氯化钆

仪器信息网氯化钆专题为您提供2024年最新氯化钆价格报价、厂家品牌的相关信息, 包括氯化钆参数、型号等,不管是国产,还是进口品牌的氯化钆您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氯化钆相关的耗材配件、试剂标物,还有氯化钆相关的最新资讯、资料,以及氯化钆相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

氯化钆相关的资料

氯化钆相关的论坛

  • 食品和环境中短链氯化石蜡的定量分析

    [img]https://img.antpedia.com/instrument-library/attachments/wxpic/d2/66/9d266821863a83cd98020ec848967618.gif[/img]1背景介绍氯化石蜡是烃类物质经过氯化处理后得到的一系列复杂的衍生物。被广泛用于金属加工、纺织品和皮革处理、密封剂和润滑剂原料等,是一种重要的工业产品。其中短链氯化石蜡(SCCPs,C10-C13)由于在环境中具有较强的传输能力和生物富集作用,2017年被列入斯德哥尔摩公约控制的持久性有机物名单(Stockholm Convention on Persistent Organic Pollutants)。目前在欧盟、北美、日本等发达国家,短链氯化石蜡的使用被严格控制甚至禁止。我国对食品和环境中的氯化石蜡的研究、检测尚处于起步阶段。对短链氯化石蜡的检测一直以来都是具有挑战性的工作。首先,氯化石蜡单体(分子式相同)众多,而且每种单体中都包含成百上千个同分异构体分子,色谱上无法全部分开,在谱图上呈现大量共流出的多指型鼓包(宽驼峰),其中不同碳链长度和不同氯取代数目的氯化石蜡单体相互重叠。[align=center][img=,418,282]https://img.antpedia.com/instrument-library/attachments/wxpic/5b/72/f5b729cb31ba921088d3a21c7399b045.png[/img][/align]其次,不同单体在检测器的响应相差较大(跟氯取代数有关),无法通过峰面积加和进行测定,需要将不同单体尽量分离。另外,市面上没有单一氯化石蜡单体的标样,都是多种单体的混合物质,而且也不能包含实际样品中存在的所有氯化石蜡单体。这对氯化石蜡的定量工作带来很大困难。近年来,全二维[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法开始应用于氯化石蜡的分析。得益于其强大的分离能力,可以对氯化石蜡中不同单体进行更好的分离,准确性和可靠性相比常规一维色谱得以显著提高。另外,使用高分辨质谱,可以进一步减少其他污染物质的干扰,最终得到较为可靠的定量结果。雪景科技采用全二维[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]技术,结合高分辨质谱,开发了针对食品和环境中短链氯化石蜡的定量测定方法,配合定制化的专用数据处理工具,形成一整套方便易用的短链氯化石蜡分析方案。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d2/66/9d266821863a83cd98020ec848967618.gif[/img]2实验方法[color=#0c8918][i]样品和试剂[/i][/color]首先将三种不同氯含量的短链氯化石蜡标样(标称含氯量51.5%,55.5%,63%)混合配置成5种不同氯含量梯度的标准溶液,53.5%,55.5%,56.25%,57.75%,59.25%。浓度均为100mg/L。葵花籽油样品(Sunflower oil)。前处理方法按文献方法进行处理:用正己烷和二氯甲烷溶剂(1:1)进行提取,提取液经净化除去脂质分子,再通过组合填充柱(从下到上分别为Florisi,活化硅胶,用硫酸酸化后的硅胶),依次用正己烷和正己烷二氯甲烷溶剂进行洗脱,收集第二段洗脱液,氮吹至0.5mL。所有标样和样品在进样前加入反式氯丹(trans-chlordane,CHL)作为内标,浓度均为1mg/L。[color=#0c8918][i]仪器设备[/i][/color]使用Thermo Q Exactive[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff] GC [/color][/url]Orbitrap质谱仪,以及TriPlus RSH自动进样器及Trace 1310 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进行样品分析。调制器为雪景科技固态热调制器SSM1810,安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]顶部两个检测器位置,见下图。如果顶部装有检测器,也可将调制器安装于色谱侧面。[align=center][img=,384,288]https://img.antpedia.com/instrument-library/attachments/wxpic/63/7c/6637c2e61755ae577cb0f3ae43595b8b.jpeg[/img][/align]本方法使用的一维柱和二维柱以及调制柱如下一维柱:TG-5SILMS 30m 0.25mm 0.25um二维柱:DB-17ms, 1.5m, 0.25mm, 0.15um(含0.5m质谱传输线)调制柱:DV(C9-C40+)[color=#0c8918][/color][color=#0c8918][i]软件及数据处理[/i][/color]使用赛默飞 Xcalibur软件进行数据采集,数据处理通过雪景科技Canvas全二维色谱数据处理软件,含专用氯化石蜡分析软件包。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d2/66/9d266821863a83cd98020ec848967618.gif[/img]3结果与讨论[color=#00b050][i]氯化石蜡标样[/i][/color]由于氯化石蜡样品基质比较复杂,一般采用负化学电离源(NCI)模式,利用定量离子和定性离子进行确认和定量计算。氯化石蜡在NCI电离源上主要产生 [M-Cl]-离子。短链氯化石蜡共包含24种单体,本实验中,这些单体的定量离子、定性离子和按分子式计算的氯含量如下表。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/b5/fd/cb5fd9a058437ae26a74bd5c68ad8a20.png[/img]氯化石蜡的不同单体在二维谱图上可产生相比一维色谱更好的分离效果 [1-2],形成层次分明的“瓦片效应”。和文献报道类似,碳数和氯数之和相同的单体在同一层内,在下图中用同一种颜色显示。同一层内的不同单体可以用定量离子和定性离子进行区分定量。而每种单体都含有大量的同分异构体,一般将属于同一个单体的氯化石蜡归为一个族类,将峰面积全部加和进行计算(同一单体内化合物响应基本一致)。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/0d/98/d0d9826720e4ae831da97d14c497ed2e.jpeg[/img]研究发现,不同氯化石蜡单体之间在质谱检测器上的响应差异较大,如果采用统一的响应因子,实际结果会产生误差 [3]。考虑到响应因子主要和氯含量相关,本方法首先测定了不同氯含量氯化石蜡标样的响应因子,绘制成标准曲线。然后根据实际样品中测得的平均氯含量(对不同单体的峰面积按其氯含量进行归一化),在标准曲线中得到样品的平均响应因子,最终测定样品中的短链氯化石蜡含量。该方法首先由Reth等提出 [4],并在最近的全二维色谱氯化石蜡分析中得到广泛应用 [1-2],取得不错的效果。该方法所涉及的公式如下:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/4a/7e/a4a7ea9b2b1d787bbaf2300ee2bd4bde.png[/img]对五种不同氯含量的氯化石蜡标样所做的相对响应因子标准曲线如下图。线性回归系数R20.99。[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/e9/2d/6e92d6e78ddc21ad9228f891c2fd72a3.png[/img][/align][color=#00b050][i]葵花籽油样品[/i][/color]对葵花籽油样品进行同样条件的全二维色谱分析,经过定量离子和定性离子确认后得到24种不同单体的峰面积,根据公式(4)计算平均氯含量,然后从标准曲线中得到其平均响应因子,再根据公式(3)反推计算出样品中短链氯化石蜡的含量。[align=center][img=,252,121]https://img.antpedia.com/instrument-library/attachments/wxpic/08/60/b086011b0c697ba9ea94beb23940ce59.png[/img][/align][color=#00b050][i]样品中短链氯化石蜡单体分布[/i][/color]另外,本方法还可以对样品中不同短链氯化石蜡单体的含量分布进行考察。下图展示的两张图分别是未经氯含量校正(响应因子)的各单体峰面积相对比例(归一化百分含量),和经过氯含量(响应因子)校正的峰面积比例。两者差异不大,和文献报道相符 [3-4]。结果表明,该样品中主要包括C10、C11、C13的短链氯化石蜡,其中C13的含量最高。而C12的氯化石蜡没有在样品中检出。 [img=,225,151]https://img.antpedia.com/instrument-library/attachments/wxpic/59/51/d59516fe902a9d7f9272d9d4a7c9b458.png[/img] [img=,226,152]https://img.antpedia.com/instrument-library/attachments/wxpic/c9/94/2c99403b963d0c1c8b1f25ce0cbd2a93.png[/img][img]https://img.antpedia.com/instrument-library/attachments/wxpic/d2/66/9d266821863a83cd98020ec848967618.gif[/img]4总结全二维色谱法相较传统的一维色谱方法,对短链氯化石蜡单体的分离效果更好,可排除中链氯化石蜡和其他含氯化合物的干扰,再加上高分辨质谱的精确质量数,进一步减少不同分子式单体间的干扰,定量准确可靠。[font=微软雅黑, Arial, sans-serif][color=#000000]基于固态热调制全二维[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]高分辨质谱的短链氯化石蜡定量测定方法,无需液氮或任何制冷剂,使用方便,操作简单,适合于常规实验室使用。[/color][/font]结合专用的氯化石蜡数据处理工具,实现了便利的短链氯化石蜡流程化定量,减少人工干预和手工计算,极大提高了实验室分析效率。[size=15px][color=#00b050][i]参考文献[/i][/color][/size][size=15px][1] D. Xia, L. Gao, M. Zheng, Q. Tian, H. Huang, L. Qiao, A novel method for profiling and quantifying short- and medium-chain chlorinated paraffins in environmental samples using comprehensive two-dimensional gas chromatography-electron capture negative ionization high-resolution time-of-flight mass spectrometry, Environ. Sci. Technol. 50 (2016) 7601–7609.[/size][size=15px][2] Y. Zou, S. Niu, L. Dong, N. Hamada, Y. Hashi, W. Yang, P. Xu, K. Arakawa, J. Nagata, Determination of short-chain chlorinated paraffins using comprehensive two-dimensional gas chromatography coupled with low resolution mass spectrometry, J.Chromatogr. A 1581–1582 (2018) 135-143.[/size][size=15px][3] G.A.S.G.T. Tomy, D.C.G. Muir, A.T. Fisk, C.D. Cymbalistry, J.B. Westmore, Quantifying C10-C13 polychloroalkanes in environmental samples by high-resolution gas chromatography/electron capture negative ion high-resolution mass spectrometry, Anal. Chem. 69 (1997) 2762-2771.[/size][size=15px][4] M. Reth, Z. Zencak, M. Oehme, New quantification procedure for the analysis of chlorinated paraffins using electron capture negative ionization mass spectrometry, J. Chromatogr. A 1081 (2005) 225–231.[/size]

  • 硫酸钠和氯化钡沉淀问题

    硫酸钠和氯化钡反应生成沉淀,硫酸钠溶液浓度未知,氯化钡浓度已知。向硫酸钠溶液中加入氯化钡溶液,有什么方法能让氯化钡不加过量。加入的氯化钡溶液正好同硫酸钠溶液全部反应。 TRANSLATE with x English [align=left] [table][tr][td][url=#ar]Arabic[/url][/td][td][url=#he]Hebrew[/url][/td][td][url=#pl]Polish[/url][/td][/tr][tr][td][url=#bg]Bulgarian[/url][/td][td][url=#hi]Hindi[/url][/td][td][url=#pt]Portuguese[/url][/td][/tr][tr][td][url=#ca]Catalan[/url][/td][td][url=#mww]Hmong Daw[/url][/td][td][url=#ro]Romanian[/url][/td][/tr][tr][td][url=#zh-CHS]Chinese Simplified[/url][/td][td][url=#hu]Hungarian[/url][/td][td][url=#ru]Russian[/url][/td][/tr][tr][td][url=#zh-CHT]Chinese Traditional[/url][/td][td][url=#id]Indonesian[/url][/td][td][url=#sk]Slovak[/url][/td][/tr][tr][td][url=#cs]Czech[/url][/td][td][url=#it]Italian[/url][/td][td][url=#sl]Slovenian[/url][/td][/tr][tr][td][url=#da]Danish[/url][/td][td][url=#ja]Japanese[/url][/td][td][url=#es]Spanish[/url][/td][/tr][tr][td][url=#nl]Dutch[/url][/td][td][url=#tlh]Klingon[/url][/td][td][url=#sv]Swedish[/url][/td][/tr][tr][td][url=#en]English[/url][/td][td][url=#ko]Korean[/url][/td][td][url=#th]Thai[/url][/td][/tr][tr][td][url=#et]Estonian[/url][/td][td][url=#lv]Latvian[/url][/td][td][url=#tr]Turkish[/url][/td][/tr][tr][td][url=#fi]Finnish[/url][/td][td][url=#lt]Lithuanian[/url][/td][td][url=#uk]Ukrainian[/url][/td][/tr][tr][td][url=#fr]French[/url][/td][td][url=#ms]Malay[/url][/td][td][url=#ur]Urdu[/url][/td][/tr][tr][td][url=#de]German[/url][/td][td][url=#mt]Maltese[/url][/td][td][url=#vi]Vietnamese[/url][/td][/tr][tr][td][url=#el]Greek[/url][/td][td][url=#no]Norwegian[/url][/td][td][url=#cy]Welsh[/url][/td][/tr][tr][td][url=#ht]Haitian Creole[/url][/td][td][url=#fa]Persian[/url][/td][td] [/td][/tr][/table] [/align] TRANSLATE with COPY THE URL BELOW [url=javascript:Microsoft.Translator.FloaterOnShareBackClick()]Back[/url] EMBED THE SNIPPET BELOW IN YOUR SITEEnable collaborative features and customize widget: [url=http://www.bing.com/widget/translator]Bing Webmaster Portal[/url] [url=javascript:Microsoft.Translator.FloaterOnEmbedBackClick()]Back[/url]

  • 氯化亚钴和氯化钴是同一种物质么

    实验需要购买氯化亚钴,可是厂商说只有氯化钴,氯化亚钴和氯化钴是同一种物质,我百度了确实是同一物质,问题?还是矛盾中,不敢买,求确认?一般化学式命名的话"亚"开头的是不是化合价会低一些,如氯化亚铜、氯化亚铁等,为什么氯化钴会有这么奇怪的命名呢!

氯化钆相关的方案

氯化钆相关的资讯

  • 玩具材料中短链氯化石蜡测定标准即将颁布
    导语遥控汽车、拼图积木… … 又到了欢乐“六一”,想好给孩子们送什么玩具礼物了吗?随着社会的发展和进步,玩具花样也越来越多。但另一方面,玩具的安全性,如化学添加物质(增塑剂、阻燃剂等)也愈发引起关注。2017年,欧盟RAPEX通报了27起中国出口的消费品短链氯化石蜡超标案例,其中有6起涉及儿童玩具产品,包括了玩具小马、玩具步枪、绳子、沐浴玩具、塑料娃娃等。为适应国内外市场的要求,2019年,由上海海关机电产品检测技术中心牵头,着手开展制定《玩具材料中短链氯化石蜡含量的测定 气相色谱-质谱联用法》的国家标准。期间,岛津分析中心积极协助上海海关专家,参与了标准品和玩具材料实际样品的验证工作,并就技术问题与制标单位专家进行协商和沟通,推动项目的进展,目前该标准已通过报批程序,即将颁布并实施(标准号:GB/T 41524-2022),一起来看看吧! 氯化石蜡——年产量超过百万吨的化学品短链氯化石蜡(SCCPs,碳原子数10-13个)是一类人工合成的直链正构烷烃氯代衍生物。SCCPs主要用作金属加工润滑剂、增塑剂、涂料、皮革加脂剂以及阻燃剂等。SCCPs具有持久性、生物富集性以及潜在生物毒性,被IARC归为2B类致癌物。2007年,欧盟REACH将SCCPs列入第一批高关注物质清单;EU 2015/2030规定物品中的短链氯化石蜡含量不得等于或大于0.15%,否则不能投放市场。2017年4月,SCCPs被正式列入关于持久性有机污染的《斯德哥尔摩公约》受控名单(附录A)中。 表1. 关于SCCPs的管控情况中国是世界第一大氯化石蜡生产国,2013年的年产量超过100万吨,年产能超过160万吨。同时,我国也是世界玩具生产大国和出口大国,每年全球约75%的玩具来自中国,氯化石蜡常作为增塑剂和阻燃剂添加至玩具中,玩具材料中短链氯化石蜡的过量使用不仅会成为影响我国玩具出口的重大隐患,也会影响了我国玩具制造业的国际形象。图1. 氯化石蜡全球产量与使用量[1] 短链氯化石蜡——分析化学的前沿热点之一氯化石蜡及短链氯化石蜡的检测一直是环境、消费品等分析化学的难点之一。下图是市售某氯含量的短链氯化石蜡标准品谱图,由于同族分子种类众多,在仪器谱图上呈现簇峰,且保留时间跨度范围大,易与其它污染物干扰。因此,氯化石蜡及短链氯化石蜡的分析需要综合考虑前处理分离、仪器的分离度、分辨率、灵敏度等因素。迄今,尚无关于其检测的统一/黄金方法标准。 图2. 典型氯化石蜡的工业标准品谱图 相对而言,气相色谱-负化学电离质谱联用法(NCI-GCMS)目前是分析短链氯化石蜡常用的方法之一。 表2. NCI-GCMS的分析SCCPs的特点需要特别指出一点,NCI-GCMS的响应随氯原子数增大而增大,这会导致样品与标准品若氯含量有明显差异,则得到的定量结果不准确[2]。因此若使用NCI-GCMS,目前主流的方法是使用氯含量-响应因子做校准曲线[3]。图3. NCI模式下,相同浓度下不同氯含量的响应对比,由下到上依次为50ppm,氯含量51.5%、53.5%、55.5%、56.25%、57.75%、59.25%和63%的总离子流图。 岛津应对利器使用NCI-GCMS法,岛津分析中心协助上海海关机电中心对开展标准制订工作用的标准品和玩具样品进行方法学验证。图4. GCMS-QP2020 NX及方法参数信息 l 方法学结果节选——质量色谱图图5. 氯含量55.5%的SCCPs工业标准品单体质量色谱图(以CnCl7为例) l 某玩具材料样品的实例谱图图6. 某玩具材料样品的TIC谱图(浓度约2000 mg/kg) 结语作为世界知名的仪器产商,岛津公司始终秉持“为了人类和地球健康“的经营理念,不仅提供优良性能的仪器,同时也提供丰富的理化检测解决方案,针对国内外关注的玩具中短链氯化石蜡超标问题,协助国内制标单位开展标准制定工作,让下一代玩的放心,拥有快乐的童年。 参考文献[1] Gluge J., Wang Z.J., Bogdal C et al. Global production, use, and emission volumes of short-chain chlorinated paraffins – A minimum scenario. Science of the Total Environment, 2016, 573: 1132-1146.[2] Reth M., Oehme M. Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins. Anal Bioanal Chem, 2004, 378: 1741-1747.[3] Reth M., Zencak Z., Oehme M et al. New quantification procedure for the analysis of chlorinated paraffins using electron capture negative ionization mass spectrometry. Journal of Chromatography A, 2005, 1081:225-231. 本文内容非商业广告,仅供专业人士参考。
  • 华爱色谱参与起草的国家标准《电子特气 三氯化硼》发布
    由华爱色谱参与起草的国家标准GB/T 17874-2021《电子特气 三氯化硼》于近期发布。这项标准规定了电子级三氯化硼的技术要求、检验规则、试验方法、标志、包装、运输、贮存及安全信息的要求。这项标准适用于以粗制三氯化硼为原料提纯制得的电子级三氯化硼。华爱色谱自2004年成立以来,先后参与了1项国际标准ISO19230-2020《Gas analysis-Sampling guidelines》,和近百项《国家标准》的制修订工作。在气相色谱生产和应用领域,华爱色谱拥有几十项专利技术,先后承担过国家创新基金、重点新产品计划、火炬计划、成果转化等多项国家和上海市的科技项目,确立了华爱色谱在色谱分析行业内的地位。 座落于黄浦江畔的生产车间,具备完善的管理制度和的生产环境,2008年通过ISO9001国际质量管理体系认证;拥有GC-9560实验室气相色谱仪、GC-9580实验室气相色谱仪、HA-9660在线式气相色谱仪、HA-9680工业防爆气相色谱仪、GC-9760便携式气相色谱仪、GC-9780便携式气相色谱仪三大系列,二十余种产品,可配备FID、TCD、FPD、PDD、PED、ZrO2等各种检测器。
  • 三篇新型POPs氯化石蜡研究在环境国际权威期刊发表,分析技术竟然是它!
    精彩推荐近期,中国农业科学院农业质量标准与检测技术研究所“饲料质量安全检测与评价”创新团队开展了畜产品以及饲料中短链和中链氯化石蜡污染特征研究,解析了污染来源,进一步揭示了氯化石蜡在“环境—青贮饲料—奶牛—生鲜乳”生产链条中迁移转化规律,评估了暴露风险,为新型持久性有机污染物在动物性食品生产链条中的迁移防控提供了技术支撑。相关研究成果[1,2]相继在线发表在《环境国际(Environment International)》和《危害物质学报(Journal of Hazardous Materials)》上。图片来源:ScienceDirect 与此同时,国家环境测试中心发表大气环境中短链氯化石蜡SCCPs的污染水平与特性,相关研究成果[3]在线发表在《Environmental Pollution》上。图片来源:ScienceDirect 什么是氯化石蜡?氯化石蜡(ChlorinatedParaffins,CPs)是一类组成复杂的正构烷烃的氯代衍生物,其中短链氯化石蜡(ShortChain Chlorinated Paraffins, SCCPs)及中链氯化石蜡(Medium Chain Chlorinated Paraffins, MCCPs)均具有典型持久性有机污染物(PersistentOrganic Pollutants, POPs)的特征,是近年来备受关注的一类新型的有机污染物(图1)。短链氯化石蜡已于2017年5月被正式列入《关于持久性有机污染物的斯德哥尔摩公约》受控名单附件A中,其在环境介质和生物中的含量,以及对人体的暴露风险评价等成为现今研究的热点课题。图1:氯化石蜡分类 岛津创新中心基于全二维气相色谱串联质谱联用仪(图3),开发了环境中新型POPs氯化石蜡分析方法包。可有效分离短链氯化石蜡与中链氯化石蜡,同时可准确定量短链氯化石蜡SCCPs和中链氯化石蜡MCCPs的总含量以及同系物的相对含量,该方法学文章[4](图2)在2018年发表于《色谱A(Journal of Chromatography A)》,可有效应用于大气、土壤、底泥、生物、血液、饲料和食品等各类样品。同时获得一项分析方法专利。 图2:全二维三重四极杆质谱技术在短链氯化石蜡检测中的应用 中国农业科学院农业质量标准与检测技术研究所和国家环境测试中心发表的三篇文章,正是参照分析方法学文献[4]并采用了氯化石蜡分析方法包,完成大量不同基质样品的实际检测。图3:全二维气相色谱质谱联用仪 在氯化石蜡分析方法的基础上,创新中心又开发全二维气质联用GCxGC分离定量209种多氯联苯(PolychlorinatedBiphenyls,PCBs)单体的应用(图4)。该应用系统可分离198个PCB单体,4对两单体重合,1组三单体重合,以及实现12个Dioxin-likePCB单体的完全分离。该方法可应用于大气、土壤、底泥等环境及食品领域。图4:2019ASMS Poster《全二维气质联用分离定量209种多氯联苯单体》 [1] Shujun Dong, Su Zhang, Xiaomin Li, et al. Short- and medium-chain chlorinated paraffins in plastic animal feed packaging and factors affect their migration intoanimal feed, Journal of Hazardous Materials,389,2020.https://doi.org/10.1016/j.jhazmat.2019.121836 [2] Shujun Dong,Su Zhang,Xiaomin Li, et al. Occurrence of short- and medium-chain chlorinated paraffins in raw dairy cow milk from fiveChinese provinces,Environment International 136 (2020). https://doi.org/10.1016/j.envint.2020.105466 [3] Shan Niu, Ruiwen Chen, Yun Zou, et al. Spatial distribution and profile of atmospheric short-chain chlorinated paraffins in the Yangtze River Delta,259, April 2020.https://doi.org/10.1016/j.envpol.2020.113958 [4] Yun Zou, Shan Niu, Liang Dong, et al. Determination of short-chain chlorinated paraffins using comprehensive two-dimensional gas chromatography coupled with lowresolution mass spectrometry, Journal of Chromatography A, 1581 (2018) 135–143. https://doi.org/10.1016/j.chroma.2018.11.004

氯化钆相关的仪器

  • 产品简介高精度痕量气体分析仪(TGA-323)是一款专为半导体行业空气分子污染分析(AMC)测量氯化氢(HCl)而设计的专业仪器,采用光腔衰荡光谱技术(CRDS),具有超高的灵敏度,其检测下限可达ppt级别。不需要现场校准,非常适合连续测量。 该分析仪内部管路都进行了特殊涂层,可以有效的减小氯化氢(HCl)分子在管道壁上的吸附,加速测量的响应时间并消除测量偏差。同时分析仪采用小体积腔设计,能够进一步提升测量速度。 光腔衰荡光谱(CRDS)与离子迁移谱(IMS)和离子色谱传统技术相比,具有探测下限低、响应时间快、无需耗材等显著优势,该分析仪具有更优的长期稳定性和低维护性,是半导体行业AMC连续监测的理想选择。产品特点(1)ppt级别的灵敏度、精度以及准确度 (2)免标定,低漂移 (3)响应时间快(4)连续监测 (5)无耗材成本应用领域半导体行业AMC连续监测、洁净室监测、FOUP监测
    留言咨询
  • GASTEC快速气体检测管无论何时由于不用分析仪器和化学药剂,省略了测量前的准备工作,无论何时都可以进行测定。无论何地极为小巧便于携带,只要有微量的空气就可以进行测定,最适合于现场测定。无论何人测定的操作非常简单,无论专业人士或非专业人士。多种气体GASTEC快速气体检测管可以检测多达300余种气体。检测快速测定的结果几分钟就可得到,可以立即转入下一步操作。过程安全日本GASTEC快速气体检测管不用电源,热源,不产生火花,即使有易燃易爆的气体存在,也可以确保操作安全。选型指南型号被测物质分子式可检测范围 ppm80酸性气体-1-80氯气Cl20.7-14氯化氢HCL8-160碘I20.12-2.4硝酸HNO35-100二氧化氮NO20.2-4二氧化硫SO21.5-3081乙酸CH3CO2H1-10081L0.125-25.0
    留言咨询
  • GASTEC快速气体检测管无论何时由于不用分析仪器和化学药剂,省略了测量前的准备工作,无论何时都可以进行测定。无论何地极为小巧便于携带,只要有微量的空气就可以进行测定,最适合于现场测定。无论何人测定的操作非常简单,无论专业人士或非专业人士。多种气体GASTEC快速气体检测管可以检测多达300余种气体。检测快速测定的结果几分钟就可得到,可以立即转入下一步操作。过程安全日本GASTEC快速气体检测管不用电源,热源,不产生火花,即使有易燃易爆的气体存在,也可以确保操作安全。选型指南型号被测物质分子式可检测范围 ppm134四氯化碳CCl40.5-60134L0.25-111351,1,1- 三氯乙烷(甲基氯仿)CH3CCI3100-2000135L6-900136H甲基溴CH3Br10-600136L2.5-200136LA1-36136LL0.1-3.0137氯仿CHCl34-400137LA0.5-30137LL0.3-4.5138二氯甲烷CH2Cl220-500138L4-150
    留言咨询

氯化钆相关的耗材

  • 126Gastec便携式气体检测管氯化苯检测管
    126Gastec便携式气体检测管氯化苯检测管(C6H5Cl)被检物质和化学式检测管型号和名称 抽气颜色变化保存备注 检测范围次数期限管理范围(ppm)(n)检测前检测后(年)(ppm)氯化苯126氯化苯200-5001/2白色灰褐色3 10(E)C6H5Cl5-200①10(J,US)2-52,Gastec便携式气体检测管氯化苯检测管(C6H5Cl) 126Gastec便携式气体检测管氯化苯检测管(C6H5Cl)的详细介绍 126Gastec便携式气体检测管氯化苯检测管(C6H5Cl)被检物质和化学式检测管型号和名称 抽气颜色变化保存备注 检测范围次数期限管理范围(ppm)(n)检测前检测后(年)(ppm)氯化苯126氯化苯200-5001/2白色灰褐色3 10(E)C6H5Cl5-200①10(J,US)2-52,Gastec便携式气体检测管氯化苯检测管(C6H5Cl) Gastec便携式气体检测管氯化苯检测管(C6H5Cl)的详细介绍: 被检物质和化学式 检测管型号和名称   抽气 颜色变化 保存 备注   检测范围 次数 期限 管理范围 (ppm) (n) 检测前 检测后 (年) (ppm) 氯化苯 126 氯化苯 200-500 1/2 白色 灰褐色 3   10(E) C6H5Cl 5-200 ① 10(J,US)     2-5 2     126L 氯化苯 10-43 1 黄色 淡青紫色 2﹡   0.5-10 ③ T:需要温度校正 H:需要湿度校正 +:双管 ++:9支管 *:冷藏储存 GASTEC产品的独特之处 操作简单:无论何时、何处、何人、都可在所需之处快速完成检测。 判断直观:抽气完成后,可以直接从变色层所对应的刻度读取浓度数值,简单明了。 检测范围宽:通过调整抽气量,可以扩大检测范围。 检测结果准确:每一批检测管都要通过多次试验来标定刻度。 使用期限长:产品稳定性好,有效期较长。 检测管被广泛应用于各种领域及场所 GASTEC公司的气体检测技术只需使用检测管和采集器就可对气体进行检测。操作简单,极易掌握,有着广泛的应用,可以在很多领域发挥作用。其中包括: 重工业:钢铁、造船、汽车、造纸等 制造业:食品、家电、半导体等 石化业:化学工业、石油精炼等 能源领域:天然气、电力等 工程施工现场:下水道、燃气工程、建设工地等科研:研究室、实验室等 交通:电车、飞机、船舶、公共汽车或长途车等 医疗机构:医院、诊疗所、保健所等 事务所:办公室、会议室、大厅、演艺室等 学校:实验室、教室的空气污染等 公共场所:电影院、剧场、商场、饭店和酒店等 体育与休闲:游泳池、训练场、室内体育设施等针对突发公共卫生事件应急监测推出的气体应急检测箱等
  • 14MGastec便携式气体检测管氯化氢检测管
    14MGastec便携式气体检测管氯化氢检测管(HCl) 被检物质和化学式检测管型号和名称 抽气颜色变化保存备注 检测范围次数期限管理范围(ppm)(n)检测前检测后(年)(ppm)氯化氢14R氯化氢200-5000①紫色※黄/淡桃色35(J)HCl 50-2002-4,Gastec便携式气体检测管氯化氢检测管(HCl) 14MGastec便携式气体检测管氯化氢检测管(HCl) 的详细介绍 14MGastec便携式气体检测管氯化氢检测管(HCl) 被检物质和化学式检测管型号和名称 抽气颜色变化保存备注 检测范围次数期限管理范围(ppm)(n)检测前检测后(年)(ppm)氯化氢14R氯化氢200-5000①紫色※黄/淡桃色35(J)HCl 50-2002-4,Gastec便携式气体检测管氯化氢检测管(HCl) Gastec便携式气体检测管氯化氢检测管(HCl)的详细介绍: 被检物质和化学式 检测管型号和名称   抽气 颜色变化 保存 备注   检测范围 次数 期限 管理范围 (ppm) (n) 检测前 检测后 (年) (ppm)氯化氢 14R 氯化氢 200-5000 ① 紫色 ※黄/淡桃色 3 5(J) HCl   50-200 2-4                            14M 氯化氢 500-1000 1/2 黄色 红色 3       20-500 ①             10-20 2         14L 氯化氢 20-76 1/2 黄色 桃色 3     1-20 ①           0.2-1 2-5         80 酸性气体 8-160 2 紫色 淡红紫色 2   8HH 氯气 1.5-30% 1/2 红紫色 黄色 3   T:需要温度校正 H:需要湿度校正 +:双管 ++:9支管 *:冷藏储存 气体检测管,迅速、简单、准确地对所有气体进行检测和测定的直读式气体检测管。 直读式气体检测管 检测管式气体检测器是由检测管和气体采集器两部分构成。在一定直径的玻璃管内紧密地装填检测剂,将两端密封,然后在玻璃管表面印制表示浓度的刻度,就制成了一支检测管。在对检测目标气体进行检测时,先将检测管两端切断,通过采集器将一定量需要检测的气体抽入检测管内,检测管内就会立刻与检测试剂发生反应,并出现颜色的变化。通过变化层所在的相应位置,读取该气体的浓度。 检测试剂是通过在硅胶或氧化铝等物质表面附着显色试剂的方法制成的。显色试剂遇到被检测气体时会发生特定的反应,而且这种检测试剂具有相当的稳定性。 反应可分为两种,一种是被检测气体与检测试剂直接发生反应,产生变色。另一种是将被测气体转变为其他气体,转变后的气体再与检测试剂反应,产生变色。
  • 日本GASTEC 51 氟氯化烃(热解管)
    日本GASTEC 51 氟氯化烃(热解管),日本GASTEC 51 氟氯化烃(热解管),说明 电源:4AA电池 可连续工作时间:约2小时 加热丝寿命: 以氟利昂113为例,测定浓度为6,000 ppm时可用1,000次 标准使用温度:0-40°C 尺寸及重量?68╳150,重约245g 热解检测管 [51L] [51] [51H] [52] [53]具体检测气体种类及范围参考下表 览日本GASTEC 51 氟氯化烃(热解管),日本GASTEC 51 氟氯化烃(热解管)气体种类型号检测范围(ppm)刻度范围保存期(年)乙腈52**3-180-3氯甲烷51**12-480-351L**1.6-86-3二氯甲烷51L**1-54-3硝基乙烷52**4-240-31-硝基丙烷52**4.2-252-32-硝基丙烷52**3.7-222-3硝基甲烷52**5-300-3二甲二硫醚53**0.3-6-2FC- 1151H**275-6600-351**8-320-351L**0.8-43-3FC- 1251H**325-7800-351**11-440-351L**1.8-97-3FC- 2251H**1000-24000-351**25-1000-351L**2.5-135-3FC-11251H**125-3000-351**7-280-351L**1-54-3FC- 11351H250-6000250-200035110-40010-400351L1-541-203FC- 113a51H**125-4800-351**10-400-351L**0.8-43-3FC- 11451H**475-11400-351**20-800-351L**1.8-97-3FC- 12351**14-560-351L**1.4-28-3FC- 141b51**10-400-351L**1.1-22-3FC- 22551**20-800-3FC- 225Ca + FC- 225Cb 1:151L**1.4-28-3二甲二硫醚53**0.25-10 (0.5)-10251H/51/51L/53为双管*:按换算表读数 **:按换算系数读数

氯化钆相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制