八甲基

仪器信息网八甲基专题为您提供2024年最新八甲基价格报价、厂家品牌的相关信息, 包括八甲基参数、型号等,不管是国产,还是进口品牌的八甲基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合八甲基相关的耗材配件、试剂标物,还有八甲基相关的最新资讯、资料,以及八甲基相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

八甲基相关的资料

八甲基相关的论坛

  • GCMS 打八甲基环四硅氧烷的问题

    我用GC-ms, 柱是HP-35MS,打八甲基环四硅氧烷的时候发现,就是在溶剂中也会有很高的响应,不知道是什么原因?我用的溶剂是乙酸乙酯,发现溶剂 M/Z 281有很大的响应,最初怀疑是溶剂有问题,后来用LC的甲醇,发现也有同样的问题,说明不是溶剂的原因,大家有什么好的办解决吗?、

八甲基相关的方案

八甲基相关的资讯

  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • NAR | 许伟团队揭示BAF155蛋白的精氨酸甲基化修饰水平影响恶性肿瘤转移的新机制
    蛋白质精氨酸甲基化修饰是一类由精氨酸甲基转移酶(Arginine methyltransferases, PRMTs)介导的翻译后修饰作用。PRMTs不仅能够通过甲基化修饰组蛋白上特定位点的精氨酸来调控下游靶基因的转录活性,还参与修饰了多种非组蛋白类作用底物,以此来影响RNA剪接、蛋白质翻译、细胞周期等一系列细胞生物学行为。近年来,越来越多的证据表明蛋白质精氨酸甲基化水平的失调与恶性肿瘤的发生、发展密切相关。因此,PRMTs作为潜在的肿瘤治疗靶点,逐渐引起了全球科学家的关注。2021年11月19日,威斯康星大学麦迪逊分校医学院许伟教授团队在Nucleic Acid Research上发表题为BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity的研究成果。该研究发现,精氨酸甲基化修饰的BAF155蛋白可以通过操纵增强子、破坏机体的抗肿瘤免疫能力,从而促进恶性肿瘤的转移 。BAF155是染色质重组复合物SWI/SNF的重要亚单位之一。2014年,许伟课题组在Cancer Cell发文,首次证实了PRMT4(又称CARM1)能够通过甲基化修饰BAF155蛋白第1064位精氨酸,起到促进三阴性乳腺癌转移的作用【1】。近日,该课题组以基因编辑的乳腺癌细胞系与小鼠模型为基础,结合多组学技术揭示了me-BAF155促进乳腺癌转移的内在分子机制。超级增强子(Super-enhancers, SEs)是基因组中大量增强子富集的转录调控区域。在转录过程中,通过富集多种转录因子和辅因子(BRD4等)来大幅度激活下游靶基因的转录活性。本研究中,作者采用ChIP-seq技术对me-BAF155的基因组结合位点进行全局定位分析,发现me-BAF155和BRD4在SEs处共定位,以此调节关键癌基因的表达水平。CARM1抑制剂(CARM1i)的处理,能够使得me-BAF155和BRD4从SE上解离,减少SE数量,激活干扰素α/γ通路,增强宿主免疫反应,起到抑制肿瘤生长和转移的治疗效果。最后,作者采用VERSA技术分离循环肿瘤细胞,证实me-BAF155在高转移特性的三阴性乳腺癌患者的循环肿瘤细胞中呈稳定、持续的强阳性表达(图1)。该研究首次揭示了me-BAF155在促进恶性肿瘤转移中具有双重作用:通过招募BRD4激活增强子依赖的癌基因转录活性;通过抑制干扰素α/γ通路以削弱宿主免疫反应。尽管CARM1抑制剂具有较低的细胞毒性,但是在体外依然能够显著抑制三阴性乳腺癌细胞的迁移,在体内显著抑制肿瘤生长和转移。因此,作者提出CARM1抑制剂有望被开发成为单独使用的抗癌药物,或与其他治疗药物(如免疫治疗)联合使用,用于治疗转移性恶性肿瘤。另外,相较于现有的CARM1抑制剂,开发me-BAF155(R1064)靶点特异性的小分子抑制剂,有望产生抑癌效果更好、副作用更少的新型抗肿瘤药物。
  • 安捷伦科技公司推出首款针适用于疾病研究的 DNA 甲基化靶向序列捕获产品
    安捷伦科技公司推出首款针适用于疾病研究的DNA甲基化靶向序列捕获产品 2012 年 2 月 14 日,佛罗里达州马科岛(基因组生物学和技术,AGBT)- 安捷伦科技公司(纽约证交所:A)推出其靶向序列捕获平台的新成员,SureSelect XT 人甲基化测序系统,适用于表观遗传学研究中 DNA 甲基化位点检测。这是市场上第一款采用靶向序列捕获技术的全面 DNA 甲基化发现系统。安捷伦将于明日在基因组生物学技术进展年会上揭晓该产品的技术细节。 Agilent SureSelect XT 甲基化测序系统基于液相杂交,是可以分析人类基因组中低甲基化与过度甲基化的胞嘧啶位点的独特研究工具。亚硫酸盐测序技术是 DNA 甲基化研究的黄金标准,也是第一种可以全面研究DNA 甲基化的发现系统。Agilent SureSelect XT 甲基化测序系统将市场领先的靶向序列捕获平台 SureSelect 与亚硫酸盐测序结合在一起,挑选了与表观遗传学研究最相关的基因组序列,包含了与多种疾病(例如,癌症、基因组印记疾病、行为和精神障碍等等)相关的区域,实现了前所未有的序列覆盖范围。 &ldquo DNA 甲基化是重要的表观遗传学特征之一。&rdquo 华盛顿大学西北参考表观基因组图谱中心主任 John Stamatoyannopoulos 说,&ldquo 如果拥有一种经济实惠的可以在亚硫酸盐测序过程中智能地检测数百万 CpG 的平台,那么将大大降低成本并大幅扩展基因组规模 DNA 甲基化分析的范围和适用性。&rdquo &ldquo Agilent SureSelect XT 甲基化测序系统涵盖了所有基因组中癌症研究领域关注的甲基化胞嘧啶位点,投入产出比相当好。&rdquo 马克斯普朗克分子遗传学研究所 Michal-Ruth Schweider 医学博士说道。 &ldquo 我们很高兴能为用户提供这种新工具来满足医学界日益增加的需求。&rdquo 安捷伦副总裁基因组学总经理 Robert Schueren 说道。&ldquo 由于异常甲基化是可逆的,因此这种分析方法非常有利于开发新的治疗方法。&rdquo Agilent SureSelect XT 甲基化测序系统使研究人员能够分析超过 370 万个CpG 核苷酸序列位点,研究它们的甲基化状态。该系统针对启动子、经典 的CpG 岛以及最近被关注的位于CpG 岛上下游 2kb范围内的&ldquo shores&rdquo 和&ldquo shelves&rdquo 区域设计。研究表明,许多甲基化变化并不发生在启动子或 CpG 岛,而是发生在 CpG 岛上下游2kb 范围内,也就是 CpG 岛shores区域。除上述区域外,Agilent SureSelect XT 甲基化测序系统的设计还包含了已知的差异性甲基化区域。 与全基因组亚硫酸盐测序相比,Agilent SureSelect XT 甲基化测序系统具有更高的通量和更低的成本。它可以识别限制性内切酶或免疫沉淀法不能检测的区域。因为该产品也属于SureSelect XT 产品系列,安捷伦为用户提供全套工作流程解决方案。并配有适用于文库构建和靶序列捕获的所有必备试剂。 要了解更多信息,请访问 www.agilent.com/genomics/ngs。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18,700 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn

八甲基相关的仪器

  • Lovibond® 德国罗威邦® 水质分析 Lovibond 罗威邦 甲基橙碱度快捷测试套装 Minikit罗威邦 甲基橙碱度快捷测试套装 Minikit 采用片剂计数法快捷测试水样甲基橙碱度,量程为 10-500 mg/l CaCO3。罗威邦 Minikit 快速测试系列适用于现场快速测试,针对不同参数化学特性采用片剂计数法、滴定法、定性判断法、浊度法。可测参数有碱度、酸度、硬度、氯离子、氰尿酸、亚硝酸、正磷酸盐、季铵盐、硫酸盐、亚硫酸盐、硫、丹宁指数等。订购信息量程20-500 mg/l CaCO3,10-250 mg/l CaCO3试剂类型片剂测试方法片剂计数法化学方法甲基橙碱度包装次数根据测试量程不同约 50-100次补充试剂515320BT100片515321BT250片使用方法确定水样:20 - 500 mg/l CaCO3 范围内水样取 50 ml,10 - 250 mg/l CaCO3 范围内水样取 100 ml。添加片剂直到黄色变成红色:向水样中加入一个片剂,摇晃至溶解,观察颜色,再加入一片溶解,直到水样由黄色变成红色。记住片数。计算碱度:50 ml 水样:总碱度 (mg/l CaCO3) = (片剂数 x 40) - 20100 ml 水样:总碱度(mg/l CaCO3) = (片剂数 x 20) - 10冲洗干净容器 标准配置塑料盒片剂试剂装水样的容器必须的附件操作指南
    留言咨询
  • 广泛用作绝缘、润滑、防震、防尘油、介电液和热载体,以及用作消泡、脱膜、油漆和日用化妆品的添加剂等。 201甲基硅油具有各种优异的特性,因此在工农业生产,国防工业,科学研究及医疗卫生等部门,都得了极其广泛的应用。它广泛用于电气绝缘、脱模、消泡、阻尼、防震、滚压、防尘、防水、高低湿润等方面。 1、在机电工业中的应用:201甲基硅油广泛用在电机、电器、电子仪表上作为耐温、耐电弧电晕、抗蚀、防潮、防尘的绝缘介质、目前还用做变压器、电容器、电视机的扫描变压器的浸渍剂等。在各种精密机械、仪器及仪表中,用作液体防震、阻尼材料。201甲基硅油的消震性能受温度影响小,多用于具有强烈机械震动及环境温度变化大的场合下,使用的仪表如:飞机、汽车的仪表中。用于防震、阻尼、稳定仪表读数,还可作为液体弹簧,且于飞机的着陆装置中。2、在消泡剂中的应用:由于201甲基硅油表面张力小,且不溶于水,动植物油及高沸点矿物油中,化学稳定性好、又无毒,用作消泡剂已广泛用于石油、化工、医疗、制药、食品加工、纺织、印染、造纸等行业中,只要加入10-100PPM的硅油就具有良好的消泡剂作用。3、在脱模剂中的应用:由于201甲基硅油与橡胶、塑料、金属等的不粘性,又用做各种橡胶、塑料制品成型加工的脱模剂,及用于精密铸造中。用它做脱模剂不仅脱模方便,且使制品表面洁净、光滑、纹理清晰。4、在绝缘、防尘、防霉涂层中的应用:在玻璃、陶瓷器表面浸涂一层201甲基硅油,并在250-300℃进行热处理后,可形成一层防水、防霉和绝缘性的薄膜。用之处理绝缘器件,可提高器件的绝缘性能:用之处理光学仪器,能防止镜片、棱镜发霉;用之处理药瓶,能延长药品的保存期,并不使制剂因粘壁而损失;用之处理电影胶片的表面,可起润滑作用,减少磨擦,延长影片寿命。5、在润滑剂中的应用:201甲基硅油适于做橡胶,塑料轴承、齿轮的润滑剂。也可做为在高温下钢材对钢的滚动磨擦,或钢与其它金属磨擦时的润滑剂。6、在添加剂中的应用:201硅油可作许多材料的添加剂,如可作为油漆的增光剂,加少量硅油到油漆中,可使油漆不浮包、不起皱提高漆膜的光亮度,加少量硅油到油墨中,可提高印刷质量,加少量硅油到抛光油中(如汽车上光油),可增加光亮,保护漆膜,并有优良的防水效果。7、在医疗卫生中的应用:201甲基硅油对人体无生毒性,也不被体液分解,故在医疗卫生事业中,也被广泛应用。利用其消泡作用,制成了口服胃肠消胀片,及肺水肿消泡气雾剂等药用。在药膏中加入硅油,可提高药物对皮肤的渗透能力,提高药效。以硅油为基础油的某些膏药剂对烫伤、皮炎、褥疮等都有很好的疗效,利用硅油的抗凝血作用,可用其处理贮血器表面,延长血样贮存时间等。8、在其它方面中的应用:201甲基硅油在其它方面还有许多用途。如:利用其闪点高、无嗅、无色、透明且对人体无毒等特性,在钢铁、玻璃、陶瓷等工业和科研中,作为油浴或恒温器中的热载体。利用其抗切变性能好,可做液压油尤其是航空液压油。用其处理人造丝纺丝头,可消除静电,提高抽丝质量。在化妆品上加入硅油能提高对皮肤的滋润和保护作用等等。
    留言咨询
  • 德国RP甲基紫测试仪 400-860-5168转2728
    甲基紫测试仪产地:德国简介:在135℃时,采用甲基紫测试法,测定硝基纤维素火药和消极化合物的热稳定性(美军标MIL -STD-286C:120和134,5 °C)。仪器包含:? 重铝加热块,电子加热;24孔,20.5 mm ? (MIL -STD-286C: 19 mm),深度280mm;采用ISO隔离板;温度传感器:PT100;超温安全装置;? 采用单独的控制箱放置可程序化加热控制器(PID);电源线长,约2m;数字显示预设温度和实际温度值,控制精度:±0.1℃;可调温度范围:60-140℃;? 24个圆柱测试管,带有制动器和不锈钢钩,制动器上有通气孔;测试管尺寸:外直径? 20mm (MIL -STD-286C:18 mm);内直径17mm (MIL -STD-286C :15 mm);长度290mm;? 200张甲基紫试纸,用于检测一氧化二氮气体; 电气连接:230V,50-60Hz;功率消耗:1500VA;
    留言咨询

八甲基相关的耗材

  • MDM | 八甲基三硅氧烷 | 甲基聚硅氧烷
    产品特点:MDM Linear, 1mlSKU: MDM Categories: 硅烷化试剂 / Standards, Linears Tags: Cyclics & Linears, Linears中文名称:八甲基三硅氧烷八甲基三硅氧烷是一种化学物质,化学试剂、精细化学品、医药中间体、材料中间体,又称聚(二甲基硅氧烷),甲基聚硅氧烷,分子式是C8H24O2SI3,Me3SiOSi(Me)2OSiMe3。英文名称:OctaMethyltrisiloxaneCAS:107-51-7特点● 结构:Me3SiOSi(Me)2OSiMe3● 配备最小毛细管气相GC纯度要求为98.0%
  • 甲基化试剂
    产品信息:甲基化试剂 (DMFDMA)能够轻松有效地将脂肪酸和氨基酸制备为甲酯用于气相色谱分析制备甲酯的优点是:*高速:反应随着化合物的溶解而完成(长链固体酸除外)*衍生物无需洗涤、萃取或浓缩*不会生成水*定量:当试剂和样品在未经混合的情况下注入分析柱内,即可获得定量结果*方便:即用型试剂,含 2mEq/mL 吡啶 订货信息:甲基化试剂描述规格部件号数量甲基化试剂(N, N-二甲基甲酰25mLTS-493501 Each胺二甲基缩醛)
  • TMSI 硅烷化试剂 | 三甲基硅咪唑 | 三甲基碘硅烷
    产品特点:Trimethylsilylimidazole (TMSI) UN1993, 100 grams三甲基硅咪唑 | 三甲基碘硅烷SKU: 140-100Categories: TMSI 硅烷化试剂三甲基硅咪唑 性质熔点 -42 °C沸点 93-94 °C14 mm Hg(lit.)密度 0.957 g/mL at 20 °C折射率 n20/D 1.475(lit.)闪点 42 °F储存条件 2-8°C形态Liquid颜色Clear colorless to yellow水溶解性 decomposes敏感性 Moisture SensitiveBRN 606148CAS 数据库18156-74-6(CAS DataBase Reference)NIST化学物质信息1h-Imidazole, 1-(trimethylsilyl)-(18156-74-6)EPA化学物质信息1H-Imidazole, 1-(trimethylsilyl)-(18156-74-6)三甲基硅咪唑 用途硅烷化试剂三甲基硅咪唑是硅烷化羟基的最强的硅烷化试剂;能够快速、平顺地与羟基和羧基发生反应。不与胺或酰胺发生反应,所以可以用于制备既含有羟基又含有氨基的化合物的多重衍生物。在存在少量水的情况下可用于硅烷化糖;当需要将糖作为糖浆剂来分析的时候是硅烷化糖的理想选择。能够衍生不被阻碍和被严重阻碍的大多数的甾类羟基。用途 用作抗菌素中间体、特强的硅烷化剂用途 高效硅烷化试剂,特别适合用于醇、酰基咪唑类的合成,在氨基存在的条件下保护羟基基团。抗菌素中间体。用途 用于合成各种酰基咪唑的重要中间体,也是合成吡藜酰胺的重要中间体;在胺功能化条件下,保护羟基的硅烷化试剂;强有力的硅烷化试剂、特别针对醇类;酰基咪唑啉的合成用途 甲硅烷基化试剂,在氨基存在的条件下保护羟基基团。抗菌素中间体。特点● UN Number: 1993
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制