氮化钒

仪器信息网氮化钒专题为您提供2024年最新氮化钒价格报价、厂家品牌的相关信息, 包括氮化钒参数、型号等,不管是国产,还是进口品牌的氮化钒您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氮化钒相关的耗材配件、试剂标物,还有氮化钒相关的最新资讯、资料,以及氮化钒相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

氮化钒相关的资料

氮化钒相关的论坛

  • 微波高温合成氮化钒技术成功实现产业化

    微波高温合成氮化钒技术成功实现产业化

    近日,长沙隆泰科技有限公司独创的微波高温合成氮化钒生产技术在承德钢铁(集团)公司获得成功,使该公司世界领先的微波高温烧结产业化技术在冶金行业的应用迈进了一大步。众所周知,氮化钒是建筑用高强度的新Ⅲ级钢不可或缺的添加剂,取代传统的钒利用率低的钒铁,它的产业化将使我国每年节约近600万吨建筑用钢材;微波高温合成氮化钒技术与常规技术相比工艺简单,节约生产成本80%以上,产品质量稳定,一致性好,受到使用单位的一致好评。目前,首台氮化钒立式微波高温炉达到设计要求,正式投入生产达3个月,运行稳定。二期卧式微波高温炉也已将于4月中旬完成并交付使用。此技术不仅极大地推动了我国钒产业向精细化高端产品发展,还将广泛应用到其他铁合金高端产品的生产。[em28] [em28] [em28] [em28] [em28] [em28] [em28] [em28] [em28] [em28] [img]http://ng1.17img.cn/bbsfiles/images/2005/04/200504071418_3371_1264465_3.jpg[/img]

  • 【分享】ASTM F 2094/F 2094M-08 氮化硅轴承滚珠标准规范(英文)

    ASTM F 2094/F 2094M-08 Standard Specification for Silicon Nitride Bearing Balls中文名称:氮化硅轴承滚珠标准规范[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=152877]ASTM F 2094/F 2094 M-08 氮化硅轴承滚珠标准规范(英文)[/url]

氮化钒相关的方案

  • 石墨烯/氮化硼范德华异质结具有可调控超导性质研究
    高温超导物理机制的理解是一个凝聚态物理领域世纪性的课题。范德华异质结为量子现象提供了新的材料作为模型系统。近日,国际合作团队(团队成员来自美国伯克利大学,斯坦福大学,中国上海南京以及日本韩国等课题组)研究石墨烯/氮化硼范德华异质结具有可调控超导性质的工作发表在《自然》杂志上。在温度低于1K的时候,该异质结的超导的特特性开始出现,电阻出现一个明显的降低,出现一个I-V电学曲线的平台。
  • 微波消解氮化硼
    氮化硼是由氮原子和硼原子所构成的晶体。由于氮化硼热稳定性和耐磨性好以及化学稳定性强,可用作温度传感器套,制造高温物件,如火箭、燃烧室内衬和等离子体喷射炉材料。可作高温润滑剂、脱模剂、高频绝缘材料和半导体的固相掺杂材料等。六方氮化硼转化立方体,粉状可转化纤维状,使其用途更加广泛,可用作超硬材料,用于电绝缘器、天线窗、防护服、重返大气层的降落伞以及火箭喷管鼻锥等。为检测氮化硼中的多种重金属元素含量,选择微波消解对其进行前处理,探索最适合的消解参数,该方法还有回收率高、空白低等特点,有利于后续对多种无机元素的快速准确测定。
  • 赛默飞离子色谱在河水中的叠氮化物应用
    测定叠氮化物的方法有容量分析法、分光光度法,这两种方法在测定低浓度叠氮化物时不够准确;气相色谱法、高效液相色谱法一般需要对样品进行预处理,如将叠氮化物转化成挥发性的叠氮酸或者,-二硝基苯甲酰衍生物,衍生化反应的缺点是前处理繁琐,且会引入外源性干扰。而采用离子色谱法,无需繁复的样品预处理,用IonPac AS色谱柱,KOH梯度淋洗可以将N-和水中常见阴离子如F-、Cl-、Br-、NO-、NO-、PO-、SO-等很好的分离,图-为含有叠氮根和几种阴离子的标准溶液色谱图及样品色谱图

氮化钒相关的资讯

  • 河北钢铁承钢氮化钒铁检化验标准填补国内空白
    9月23日,由全国生铁及铁合金标准化技术委员会授权河北钢铁集团承钢起草的氮化钒铁系列检化验行业标准顺利通过专家组审定,填补了国内行业相关领域的空白。  氮化钒铁是一种钢铁材料中微合金化的钒合金添加剂,性能优于钒铁和氮化钒,可广泛应用于高强度螺蚊钢筋、高强度管线钢、高强度型钢等产品生产。  氮化钒铁中主要元素的检测没有独立的分析标准,承钢技术人员在编制完成《氮化钒铁》国家标准的基础上,对氮化钒铁中钒、氮、氧、碳、硫、硅、锰、磷、铝等成分的检测方法进行深入的攻关、完善,形成了氮化钒铁系列9个检化验行业标准。  来自冶金工业信息标准研究院、北京钢铁研究总院、中国科学院等8家单位的26名专家,通过审定材料,听取标准起草编制工作汇报,对该标准的科学性、可操作性、知用性和先进性及标准文本结构的严密性、文字的流畅性等内容进行了严格审定,一致同意审定通过。  据悉,氮化钒铁系列检化验标准的制定,填补了国内行业相关领域的空白,为氮化钒铁的生产及评价产品的性能提供了标准依据,为打击伪劣产品,提升产品质量,推动产业升级和有序发展具有积极的促进作用。
  • 刘忠范院士:我国石墨烯玻璃晶圆氮化物材料外延取得“0到1”的原创性突破
    近期中国科学院院士、北京大学/北京石墨烯研究院院长刘忠范、中科院半导体所研究员刘志强、北京大学物理学院研究员高鹏等合作,提出了一种纳米柱辅助的范德华外延方法,利用金属有机化学气相沉积(MOCVD),国际上首次在玻璃衬底上成功“异构外延”出连续平整的准单晶氮化镓(GaN)薄膜,并制备蓝光发光二极管(LED)。相关成果7月31日发表于《科学》子刊《科学进展》。半导体产业是科技自立自强的底层保障。在全球信息化、5G时代以及新冠肺炎疫情的影响下,以III族氮化物为代表的先进半导体迎来发展的高峰期。一直以来,我国氮化物核心材料、器件的原始创新能力较为薄弱,核心专利技术不足。同时,由于缺乏同质衬底,氮化物材料一直通过金属有机化学气相沉积(MOCVD)在蓝宝石、硅、碳化硅等单晶衬底上进行异质外延。单晶衬底的尺寸、成本、晶格失配、热失配、导热导电性等限制了氮化物材料的发展。因此,摆脱传统衬底限制是氮化物材料制备的瓶颈问题,也是通过自主创新引领先进半导体产业发展的的关键。研究人员巧妙地利用石墨烯解决了该问题。他们在生长初期,利用石墨烯的晶格来引导氮化物的晶格排列,在非晶玻璃上也实现了高质量氮化物的外延。通常,玻璃上生长的氮化物上是完全杂乱无序的多晶结构。石墨烯的晶格引导作用使得玻璃上的氮化物的面外取向完全一致,面内取向也由通常的随机取向被限制成三种,从而得到了高质量的准单晶薄膜。他们进一步生长了蓝光LED结构,其内量子效率高达48.7%。此外,他们充分利用界面处弱的范德华作用力,将生长的外延结构机械剥离并制备了柔性的LED样品。据悉,面向大规模产业应用,北京石墨烯研究院在玻璃衬底上采用化学气相沉积,发展了一系列石墨烯晶圆制备方法,为氮化物变革性制备技术的探索提供坚实基础。刘忠范表示,这一成果是典型的“从0到1”式的原创性突破,为石墨烯等二维材料的产业化应用提供了新思路,有望发展为氮化物变革性制备技术,解决先进半导体发展技术瓶颈,在新型显示、柔性电子学等领域具有重要应用前景。同时,该技术通过“异构外延”减弱了氮化物对单晶衬底的依赖,对于扩大半导体外延衬底选择范围、丰富半导体异质外延概念、实现面向后摩尔时代的片上物质组装和异构集成,具有重要意义。
  • 综述|高导热氮化硅陶瓷基板研究现状
    摘要:为了减少环境污染、打造绿色经济,高效地利用电力变得越来越重要。电力电子设备是实现这一目标的关键技术,已被广泛用于风力发电、混合动力汽车、LED 照明等领域。这也对电子器件中的散热基板提出了更高的要求,传统的陶瓷基板如 AlN、Al2O3、BeO 等的缺点也日益突出,如较低的理论热导率和较差的力学性能等,严重阻碍了其发展。相比于传统陶瓷基板材料,氮化硅陶瓷由于其优异的理论热导率和良好的力学性能而逐渐成为电子器件的主要散热材料。关键词:半导体 陶瓷基板 氮化硅 热导率然而,目前氮化硅陶瓷实际热导率还远远低于理论热导率的值,而且一些高热导率氮化硅陶瓷(>150 W/(mK))还处于实验室阶段。影响氮化硅陶瓷热导率的因素有晶格氧、晶相、晶界相等,其中氧原子因为在晶格中会发生固溶反应生成硅空位和造成晶格畸变,从而引起声子散射,降低氮化硅陶瓷热导率而成为主要因素。此外,晶型转变和晶轴取向也能在一定程度上影响氮化硅的热导率。如何实现氮化硅陶瓷基板的大规模生产也是一个不小的难题。现阶段,随着制备工艺的不断优化,氮化硅陶瓷实际热导率也在不断提高。为了降低晶格氧含量,首先在原料的选择上降低氧含量,一方面可选用含氧量比较少的 Si 粉作为起始原料,但是要避免在球磨的过程中引入氧杂质 另一方面,选用高纯度的 α-Si3N4 或者 β-Si3N4作为起始原料也能减少氧含量。其次选用适当的烧结助剂也能通过减少氧含量的方式提高热导率。目前使用较多的烧结助剂是 Y2O3-MgO,但是仍不可避免地引入了氧杂质,因此可以选用非氧化物烧结助剂来替换氧化物烧结助剂,如 YF3-MgO、MgF2-Y2O3、Y2Si4N6C-MgO、MgSiN2-YbF3 等在提高热导率方面也取得了非常不错的效果。研究发现通过加入碳来降低氧含量也能达到很好的效果,通过在原料粉体中掺杂一部分碳,使原料粉体在氮化、烧结时处于还原性较强的环境中,从而促进了氧的消除。此外,通过加入晶种和提高烧结温度等方式来促进晶型转变及通过外加磁场等方法使晶粒定向生长,都能在一定程度上提高热导率。为了满足电子器件的尺寸要求,流延成型成为大规模制备氮化硅陶瓷基板的关键技术。本文从影响热导率的主要因素入手,重点介绍了降低晶格氧含量、促进晶型转变及实现晶轴定向生长三种提高实际热导率的方法 然后,指出了流延成型是大规模制备高导热氮化硅陶瓷的关键,并分别从流延浆料的流动性、流延片和浆料的润湿性及稳定性等三方面进行了叙述 概述了目前常用的制备高导热氮化硅陶瓷的烧结工艺现状 最后,对未来氮化硅高导热陶瓷的研究方向进行了展望。关键词:半导体 陶瓷基板 氮化硅 热导率00引言随着集成电路工业的发展,电力电子器件技术正朝着高电压、大电流、大功率密度、小尺寸的方向发展。因此,高效的散热系统是高集成电路必不可少的一部分。这就使得基板材料既需要良好的机械可靠性,又需要较高的热导率。图 1 为电力电子模块基板及其开裂方式。研究人员对高导热系数陶瓷进行了大量的研究,其中具有高热导率的氮化铝(AlN)陶瓷(本征热导率约为320 W/(mK))被广泛用作电子器件的主要陶瓷基材。图 1 电力电子模块基板及其开裂方式但是,AlN 陶瓷的力学性能较差,如弯曲强度为 300~400 MPa,断裂韧性为 3~4 MPam1/2,导致氮化铝基板的使用寿命较短,使得它作为结构基板材料使用受到了限制。另外,Al2O3 陶瓷的理论热导率与实际热导率都很低,不适合应用于大规模集成电路。电子工业迫切希望找到具有良好力学性能的高导热基片材料,图 2 是几种陶瓷基板的强度与热导率的比较,因此,Si3N4 陶瓷成为人们关注的焦点。图 2 几种陶瓷基板的强度与热导率的比较与 AlN 和 Al2O3 陶瓷基板材料相比,Si3N4 具有一系列独特的优势。Si3N4 属于六方晶系,有 α、β 和 γ 三种晶相。Lightfoot 和 Haggerty 根据 Si3N4 结构提出氮化硅的理论热导率在200~300 W/(mK)。Hirosaki 等通过分子动力学的方法计算出 α-Si3N4 和 β-Si3N4 的理论热导率,发现Si3N4 的热导率沿 a 轴和 c 轴具有取向性,其中 α-Si3N4 单晶体沿 a轴和 c轴的理论热导率分别为105 W/(mK)、225W/(mK);β-Si3N4 单晶体沿a轴和c轴方向的理论热导率分别是 170 W/(mK)、450 W/(mK)。Xiang 等结合密度泛函理论和修正的 Debye-Callaway 模型预测了 γ-Si3N4 陶瓷也具有较高的热导率。同时 Si3N4 具有高强度、高硬度、高电阻率、良好的抗热震性、低介电损耗和低膨胀系数等特点,是一种理想的散热和封装材料。现阶段,将高热导率氮化硅陶瓷用于电子器件的基板材料仍是一大难题。目前,国外只有东芝、京瓷等少数公司能将氮化硅陶瓷基板商用化(如东芝的氮化硅基片(TSN-90)的热导率为 90 W/(mK))。近年来国内的一些研究机构和高校相继有了成果,北京中材人工晶体研究院成功研制出热导率为 80 W/(mK)、抗弯强度为 750 MPa、断裂韧性为 7.5MPam1/2 的 Si3N4 陶瓷基片材料,其已与东芝公司的商用氮化硅产品性能相近。中科院上硅所曾宇平研究员团队成功研制出平均热导率为 95 W/(mK),最高可达 120 W/(mK)且稳定性良好的氮化硅陶瓷。其尺寸为 120 mm×120 mm,厚度为 0.32 mm,而且外形尺寸能根据实际要求调整。目前我国的商用高导热 Si3N4 陶瓷基片与国外还是存在差距。因此,研发高导热的 Si3N4 陶瓷基片必将促进我国 IGBT(Insula-ted gate bipolar transistor)技术的大跨步发展,为步入新能源等高端领域实现点的突破。近年来氮化硅陶瓷基板材料的实际热导率不断提高,但与理论热导率仍有较大差距。目前,文献报道了提高氮化硅陶瓷热导率的方法,如降低晶格氧含量、促进晶型转变、实现晶粒定向生长等。本文阐述了如何提高氮化硅陶瓷的热导率和实现大规模生产的成型技术,重点概述了国内外高导热氮化硅陶瓷的研究进展。01晶格氧的影响氮化硅的主要传热机制是晶格振动,通过声子来传导热量。晶格振动并非是线性的,晶格间有着一定的耦合作用,声子间会发生碰撞,使声子的平均自由程减小。另外,Si3N4 晶体中的各种缺陷、杂质以及晶粒界面都会引起声子的散射,也等效于声子平均自由程减小,从而降低热导率。图 3 为氮化硅的微观结构。图 3 氮化硅烧结体的典型微观结构研究表明,在诸多晶格缺陷中,晶格氧是影响氮化硅陶瓷热导率的主要缺陷之一。氧原子在烧结的过程中会发生如下的固溶反应:2SiO2→ 2SiSi +4ON+VSi (1)反应中生成了硅空位,并且原子取代会使晶体产生一定的畸变,这些都会引起声子的散射,从而降低 Si3N4 晶体的热导率。Kitayama 等在晶格氧和晶界相两个方面对影响 Si3N4晶体热导率的因素进行了系统的研究,发现 Si3N4晶粒的尺寸会改变上述因素的影响程度,当晶粒尺寸小于 1μm时,晶格氧和晶界相的厚度都会成为影响热导率的主要因素 当晶粒尺寸大于 1μm 时,晶格氧是影响热导率的主要因素。而制备具有高热导率的氮化硅陶瓷,需要其具有大尺寸的晶粒,因此通过降低晶格氧含量来制得高热导率的氮化硅显得尤为关键。下面从原料的选择、烧结助剂的选择和制备过程中碳的还原等方面阐述降低晶格氧含量的有效方法。1.1 原料粉体选择为了降低氮化硅晶格中的氧含量,要先得从原料粉体上降低杂质氧的含量。目前有两种方法:一种是使用低含氧量的 Si 粉为原料,经过 Si 粉的氮化和重烧结两步工艺获得高致密、高导热的 Si3N4 陶瓷。将由 Si 粉和烧结助剂组成的 Si的致密体在氮气气氛中加热到 Si熔点(1414℃)附近的温度,使 Si 氮化后转变为多孔的 Si3N4 烧结体,再将氮化硅烧结体进一步加热到较高温度,使多孔的 Si3N4 烧结成致密的 Si3N4 陶瓷。另外一种是使用氧含量更低的高纯 α-Si3N4 粉进行烧结,或者直接用 β-Si3N4 进行烧结。日本的 Zhou、Zhu等以 Si 粉为原料,经过 SRBSN 工艺制备了一系列热导率超过 150W/(mK)的氮化硅陶瓷。高热导率的主要原因是相比于普通商用 α-Si3N4 粉末,Si 粉经氮化后具有较少的氧含量和杂质。Park 等研究了原料Si 粉的颗粒尺寸对氮化硅陶瓷热导率的影响,发现 Si 颗粒尺寸的减小能使氮化硅孔道变窄,有利于烧结过程中气孔的消除,进而得到致密度高的氮化硅陶瓷。研究表明,当 Si 粉减小到 1μm 后,氮化硅陶瓷的相对密度能达到 98%以上。但是在 SRBSN 这一工艺减小原料颗粒尺寸的过程中容易使原料表面发生氧化,增加了原料中晶格氧的含量。Guo等分别用 Si 粉和 α-Si3N4 为原料进行了对比试验。研究发现,以 Si 粉为原料经过氮化后能得到含氧量较低(0.36%,质量分数)的 Si3N4 粉末,通过无压烧结制得热导率为 66.5W/(mK)的氮化硅陶瓷。而在同样的条件下,以 α-Si3N4 为原料制备的氮化硅陶瓷,其热导率只有 56.8 W/(mK)。用高纯度的 α-Si3N4 粉末为原料,也能制得高热导率的氮化硅陶瓷。Duan 等以 α-Si3N4 为原料,制备了密度、导热系数、抗弯强度、断裂韧性和维氏硬度分别为 3.20 gcm-3 、60 W/(mK)、668 MPa、5.13 MPam1/2 和 15.06 GPa的Si3N4 陶瓷。Kim 等以 α-Si3N4为原料制备了热导率为78.8 W/(mK)的氮化硅陶瓷。刘幸丽等以不同配比的 β-Si3N4/α-Si3N4 粉末为起始原料,制备了热导率为108 W/(mK)、抗弯强度为 626 MPa的氮化硅陶瓷。结果表明:随着 β-Si3N4 粉末含量的增加,β-Si3N4柱状晶粒平均长径比的减小使得晶粒堆积密度减小,柱状晶体积分数相应增加,晶间相含量减少,热导率提高。彭萌萌等研究了粉体种类(β-Si3N4或 α-Si3N4)及 SPS 保温时间对氮化硅陶瓷热导率的影响。研究发现,采用 β-Si3N4粉体制备的氮化硅陶瓷的热导率比采用相同工艺以 α-Si3N4为粉体制备的氮化硅陶瓷高 15% 以上,达到了 105W/(mK)。不同原料制备的Si3N4材料的热导率比较见表1。表 1 不同原料制备的 Si3N4材料的热导率比较综合以上研究可发现,采用 Si 粉为原料制得的样品能达到很高的热导率,但是在研磨的过程中容易发生氧化,而且实验过程繁琐,耗时较长,不利于工业化生产 使用高纯度、低含氧量的 α-Si3N4粉末为原料时,由于原料本身纯度高,能制备出性能优异的氮化硅陶瓷,但是这样会导致成本增加,不利于大规模生产 虽然可以用 β-Si3N4 取代 α-Si3N4为原料,得到高热导率的氮化硅陶瓷,但是 β-Si3N4的棒状晶粒会阻碍晶粒重排,导致烧结物难以致密。1.2 烧结助剂选择Si3N4属于共价化合物,有着很小的自扩散系数,在烧结过程中依靠自身扩散很难形成致密化的晶体结构,因此添加合适的烧结助剂和优化烧结助剂配比能得到高热导率的氮化硅陶瓷。在高温时烧结助剂与Si3N4表面的 SiO2反应形成液相,最后形成晶界相。然而晶界相的热导率只有 0.7~1 W/(mK),这些晶界相极大地降低了氮化硅的热导率,而且一些氧化物烧结添加剂的引入会导致 Si3N4晶格氧含量增加,也会导致热导率降低。目前氮化硅陶瓷的烧结助剂种类繁多,包括各种稀土氧化物、镁化物、氟化物和它们所组成的复合烧结助剂。稀土元素由于具有很高的氧亲和力而常被用于从 Si3N4晶格中吸附氧。目前比较常用的是镁的氧化物和稀土元素的氧化物组成的混合烧结助剂。Jia 等在氮化硅陶瓷的烧结过程中添加复合烧结助剂 Y2O3-MgO,制备了热导率达到 64.4W/(mK)的氮化硅陶瓷。Go 等同样采用 Y2O3-MgO为烧结助剂,研究了烧结助剂 MgO 的粒度对氮化硅微观结构和热导率的影响。研究发现,加入较粗的 MgO 颗粒会导致烧结过程中液相成分分布不均匀,使富 MgO 区周围的 Si3N4晶粒优先长大,从而导致最终的 Si3N4陶瓷中大颗粒的 Si3N4晶粒的比例增大,热导率提高。然而,加入氧化物烧结助剂会不可避免地引入氧原子,因此为了降低晶格中的氧杂质,可以采用氧化物 + 非氧化物作为烧结助剂。Yang 等以 MgF2-Y2O3为烧结添加剂制备出性能良好的高导热氮化硅陶瓷,发现用 MgF2可以降低烧结过程中液相的粘度,加速颗粒重排,使粉料混合物能够在较低温度(1600℃)和较短时间(3 min)内实现致密化,而且低的液相粘度与高的 Si、N 原子比例有助于 Si3N4 的 α→β 相变和晶粒生长,从而提高 Si3N4 陶瓷的热导率。Hu 等分别以 MgF2-Y2O3和 MgO-Y2O3为烧结助剂进行了对比试验,并探究了烧结助剂的配比对热导率的影响。相比于 MgO-Y2O3,用 MgF2-Y2O3作为烧结助剂时 Si3N4陶瓷热导率提高了 19%,当添加量为 4%MgF2 -5%Y2O3时,能达到最高的热导率。Li 等以 Y2Si4N6C-MgO 代替 Y2O3 -MgO 作为烧结添加剂,通过引入氮和促进二氧化硅的消除,在第二相中形成了较高的氮氧比,导致在致密化的 Si3N4 试样中颗粒增大,晶格氧含量降低,Si3N4 -Si3N4 的连续性增加,使Si3N4 陶瓷的热导率由 92 W/(mK)提高到 120 W/(mK),提高了 30.4%。为了进一步提高液相中的氮氧比,降低晶格氧含量,通常还采用非氧化物作为烧结助剂。Lee 等研究了氧化物和非氧化物烧结添加剂对 Si3N4 的微观结构、导热系数和力学性能的影响。以 MgSiN2 -YbF3 为烧结添加剂,制备出导热系数为 101.5 W/(mK)、弯曲强度为822~916 MPa 的 Si3N4 陶瓷材料。经研究发现,相比于氧化物烧结添加剂,非氧化物 MgSiN2 和氟化物作为烧结添加剂能降低氮化硅的二次相和晶格氧含量,其中稀土氟化物能与 SiO2 反应生成 SiF4,而SiF4 的蒸发导致晶界相减少,同时也会导致晶界相 SiO2 还原,降低晶格氧含量,进而达到提高热导率的目的。不同烧结助剂制备的氮化硅陶瓷热导率比较见表 2,显微结构如图 4所示。表 2 不同烧结助剂制备的 Si3N4材料的热导率比较图 4 氧化物添加剂(a)MgO-Y2O3 和(d)MgO-Yb2O3、混合添加剂(b)MgSiN2 -Y2O3 和(e)MgSiN3 -Yb2O3 、非氧化物添加剂(c)MgSiN2 -YF3 和(f)Mg-SiN2 -YbF3 的微观结构目前主流的烧结助剂中稀土元素为 Y 和 Yb 的化合物,但是有些稀土元素并不能起到提高致密度的作用。Guo等分别用 ZrO2 -MgO-Y2O3和 Eu2O3 -MgO-Y2O3作为烧结助剂,制得了氮化硅陶瓷,经研究发现 Eu2O3 -MgO-Y2O3的加入反而抑制了氮化硅陶瓷的致密化。综合以上研究发现,相比于氧化物烧结助剂,非氧化物烧结助剂能额外提供氮原子,提高氮氧比,促进晶型转变,还能还原 SiO2 起到降低晶格氧含量、减少晶界相的作用。1.3 碳的还原前面提到的一些能高效降低晶格氧含量的烧结助剂,如Y2Si4N6C和 MgSiN2 等,无法从商业的渠道获得,这就给大规模生产造成了困扰,而且高温热处理也会导致高成本。因此,从工业应用的角度来看,开发简便、廉价的高导热 Si3N4 陶瓷的制备方法具有重要的意义。研究发现,在烧结过程中掺杂一定量的碳能起到还原氧杂质的作用,是一种降低晶格氧含量的有效方法。碳被广泛用作非氧化物陶瓷的烧结添加剂,其主要作用是去除非氧化物粉末表面的氧化物杂质。在此基础上,研究者发现少量碳的加入可以有效地降低 AlN 陶瓷的晶格氧含量,从而提高 AlN 陶瓷的热导率。同样地,在 Si3N4 陶瓷中引入碳也可以降低氧含量,主要是由于在氮化和后烧结过程中,适量的碳会起到非常明显的还原作用,能极大降低 SiO 的分压,增加晶间二次相的 N/O 原子比,从而形成双峰状显微结构,得到晶粒尺寸大、细长的氮化硅颗粒,提高氮化硅陶瓷的热导率。Li 等用 BN/石墨代替 BN 作为粉料底板后,氮化硅陶瓷的热导率提升了 40.7%。研究发现,即使 Si 粉经球磨后含氧量达到了 4.22%,氮化硅陶瓷的热导率依然能到达 121 W/(mK)。其原因主要是石墨具有较强的还原能力,在氮化的过程中通过促进 SiO2 的去除,改变二次相的化学成分,在烧结过程中进一步促进 SiO2 和 Y2Si3O3N4 二次相的消除,从而使产物生成较大的棒状晶粒,降低晶格氧含量,提高 Si3N4 -Si3N4 的连续性。研究表明,虽然掺杂了一部分碳,但是氮化硅的电阻率依然不变,然而最终的产物有很高的质量损失比(25.8%),增加了原料损失的成本。Li 等发现过量的石墨会与表面的 Si3N4 发生反应,这是导致氮化硅陶瓷具有较高质量损失比的关键因素。于是他们改进了制备工艺,采用两步气压烧结法,用 5%(摩尔分数) 碳掺杂 93%α-Si3N4 -2%Yb2O3

氮化钒相关的仪器

  • 氮化学发光检测器Agilent 8255 氮化学发光检测器 (NCD) 是氮选择性检测器,对氮化合物呈等摩尔线性响应。检测原理是:采用不锈钢燃烧器使含氮化合物在高温下燃烧生成氮氧化物 (NO)。光电倍增管检测到由 NO 和臭氧发生连续化学发光反应而产生的光。因为反应的专属性,分析复杂样品基质也几乎没有干扰。● 用于气相色谱 (GC) 的氮特异性检测器● 皮克级检出限● 没有烃的淬灭● 对有机氮化物呈等摩尔线性响应● 对氨、肼、氰化氢和 NOX 有响应● 重新设计的燃烧头和检测器,NCD 也具有亚硝胺特定配置选项● 安捷伦还提供 8355 硫化学发光检测器 (SCD)
    留言咨询
  • 氮化镓(GaN)薄膜 400-860-5168转2205
    产品名称:氮化镓(GaN)薄膜产品简介:氮化镓Epitxial范本saphhire是提出了氢化物气相外延(HVPE)的方法。在HVPE过程中,盐酸反应生成GaCl,而这又与氨反应生成氮化镓熔镓。外延GaN的模板是成本效益的方法,以取代氮化镓单晶基板。 技术参数: 常规尺寸dia50.8±1mm x 4um,10-25um.dia100±1mm x 4um,10-25um. 0001±1° N型注:可按客户需求定制特殊堵塞方向和尺寸。产品定位C轴0001±1°传导类型N型;半绝缘型;P型电阻率R0.05 Ohm-cm;半绝缘型R106 Ohm-cm位错密度1x108 Cm-2表面处理(镓面)AS Grown有效值1nm可用表面积90%标准包装:1000级超净室,100级超净袋或单片盒封装
    留言咨询
  • 氮化硅薄膜窗口 400-860-5168转1679
    联系我们:X射线透射显微成像/能谱(同步辐射)用氮化硅薄膜窗口 产品概述: X-射线薄膜窗能够实现软X-射线(如真空紫外线)的最大透射率。主要用于同步辐射X射线透射显微成像时承载样品。 X-射线越软(能量越低),穿透能力越差,所需氮化硅薄膜窗越薄。特别在“离轴”状态工作(即薄膜与光束成一定角度)时,也需要较薄的薄膜窗口,便于X射线更好地穿透。 氮化硅薄膜窗口是利用现代MEMS技术制备而成,由于此种氮化硅窗口选用低应力氮化硅(0-250MP)薄膜,因此比计量式和ST氮化硅薄膜更坚固耐用。提供的氮化硅薄膜窗口非常适合应用于透射成像和透射能谱等广泛的科学研究领域,例如,X-射线(上海光源透射成像/能谱线站)、TEM、SEM、IR、UV等。 现在提供X-射线显微成像/能谱(同步辐射)用氮化硅薄膜窗系列产品,规格如下: 外框尺寸 (4种标准规格): 5 mm x 5 mm (窗口尺寸:1.0 mm或和 1.5 mm 方形) 7.5 mm x 7.5 mm (窗口尺寸:2.0 mm或 2.5 mm) 10 mm x 10 mm (窗口尺寸:3.0 mm或 5 mm 方形) 边框厚度: 200µ m、381µ m、525µ m。 Si3N4薄膜厚度:50、100、150和200nm 我们也可以为用户定制产品(30-500nm),但要100片起订。 本产品为一次性产品,不建议用户重复使用,本产品不能进行超声清洗,适合化学清洗、辉光放电和等离子体清洗。 技术指标: 透光度: 对于X射线用窗口,500nm厚的氮化硅薄膜有很好的X光穿透效果,对于软X射线(例如碳边吸收谱),100-200nm厚的氮化硅薄膜窗口是用户首选。 真空适用性: 真空适用性数据如下:  薄膜厚度 窗口面积 压力差 ≥50 nm ≤1.0 x 1.0 mm 1 atm ≥100 nm ≤1.5 x 1.5 mm 1 atm ≥200 nm ≤2.5 x 2.5 mm 1 atm 表面平整度: 氮化硅薄膜窗口产品的表面平整性很稳定(粗糙度小于1nm),对于X射线应用没有任何影响。 温度特性: 氮化硅薄膜窗口产品是耐高温产品,能够承受1000度高温,非常适合在其表面利用CVD方法生长各种纳米材料。 化学特性: 氮化硅薄膜窗口是惰性衬底。 应用简介和优点: 1、同步辐射X射线(紫外或极紫外)透射成像或透射能谱应用中是不可或缺的样品承载体。 2、耐高温、惰性衬底,适应各种聚合物、纳米材料、半导体材料、光学晶体材料和功能薄膜材料的制备环境,利于制备理想的用于X射线表征用的自组装单层薄膜或薄膜(薄膜直接沉积在窗口上)。 3、生物和湿细胞样本的理想承载体。特别是在等离子体处理后,窗口具有很好的亲水性。 4、耐高温、惰性衬底,也可以用于化学反应和退火效应的原位表征。 5、适合做为胶体、气凝胶、有机材料和纳米颗粒等的表征实验承载体。 氮化硅薄膜窗口系列 SN-LDE-505-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:50nm SN-LDE-510-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:100nm SN-LDE-515-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:150nm SN-LDE-520-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:200nm SN-LDE-705-25 氮化硅薄膜窗口,框架:7.5×7.5mm,窗口:2.5×2.5mm,膜厚:50nm SN-LDE-710-25 氮化硅薄膜窗口,框架:7.5×7.5mm,窗口:2.5×2.5mm,膜厚:100nm SN-LDE-715-25 氮化硅薄膜窗口,框架:7.5×7.5mm,窗口:2.5×2.5mm,膜厚:150nm SN-LDE-720-25 氮化硅薄膜窗口,框架:7.5×7.5mm,窗口:2.5×2.5mm,膜厚:200nm SN-LDE-105-30 氮化硅薄膜窗口,框架:10×10mm,窗口:3×3mm,膜厚:50nm SN-LDE-110-30 氮化硅薄膜窗口,框架:10×10mm,窗口:3×3mm,膜厚:100nm SN-LDE-115-30 氮化硅薄膜窗口,框架:10×10mm,窗口:3×3mm,膜厚:150nm SN-LDE-120-30 氮化硅薄膜窗口,框架:10×10mm,窗口:3×3mm,膜厚:200nm 氮化硅薄膜窗口阵列系列 SN-AR-522-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,2×2阵列,膜厚:50nm SN-AR-733-15 氮化硅薄膜窗口,框架:7.5×7.5mm,窗口:1.5×1.5mm,3×3阵列;膜厚:50nm SN-AR-1044-15 氮化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:100nm 氧化硅薄膜窗口系列 SO-505-15 氧化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:50nm SO-510-15 氧化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:100nm SO-520-15 氧化硅薄膜窗口,框架:5×5mm,窗口:1.5×1.5mm,膜厚:150nm SO-705-25 氧化硅薄膜窗口,框架:7.5×7.5mm,窗口:1.5×1.5mm,3×3阵列,膜厚:50nm SO-710-25 氧化硅薄膜窗口,框架:7.5×7.5mm,窗口:1.5×1.5mm,3×3阵列,膜厚:100nm SO-720-25 氧化硅薄膜窗口,框架:7.5×7.5mm,窗口:1.5×1.5mm,3×3阵列,膜厚:200nm 氮化硅薄膜窗口系列 SN-1010-2-AU10 氮化硅基底框架:10×10mm,窗口:2×2mm,膜厚:100nm,金膜厚度:10nm SN-1020-2-AU10 氮化硅基底框架:10×10mm,窗口:2×2mm,膜厚:200nm,金膜厚度:10nm SN-710-2-AU10 氮化硅基底框架:7.5×7.5mm,窗口:2×2mm,膜厚:100nm,金膜厚度:10nm SN-720-2-AU10 氮化硅基底框架:7.5×7.5mm,窗口:2×2mm,膜厚:200nm,金膜厚度:10nm 特殊定制产品 SN-5H5-15 氮化硅基底框架:5×5mm,硅片厚度:200um,窗口:1.5×1.5mm,膜厚:500nm SN-5H10-15 氮化硅基底框架:5×5mm,硅片厚度:200um,窗口:1.5×1.5mm,膜厚:1000nm SN-LDE-4-10 氮化硅片100nm-4英寸整张,10×10mm切片 衬底厚度:200um 温度范围:1000℃ 真空适应:1个大气压 厚度可以选择:200um,381um,525um,需要提前说明。联系我们:
    留言咨询

氮化钒相关的耗材

  • 氮化硅膜
    氮化硅膜主要用于纳米技术研究;支撑强度高,TEM与原子力电镜都可以使用。氮化硅膜极其稳定可以抵抗温度变化上升至1000摄氏度;但是,疏水性,如果需要亲水,建议用刻蚀法:等离子刻蚀,增加电荷。膜厚:100nm、50nm、30nm;孔:1mm×mm 膜粗糙度2nm。型号名称硅框架厚度(μm)窗口尺寸(mm)膜厚(nm)孔厚包装/个产地21505-10氮化硅膜2000.25 x 0.25mm50110美国21500-10氮化硅膜2000.5 x 0.550110美国21502-10氮化硅膜2001.0 x 1.0mm50110美国21525-10氮化硅膜2000.25 x 0.25mm200110美国21522-10氮化硅膜2001.0 x 1.0mm200110美国21524-10氮化硅膜2000.1 x 1.5200210美国21528-10氮化硅膜2000.1 x 1.5200210美国4112SN-BA氮化硅膜2001.0 x 1.0200110SPI4120SN-BA氮化硅膜2000.5 x 0.5200110SPI
  • 立方氮化硼锯片
    立方氮化硼锯片中立方结构的氮化硼晶体结构类似金刚石,其硬度略低于金刚石,为HV72000-98000兆帕,应用于高速切削或磨削,可提高产品质量、加工效率,同时缩短加工周期和降低加工成本。主要特点具有优于金刚石的热稳定性和对铁族金属的化学惰性,适于加工既硬又韧的材料,如高速钢、工具钢、模具钢、轴承钢、镍和钴基合金、冷硬铸铁等,且磨削钢材时,大多可获得高的磨削比和加工表面质量。 技术参数Φ101.6mm×Φ12.7mm×0.35mm、Φ127mm×Φ12.7mm×0.60mm、Φ152.4mm×Φ12.7mm×1.0mm、Φ203.2mm×Φ25.4mm×1.3mm
  • TEM/SEM用亲水性/疏水性氮化硅窗口
    TEM用亲水性/疏水性氮化硅窗口 有需求请联系上海昭沅仪器设备有限公司! 021-35359028/29技术参数: 亲水性: 低应力氮化硅薄膜上镀有5nm厚度的亲水涂层 疏水性: 低应力氮化硅薄膜上镀有5nm厚度的疏水涂层 表面能:表面表面能 (mJ/m2)标准偏差氮化硅薄膜46.14.3亲水涂层76.12.2疏水图层24.64.4表面粗糙度:表面表面粗糙度 (nm)标准偏差氮化硅薄膜Rq=0.65Ra=0.450.060.02亲水涂层Rq=0.57Ra=0.400.040.03疏水涂层Rq=0.66Ra=0.400.030.05Rq=表面粗糙度 Ra= 平均粗糙度氮化硅薄膜窗规格 窗口类型薄膜厚度窗口尺寸框架尺寸框架厚度50nm单窗口,500x500μmΦ3mm200μm200 nm单窗口,500x500μmΦ3mm200μm15 nm3x3,9窗口,窗口100x100μmΦ3mm200μm 详细资料请咨询:021-35359028/ admin@instsun.com

氮化钒相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制