳的聚四氟乙烯(PTFE)密封性能极佳PTFE复合硅胶垫是密封储样的佳选择,可耐强酸强碱,可抗高温及低温冷藏,具有高密封性PE垫片是经济的选择,但不适可腐蚀性的样品储存,不建议长时间存储液体,可作一般储存 易见光分解样品可选择棕色样品瓶24-400标准螺纹口样品瓶及盖垫货号产品描述规格包装HM-307230ml透明螺纹样品瓶/24mm27.5*72mm100/PKHM-3072A30ml棕色螺纹样品瓶/24mm27.5*72mm100/PKHM-3072Y30ml透明螺纹样品瓶 印字27.5*72mm100/PKHM-3072AY30ml棕色螺纹样品瓶 印字27.5*72mm100/PKHM-0022A预组装黑色螺纹实心盖;本色PTFE/本色硅胶垫Φ24mm100/PKHM-0028预组装白色螺纹实心盖;本色PTFE/本色硅胶垫Φ24mm100/PKHM-0022B预组装黑色螺纹实心盖; 优质PE垫片Φ24mm100/PKHM-0030预组装白色螺纹实心盖; 优质PE垫片 Φ24mm100/PKHM-0022EA白色开孔螺纹盖 本色PTFE/本色硅胶垫,Φ24mm100/PKHM-0029黑色开孔螺纹盖 本色PTFE/本色硅胶垫Φ24mm100/PKHM-0031白色实心螺纹盖 铝箔垫Φ24mm100/P

内因子相关的试剂