克洛索隆

仪器信息网克洛索隆专题为您提供2024年最新克洛索隆价格报价、厂家品牌的相关信息, 包括克洛索隆参数、型号等,不管是国产,还是进口品牌的克洛索隆您都可以在这里找到。 除此之外,仪器信息网还免费为您整合克洛索隆相关的耗材配件、试剂标物,还有克洛索隆相关的最新资讯、资料,以及克洛索隆相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

克洛索隆相关的资料

克洛索隆相关的论坛

  • 【讨论】克隆动物吃还是不吃 克隆食品安全性如何?

    自从1996年世界上第一只体细胞克隆羊“多利”在英国诞生以来,克隆技术似乎变得越来越普及,各国很多科学家都掌握了这种技术,更有许多科学家雄心勃勃,朝着克隆动物产品产业化的目标进发。  在中国,已经有数家科研机构有能力克隆动物,并让不少的克隆动物存活下来。中国科学院动物所首席研究员陈大元、2007年12月刚当选为中国工程院院士的中国农业大学李宁教授等,都已经成功培养出克隆牛,中国工程院院士、上海医学遗传研究所所长曾溢滔也在克隆牛和羊的工作上稳步前进。  药物也好,牛排也好,克隆技术最终的目标,都是制造产品送进人的身体里,所以,“克隆离餐桌有多远”这个问题,永远吸引人们的关心。美国FDA认可了部分克隆动物食品的安全性以后,中国大众也开始讨论克隆食品能不能吃的问题。  关于克隆食品的安全性,中国农业大学李宁教授介绍说,目前国内还没有相关的标准出台,有关部门领导碰面时会提及标准问题,但距离正式的探讨还有距离。“中国与美国的情况不同,美国的产业部门会向FDA提出制定克隆动物食品标准的要求。”李宁教授说,产业部门的呼吁已有五六年之久,FDA关于安全性的标准和认可姗姗来迟。为此,产业部门极为不满。他在国外参加学术会议时,常常听到国外专家的抱怨。但在国内,动物产品生产的各个环节分属不同部门管理,很难有部门主动“应战”。  但李宁教授认为,目前中国克隆动物产品距离产业化还有“漫长的道路”,原因并不在于缺乏安全性审查的标准,因为安全性标准完全可以参照国外既有的标准。他认为,真正的距离在于技术。“个别的科研团体能够克隆,是不可能实现产业化的。”  陈大元教授同样不够“乐观”。他自己带领的克隆牛研究,就还没有达到理想的“效率”。2002年陈大元的团队培养出第一批克隆牛,14头成功克隆的牛最后只存活下5头牛犊,第一头克隆牛在出生不久以后夭折。2003年在新疆成功的31头克隆牛,也只有12头存活。不久前,中科院一个研究小组培育的克隆牛,全部存活,这几乎是克隆实验中的“奇迹”,陈大元介绍说,这次“例外”的原因,科研人员正在研究当中。  尽管有“例外”发生,克隆动物存活率低的问题,仍然是目前克隆技术产业化的瓶颈,如果没有新的方法解决,对产业化的期待,也许还为时尚早。不过,陈大元认为,最近日本和美国实现了“诱导多能干细胞”技术,如果尽快把这一技术应用到克隆中,那么产业化也许可以早点到来。“只要是健康存活下来的克隆动物,作为食物就跟传统动物没有两样,是安全的,问题在于我们的技术还没有能力批量地生产克隆动物产品。”陈大元说。  “1980年初,外国哺乳动物克隆研究走得很快,中国科学界直到1990年才追上克隆技术的步伐。”陈大元说。不过,上世纪90年代以后,中国克隆技术的进步,立即进入加速度,兔、鼠、猪、牛、羊等等动物的克隆,都被中国的科学家实现。陈大元把这个时期形容为“登峰造极”。2000年以后,随着克隆技术的成熟,世界各地的科学家开始探索克隆产业化,中国的科研工作者也加入了实现产业化的努力当中。在很多国外研究者看来,中国人的智慧和勇气,常常能制造轰动性的成果,在克隆动物产品产业化的领域,中国的表现也值得期待。

  • 单克隆抗体克隆化技术

    经过抗体测定的阳性孔,可以扩大培养,进行克隆,以得到单个细胞的后代分泌单克隆抗体。克隆的时间一般说来越早越好。因为在这个时期各种杂交瘤细胞同时旺盛生长,互相争夺营养和空间,而产生指定抗体的细胞有被淹没和淘汰的可能。但克隆时间也不宜太早,太早细胞性状不稳定,数量少也易丢失。克隆化的阳性杂交瘤细胞,经过一段时期培养之后,也还会因为细胞突变或特定染色体的丢失,使部分细胞丧失产生抗体的能力,所以需要再次或多次克隆化培养。克隆化次数的多少由分泌能力强弱和抗原的免疫性强弱而决定。一般说,免疫性强的抗原克隆次数可少一些,但至少要3~5次克隆才能稳定。克隆化的方法很多,包括有限稀释法、显微操作法、软琼脂平板法及荧光激活分离法等。一、有限稀释法1.材料① 微量培养盘,盘内各孔于克隆化前一天培养小鼠腹腔细胞(即饲养细胞)每孔2万~4万。② HT培养基2.操作方法① 取出抗体阳性孔细胞,用HT培养液制成细胞悬液。并取样进行台盼兰染色,计数。② 用HT培养液将细胞稀释成200个/ml、40个/ml、20个/ml和的悬液。③ 用吸管将细胞悬液分别种入微量培养盘,每孔0.05ml,细胞含量分别为10个/孔、2个/孔、1个/孔和0.5个/孔。④ 5%CO2饱和湿度,37℃培养。⑤ 每天用倒置显微镜观察克隆生长情况,选择只有一个集落生长的孔,弃掉两个以上和没有细胞生长的孔。⑥ 克隆大量繁殖后,布满孔底的1/3~1/2时,测培养液抗体。⑦ 抗体阳性孔细胞,移到有饲养层的组织培养瓶中,并传2~4代就可以脱离饲养细胞,建成克隆株。二、软琼脂克隆化借助撒在软琼脂上单个细胞定位生长,而达到克隆化,具体操作如下:1.配2.5%的琼脂糖30ml,水浴溶化后,移入45℃水浴中。2.将117ml完全DMEM液和3ml 10倍浓度的DMEM液混合,置45℃水浴预热。3.将琼脂糖与DMEM液混合,即为含0.5%琼脂糖的完全DMEM液,并加75×108 脾细胞。4.每块平皿加10ml,于室温中凝固。5.DMEM中的细胞与DMEM―琼脂1:1混合,将细胞琼脂混合物2ml铺于凝固的平板上,使其全部覆盖。6.放入CO2箱饱和湿度,37℃培养10天。7.用PBS配制0.6%琼脂糖,于沸水浴溶解后,置45℃,在保温情况下取一试管,迅速加入0.1ml 25%羊红血球,0.2ml豚鼠补体,2.7ml 0.6%琼脂糖。8.用3ml琼脂糖―羊红血球混合液覆盖克隆。于37℃CO2箱孵育1h~2h。从克隆上部溶解羊红血球的溶血范围,可筛选抗羊红血球Ig。三、显微镜操作法在直径6cm培养皿中,加入1ml 1.0×108 细胞悬液放置5%CO2饱和湿度,37℃温箱中放置30min以上,倒置显微镜下,寻找那些与周围相距甚远的单个细胞,将毛细管口(一头有直角弯头毛细管,一头连接一尺长乳胶管,用口控制液体进入)水平置放于液面上,左右微动,直到看见管口,对准细胞,吸入毛细管,将管中细胞移到预先加有2.0×104~5.0×104 饲养细胞96孔板内,培养后,即可获得单个细胞形成的克隆。四、荧光激活分离法用一种荧光激活细胞分类器(Fluorescein Activafed Cell Sorter,FACS)。其基本原理是:将细胞经荧光抗体染色后,经喷嘴形成单个细胞的线形液滴,在莱塞光激发下,荧光素发射荧光,此信号由光电倍增管接收,再结合细胞形态大小产生光散射信号,经电脑处理,产生信号并与预定的信号对比,根据细胞荧光强度及细胞大小不同,将细胞分成不同级别,在电场中发生偏离,而分别收集于不同容器中。

  • 目的基因的亚克隆-实验方法

    所谓亚克隆就是对已经获得的目的DNA片段进行重新克隆,其目的在于对目的DNA进行进一步分析,或者进行重组改造等。亚克隆的基本过程包括:(1)目的DNA片段和载体的制备;(2)目的DNA片段和载体的连接;(3)连接产物的转化;(4)重组子筛选。 一、试剂准备1.LB液体培养基:胰化蛋白胨(细菌培养用)10g,酵母提取物(细菌培养用) 5g,NaCl 10g,加ddH2O 至1000ml,完全溶解,分装小瓶,15lbf/in2高压灭菌20min。2.1.5%琼脂LB固体培养基: 称取1.5g琼脂粉放入300ml锥形瓶,加100ml LB,15 lbf/in2 高压灭菌20min,稍冷却,制备平皿。3.IPTG、X-Gal4.0.1M MgCl2 :15 lbf/in2高压灭菌20min,0℃冰浴备用。5.0.1M CaCl2(以20%甘油水溶液配制):15 lbf/in2高压灭菌20min,0℃冰浴备用。6.限制性核酸内切酶、T4 DNA连接酶。二、目的DNA片段和载体的制备选择适宜的限制性核酸内切酶,消化已知目的DNA和载体,获得线性DNA,用于重组。根据目的DNA和载体的具体情况,选择一种或者两种适当的限制酶切割,分别产生对称性粘性末端(用一种限制性内切酶进行消化而产生带有互补突出端)、不对称粘性末端(用两种不同的限制性内切酶进行消化而产生带有非互补突出端)、平端。在亚克隆时,首选不对称相容末端连接,次选对称性粘性相容性末端连接,由于平末端连接效率较低,通常很少采用。但有时目的片段的末端与载体不匹配 ,一般先将不匹配末端补平,然后再以平末端连接。(实验操作同前述) 三、利用T4 DNA连接酶进行目的DNA片段和载体的体外连接(一)连接要求和结果外源DNA片段末端性质 连接要求 连接结果 不对称粘性末端 两种限制酶消化后,需纯化载体以提高连接效率 载体与外源DNA连接处的限制酶切位点常可保留;非重组克隆的背景较低;外源DNA可以定向插入到载体中。 对称性粘性末端 线形载体DNA常需磷酸酶脱磷处理 载体与外源DNA连接处的限制酶切位点常可保留;重组质粒会带有外源DNA的串联拷贝;外源DNA会以两个方向插入到载体中。 平端 要求高浓度的DNA和连接酶 载体与外源DNA连接处的限制酶切位点消失;重组质粒会带有外源DNA的串联拷贝;非重组克隆的背景较高 。 带有相同末端(平端或粘端)的外源DNA片段必须克隆到具有匹配末端的线性质粒载体中,但是在连接反应时,外源DNA和质粒都可能发生环化,也有可能形成串联寡聚物。因此,必须仔细调整连接反应中两个DNA 的浓度,以便使“正确”连接产物的数量达到最佳水平,此外还常常使用碱性磷酸酶去除5’磷酸基团以抑制载体DNA的自身环化。利用T4 DNA连接酶进行目的DNA片段和载体的体外连接反应,也就是在双链DNA 5’磷酸和相邻的3’羟基之间形成新的共价键。如载体的两条链都带有5’磷酸(未脱磷),可形成4个新的磷酸二酯键;如载体DNA已脱磷,则只能形成2个新的磷酸二酯键,此时产生的重组DNA带有两个单链缺口,在导入感受态细胞后可被修复。(二)T4 DNA连接酶对目的DNA片段和载体连接的一般方案1.连接反应一般在灭菌的0.5ml离心管中进行。2.10μl体积反应体系中:取载体50-100ng,加入一定比例的外源DNA 分子(一般线性载体DNA分子与外源DNA分子摩尔数为1∶1-1∶5),补足ddH2O 至8μl。3.轻轻混匀,稍加离心,56℃水浴5min后,迅速转入冰浴。4.加入含ATP的10×Buffer 1μl,T4 DNA连接酶合适单位, 用ddH2O 补至10μl,稍加离心,在适当温度(一般14-16℃水浴)连接8-14hr。四、连接产物的转化1.感受态细胞的制备⑴ 保存于-70℃的DH5α(或其他菌种)用接种环划菌于1.5%琼脂平板上,37℃恒温倒置培养至单菌落出现(约14-16 hr)。⑵ 挑取单菌落,接种于2.0ml LB液体培养基中,37℃恒温,250g振荡培养过夜(约12hr)。⑶ 取0.5ml 过夜培养液,接种于100ml LB液体培养基中,37℃振荡培养2-2.5hr,至OD600为0.4-0.5时,放置于4℃冰箱冷却1-2hr。(注:以下操作均应在冰浴中进行。)⑷ 将培养液分入两个50ml离心管中,4℃离心,4000g×10min,弃去上清,用冰浴的0.1M MgCl2 25ml悬浮30min。⑸ 4℃离心,4000g×10min,弃去上清,加入冰浴的0.1M CaCl2-甘油溶液1ml悬浮。⑹ 以100μl/管分装入1.5ml离心管中,-70℃冻存备用。注:此法制备感受态细胞,可使每微克超螺旋质粒DNA产生5×106-2×107个菌落,这样的转化效率足以满足所有在质粒中进行的常规克隆的需要,制备的感受态细胞可贮存于-70℃,但保存时间过长会使转化效率在一定程度上受到影响,一般三个月以内转化效率无多大改变。2. 连接产物的转化⑴ 取100μl贮存于-70℃钙化菌,冰浴化开;⑵ 加入适量连接产物(一般不超过10μl,轻轻混匀,冰浴20min;⑶ 于42℃热休克90s,迅速转移至冰浴中,继续冰浴2-3min;⑷ 加入LB液体培养基200μl,于37℃缓摇孵育45min;⑸ 将培养物适量涂于1.5%琼脂LB平板(根据质粒性质添加抗生素或/和X-Gal/IPTG),待胶表面没有液体流动时,37℃温箱倒置培养12-16hr。

克洛索隆相关的方案

克洛索隆相关的资讯

  • 世界电镜九十年之怀念捷克斯洛伐克电子显微镜先驱——Delong、Drahoš和Zobač
    本文作者为捷克共和国Tescan Brno的Bohumila Lencová,摘译原文发布于2021年。今年,我们在布尔诺庆祝了捷克斯洛伐克首台电子显微镜生产70周年。Armin Delong描述的那些早些年间的事仿如昨日,如20世纪50年代末的一些往事、20世纪60年代年在布拉格举行的欧洲电子显微镜大会(EUREM)的情景,以及20世纪70年代的一系列论文的进展等。图1照片拍摄于1953年左右,照片上正是负责制造 Brno电子显微镜的三个年轻人,当时他们三位仅28岁就被授予当时最高级别荣誉勋章之一的“工作荣誉勋章”。参与电镜制造的还包括另外两名技术人员,但由于相对年长并没有呈现。同时,三位年轻人毕业所在系的系主任Ales Bláha教授也不在其中。正如Ladislav Zobač在回忆录中所描述,“我们并不确定自己是否应该得到这份荣誉,但军事学院为了让这一成果更加受到关注所以推动了这次荣誉授予。”当时,他们在该学院从事教学工作,而Delong和Vladimir Drahoš则刚开始各自的研究生学习阶段。图1从左到右:Armin Delong, Vladimir Drahoš 和 Ladislav Zobač1951年,军事学院接管了布尔诺理工大学的部分工作,迫使Bláha教授离开了布尔诺理工大学,并取消了他的教授头衔。随后,Bláha搬到Bratislava,在那里继续从事其教学和研究。留在军事学院或攻读博士学位是避免服兵役的一种安全方式,至少对Zobač来说是这样。Armin Delong, Vladimir Drahoš 和 Ladislav Zobač主要在Bláha建立的 Scientific Workshop工作,后来这里成为Tesla Elektronik的研发中心,随后成为捷克斯洛伐克科学院(CSAV)的研发中心,1957年又成为捷克斯洛伐克科学院科学仪器研究所(ISI)的一部分。在此要提一下Ferdinand Hercík院士,他从RCA获得了第一个商用显微镜。并向Armin Delong, Vladimir Drahoš 和 Ladislav Zobač三人展示了这台显微镜,因此他们成功地制作了一台质量与RCA显微镜相似的、最早的电子显微镜。除了仿造RCA设备之外,他们还设计了一个小型桌面显微镜。Hercík负责在Královopolská以及新建的Tesla工厂以南仅1公里的地方建造两所毗邻的学院,即生物物理学院和科学仪器研究所。他还积极参与了联合国和教科文组织的工作。在此也简要概述一下捷克斯洛伐克当时的时代背景。捷克斯洛伐克是1918年在一战后由前波希米亚、摩拉维亚、斯洛伐克(哈布斯堡君主制匈牙利部分的一部分)和后来被苏联吞并的喀尔巴阡乌克兰组成的,虽然只持续了20年,但在这期间经济实现飞速增长。1938年秋天,纳粹占领捷克和摩拉维亚之前,吞并了居住着近300万德国人的苏台德地区;战争结束后,他们被迫大量离开该国前往德国。1939年3月,第一个斯洛伐克分裂,建立了自己的法西斯国家,其余的波希米亚和摩拉维亚被占领。大屠杀使8万犹太人减少到只剩10%。这其中,很多教授是犹太裔,许多其他的捷克教授死于监狱和集中营。在整个战争期间,这些大学从1939年11月开始关闭。因为大部分国家是由苏联军队解放的,战争还迫使许多年轻人加入共产党。1947年,罕见的干旱开始蔓延,经济形势低迷,但是战后政府的共产党拒绝了马歇尔计划的帮助,并从苏联换取了极少的粮食;这导致了1948年2月的共产主义政变,使这个国家成为苏联的卫星国。同年晚些时候,由于被迫与社会民主统一,党员的人数有所增加。政府、工厂甚至大学大多由共产党候选人管理,并受到秘密警察和俄罗斯顾问的密切监督。1968年,随着经济的改善,人们期望国家会发生变化,向往“人性化的社会主义”,但最终被俄罗斯坦克所终结,后来就是大规模的移民。之后是“normalization”时期,许多改革派共产党人不仅被开除党籍,而且常被开除工作,这使他们的子女无法接受高等教育。在三位制造捷克斯洛伐克首台显微镜的人当中,Armin Delong教授最为突出。Armin Delong出生于1925年1月,在战后的第一年开始在布尔诺的理工大学(VTU)学习。在此之前,所有的大学都关闭了近六年。1957年,他(和Drahoš)获得了CSc(相当于博士学位);1969年,他获得了博士学位。他也是三人中最爱冒险的,也是唯一的党员。1961年,他成为该研究所的所长(此后该研究所的所有所长均来自该所电子光学系)。在下一次革命——天鹅绒革命之前,他一直担任所长。科学仪器研究所的其他部门包括核磁共振和冷冻核磁共振,以及用于测量的激光部门。1973年,他成为捷克斯洛伐克科学院的准会员,1981年成为捷克斯洛伐克科学院的正式成员。最大的电子光学系吸引了许多有才华的工程师和物理学家,包括一些博士生等,他们大多留在科学仪器研究所。他们继续进一步开发显微镜,并且与Tesla展开合作。唯一糟糕的决定是“tsar microscope”,由于机械和电气不稳定,以失败告终。而这个远大的目标是在距离有轨电车或无轨电车约50米的环境下,实现电镜分辨率尽可能接近1埃。20世纪60年代末,人们的兴趣转向了发射式电子显微镜(EEM),典型成果发表在《Nature》(1971年)和《Journal de Microscopie》上,并在电子显微学学术大会上多次提及。EEM包含超高压(UHV)样品室、两个磁性透镜和一个发射枪等。很多技术包含:离子轰击、样品加热、电子光谱等。超高压环境允许观察LEED模式,其尺寸与初始电子能量无关,相关成果在Nature、Optik中均有报道。Delong感兴趣的另一个方向是在超高压样品室中进行离子束注入和hemispherical LEED(和俄歇谱仪)。1969年,Delong成为自然科学学院固体物理系的外部负责人,任期三年。当Delong开始回归生活时,其对外的活动开始减少。他的大多数同事都是Delong的学生,其学生的大部分毕业论文主要关于EEM和表面物理。20世纪80年代末,Delong制作了一个5keV FEG微型TEM原型。Drahos的职业生涯持续得更顺利,他在电气工程学院以及BUT(现在的布尔诺理工大学)的仪器技术学院任教,用捷克语出版了两本书和几本学生读物。1964年,他被授予博士学位。1968年,他成为BUT的教授。在科学仪器研究所(ISI),Drahos任职电子光学部门的主管和ISI的副主任。他开发了由Tesla生产的X13系列高分辨率TEM,并开发了自己研制的BS500和540常规TEM。Drahos合作密切的同事是Jiří Komrska,其学生包括Michal Lenc和Josef Podbrdsky。Komrska成为“normalization”时期的受害者之一,因此无法指导学生。因此Komrska建议我在Delong的监督下取得毕业文凭。毕业后,我开始加入Drahoš的小组,Drahoš于1972年在曼彻斯特举行的欧洲显微镜大会上做了邀请报告并和Tom Mulvey和Eric Munro进行了对话。之后,他让我试着写一个有限元法程序,我在六个月内完成。我的第一个任务是改进BS500显微镜的性能,它没能和BS540一样运行。我很快发现,下极靴的畸形导致产生了一个附加场。我们也想开始设计一个新的TEM,但没能成功。Drahoš的工作是电子干涉、衍射、全息、反射衍射系统,他很讨人喜欢,关心同事。Drahoš和Delong都精通法语、英语、德语和俄语。1968年,因为研究所人数增长过快,增加到了260人,主楼扩建了一座楼。在苏联占领的头几天,布尔诺广播电台在这栋大楼里播放了几天,30年后才披露这件事,这一事件被称为兄弟会帮助,民主德国军队甚至错误地被纳入了计划,但他们在第一天的24小时内就撤出了。1974年,上级建议Tesla开始制造扫描电子显微镜。Tesla和科学仪器研究所同时在进行研发:Tesla搭建了一个带有热电子发射枪的系统;科学仪器研究所在Crewe的CwickScan的启发下,从冷场发射开始尝试。Delong曾经的学生Kolarik成为了首席设计师,他完成一个非常巧妙的设计,包含两个磁性透镜、浸入上部透镜中的FEG和配有Auger及EDAX光谱仪的超高真空样品室。传统的SE和BSE探测器的塑料材料不能用于超高真空,因此它被一种新型闪烁材料——掺YAG Ce单晶所取代,后来掺YAG Ce单晶也用于TEM屏幕。1978年冬天, Drahoš患了严重的流感,第二年春天,他被诊断出患有癌症,并于6月去世。Delong被逐出了布尔诺大学,之后开始在Olomouc举办讲座。后来在1978年,我们五个没有机会获得博士学位的人都被授予一个有趣的头衔——RNDr。不久之后,上级又提出了另一个要求,即东区需要改善半导体工业并使用电子束光刻技术。德意志民主共和国的耶拿开发了一个系统,该系统过大且超出了标准尺寸。1978年,Delong和Kolarik参加了多伦多举办的国际电子显微镜大会(ICEM),会上他们受到了更稳定的肖特基枪的启发。直到1982年,五人组第一次共同参加了汉堡举办的ICEM,在那里展出了FEG SEM。在此之前,我们与国外联系的唯一途径是通过Tom Mulvey的协助,他经常访问科学仪器研究所并与我们分享他的想法和会议记录。图2 Tesla公司生产的低温FEG SEM BS350,但由科学仪器研究所开发这些人中有两个人是例外。Jiří Komrska在1968年在阿斯顿大学待了几个月,Podbrdsky在20世纪70年代末在坦佩的亚利桑那大学度过了几个月。由于20世纪80年代初英国皇家学会交换计划(Royal Society Exchange scheme)的出现,Podbrdsky在英国待了一个月,甚至我也能在1987年去英国访问。1984年,电子束光刻系统(EBL)完成,其中有几台运到了苏联。它在15ke V电子束时电流为1μA,拥有6×6mm的视场、高达6.4×6.4μm的整形光束和0.1μm的分辨率。Tesla还为之前生产EBL的部分建造了一个技术博物馆,现在变成了精心组织的Brno显微镜展览。图2中的SEM也包括在其中。Zobač也在该研究所工作,他致力于引进特殊技术,如电子束焊接和超高压钛轨道泵等。这些技术是Delong公司超高压设备所需要的。Zobač也对医疗设备和冷冻技术感兴趣。后来,Zobač娶了一位科学仪器研究所出身的女士,并生下了一个儿子。Zobač现在仍在科学仪器研究所工作。2017年,Delong去世,Ladislav Zobač在Delong去世一年后逝世。许多人因为天鹅绒革命对科学仪器研究所提出批评,甚至试图赶走Delong。然而,1990年初,Delong成为捷克斯洛伐克的科学副总理。Delong的职业生涯并没有持续太久,因为这个国家分裂为捷克和斯洛伐克(斯洛伐克只有在二战期间才有自己的法西斯国家,历史上他们是匈牙利的一部分)。此外,由于科研经费大大减少,研究所的人数(260人)几乎少了一半。很多人逐渐认识到他们对应产品技术的市场潜力,甚至试图接管科学仪器研究所,而Tesla失去了大部分市场,之后被私有化并解体。我当时在国外的帝国理工学院待了三个月(1987年)。一年后,我被邀请到帝国理工学院学习半年,但只得到了三个月的支持。在TU Delft,我顺利得度过了三年,直到1991年秋天。1990年,在革命后的动乱中,Jiří Komrska成为科学仪器研究所的所长,但他于秋季辞职并前往BUT。紧随其后的是核磁共振部门的Josef Jelínek,他选Michal Lenc担任副手,但不到六个月就得了重病。1992年,Lenc去了理论物理系。Autrata教授在担任一年中级主管之后,成为科学仪器研究所所长,直到2006年去世。Sklenar、Kasal、Komrska、Lenc等几位教授在离开科学仪器研究所后开始了学术生涯,人数与留在那的教授相同。1994年,我开始在BUT的机械工程学院与Komrska在同一系兼职任教,指导16个研究生。2006年,我晋升教授。在完成最后一个项目后,我离开科学仪器研究所并开始在Tescan工作。接下来的两任研究所负责人是Ludek Frank和Ilona Mullerová。即使是在Tesla公司倒闭、科学仪器研究所减员的情况下,布尔诺的电子显微镜时代也并未就此结束。1990年,市面上出现了三家公司,他们的员工来自Tesla和科学仪器研究所。最初,Tescan接管了Tesla的SEM部分,Tescan从最初的六个人成长到近百倍的规模。另一组约20人也成立了一家公司Delmi,并开始生产名为Morgagni的常规TEM,Delmi随后被飞利浦EO/FEI公司收购。2015年,FEI被赛默飞世尔科技公司收购。1990年同年,Kolarik及其同事成立了Delong Instruments公司,他们制造了一些工作电压为5k eV透射电子显微镜,2014年后制造工作电压为25k eV(如图3所示)的透射电子显微镜并供给很多公司和机构。图3:LVE5和LVEM25,Delong Instruments生产的两个低压TEM2000年,EUREM在捷克布尔诺举办,2014年ICEM在捷克布拉格举办,曾有人称世界上大约30%的电镜在布尔诺生产,这使得布尔诺获得了“电镜谷”的称号。拓展阅读:世界电镜九十年之捷克斯洛伐克早期电子显微镜发展史
  • 优势互补、合作共进 农科院油料所-岛津联合实验室隆重揭牌
    揭牌仪式在中国农业科学院油料作物研究所举行3月21日,中国农业科学院油料作物研究所-岛津联合实验室揭牌仪式隆重举行。双方通过建立联合实验室,开展合作工作,以各自丰富的科研经验和优质的产品,达到优势互补、合作共进的目的。通过双方合作的不断深化,推动油料所科研、测试的自主化和先进性再上新台阶,不断培养出优异的科研人才,进一步提高其在国内外相关领域的学术地位和科研实力,同时得到岛津公司优惠的售后维护维修服务和相关产品的技能培训。 揭牌仪式现场传真中国农业科学院油料作物研究所张奇主任主持揭幕仪式 中国农业科学院油料作物研究所领导李培武研究员首先为联合实验室的揭牌送上了热情洋溢的祝福。他在致辞中首先以亲身经历回顾了油料所实验室辉煌的发展历程:1994年成立了农业部油料及制品监督检验测试中心、2011年7月成立了农业部生物毒素检测重点实验室、2011年12月成立了农业部油料产品质量安全风险评估实验室(武汉)、2017年成立了国家农业检测基准实验室(生物毒素),在发展过程中为促进我国油料作物研究的进步,捍卫粮油、果蔬等食品安全做出了重要贡献。在致辞中他特别谈及优秀的岛津分析仪器设备和支持服务给他留下的深刻印象并给予高度好评。在谈到实验室未来发展愿景时,他强调要组合利用各种最新的科学手段,深挖岛津仪器设备的潜能,深化与岛津公司的合作,不断推进前沿创新研究,将目前食品安全问题发生时的事后救火转变为提前预警、事先防控,对合作实验室今后发挥的重要作用充满期待。中国农业科学院油料作物研究所李培武研究员为联合实验室的揭牌送上祝福随后,岛津公司分析仪器事业部吴彤彬事业部长也为联合实验室的正式启动献上了美好的祝福。他在致辞中谈到,拥有140余年发展历史的岛津公司已在中国构筑起为广大用户提供优质服务的完整体系。岛津公司与油料所的合作关系将进一步助推成果输出,充分利用双方的优势资源,共同在油料作物的质量安全、品质管理与营养研究等领域开发更多具有创新性的表征技术和分析发展,为油料所的检测与科研工作提供有力的支持。吴彤彬事业部长在仪式上宣布岛津公司特设油料所-岛津联合实验室优秀研究生津贴,以鼓励油料所优秀的青年才俊在学习和研究之路上茁壮成长!岛津公司分析仪器事业部吴彤彬事业部长为联合实验室的正式启动献上祝福 致辞结束后,李培武研究员与吴彤彬事业部长分别在联合实验室协议书上签字,并在出席仪式嘉宾们热烈的掌声中共同为联合实验室揭幕。至此,双方的合作迈向了一个新的高度。李培武研究员与吴彤彬事业部长在协议书上签字并揭幕双方领导参观实验室,探讨未来合作项目油料所张文主任向吴彤彬事业部长介绍基于岛津分析仪器所取得的最新研究成果 出席揭牌仪式的全体嘉宾合影留念关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • icIEF-MS:探索单克隆抗体电荷异质性的前沿技术
    近期,Analytical Chemistry杂志上发表的一篇文章提出了一项创新性的用于抗体药物电荷异质性表征的分析技术——icIEF-MS。icIEF-MS联用技术平台与传统的SCX-MS对蛋白异质性进行交叉验证,而且更高的灵敏度、更出色的重复性和更低的样品残留,这将为蛋白药物电荷异质性表征提供一种新的策略。 原文见:Anal. Chem. 2023, 95, 4, 2548–2560 蛋白质的电荷异质性是由多种复杂机制所共同作用形成,包括细胞过程、化学降解和制造过程中的生产条件。这些因素中的许多修饰会引起蛋白质等电点 (pI) 值的变化,例如翻译后修饰(PTMs) 的发生,包括 c 端赖氨酸缺失、焦谷氨酸形成、脱酰胺化、唾液酸化和糖基化等,都会导致电荷变异体的形成,从而对药物的稳定性和溶解度产生重要影响。因此,对电荷异质性的可靠表征是评估关键质量属性 (CQA) 的重要步骤,也是确保治疗性mAbs在整个临床和商业开发期间保持一致质量的关键所在。 目前,全柱成像毛细管等电聚焦 (icIEF) 和离子交换色谱 (IEX) 是治疗性mAbs在研发和质量控制中进行电荷异质性分析的两种常用技术。然而,传统的cIEF-MS联用技术在研究蛋白质电荷变异体方面还存在着许多缺陷,如重复性差、操作复杂以及与MS离子源不兼容等问题。 CEInfinite icIEF分析兼制备型全柱成像毛细管电泳系统 基于一体化的icIEF-MS技术平台,使用加拿大品牌艾易尔斯生物科技(AES)开发的分析与制备一体的CEInfinte系统,可实现快速的icIEF分离,并配合使用高分辨率的Thermo Q-Exactive Plus质谱平台对蛋白质的电荷变异体进行鉴定。icIEF分离部分采用了与MS兼容的两性电解质,无需使用甲基纤维素和尿素作为添加的的涂层毛细管柱。通过创新的纳流ESI接口,检测蛋白质药物电荷变异的灵敏度和重复性得到了极大提高,整个icIEF-HRMS分析可在25分钟内完成,比传统cIEF-MS所需的60分钟更加迅速。此外,该平台还可以灵活切换到icIEF馏分收集模式,对蛋白质的电荷变异体组分进行组分收集,并进行深入表征,包括LC-MS肽图分析、IEX-MS 完整蛋白分析、生物相互作用等研究。整合icIEF-MS和基于icIEF的馏分收集将在mAb电荷异质性表征的全新MS策略。图1 icIEF-MS的原理图 利用该icIEF-MS系统对9种不同的治疗性mAb的电荷变异体进行表征,并对icIEF-MS的方法进行了系统验证。同时,我们还使用SCX-MS分析了所研究mAb的电荷异质性。两种手段的分析结果表明,icIEF在分离分辨率、灵敏度、低残留效应和精确分子量测量精度等方面都具有明显优势。我们相信,结合传统的IEC-MS技术平,台icIEF-MS将成为电荷异质性表征领域中的一项重要技术,为研究人员提供更加快速、准确、灵敏和高效的分析手段。 表1 九种单抗的等电点信息和使用的icIEF试剂● icIEF和SCX分离9种单克隆抗体的性能比较 ●在最优化条件下,通过icIEF-UV和SCX-UV分别分离了9种单克隆抗体,并进行了性能比较。两种分离工具均在10分钟内完成了高通量分离,所研究的单克隆抗体获得了相同的峰序列。在icIEF分离中,首先洗脱的是酸性最强的异质体,其次是主峰和碱性异质体,这与SCX分离的顺序相同。然而,对于大多数异质性mAb混合物,icIEF的分离效率显著高于SCX,这是因为iCIEF基于pI差异进行分离,微小pI差异的蛋白质异质体就可以得到高分离度的分离。在某些情况下,如英夫利西单抗,通过icIEF可以实现4种电荷变异体和一个主成分的基线分离,但使用SCX的分离效率却不佳。类似地,对于帕博利珠单抗、阿替利珠单抗和地诺单抗,使用icIEF可以很好地检测出所有电荷变异体;然而,在使用SCX时,一些电荷变体却丢失了。尽管icIEF由于不同的分离机制而比SCX具有更宽的峰宽,但由于其pI的微小差异,icIEF表现出了更好的分离性能。图2 九种mAb的icIEF-UV图谱和SCX-UV谱图● icIEF和SCX串联MS的比较 ●如图3所示,icIEF-S和SCX-MS都可以用于鉴定阿替利珠单抗的电荷变异体。在SCX分离中,MS检测到的酸碱峰顺序与UV一致。而在icIEF分离中,碱性峰首先被纳流泵推向ESI源,因此MS检测中的酸碱峰顺序与UV检测的顺序相反。另一个显著的区别是,由于SCX-MS使用更高的流速,从UV到MS检测,柱外的峰展宽程度都较轻,这意味着UV峰形状与MS峰形状更一致。相比之下,icIEF-MS的较低迁移流速意味着柱外效应对icIEF分离的影响更大,从UV检测到MS检测,峰呈现更为明显的展宽,尤其是主峰,强度更高,并与稍低pI的酸性峰部分重叠。为了进一步提高icIEF-MS的分离度以克服峰展宽造成的分辨率损失,可以使用窄pH的两性电解质、新型的涂层分离毛细管柱和纳流ESI源。图3 以阿替利珠单抗为研究对象,比较icIEF-MS 和 SCX-MS分离效果:UV谱图(左)和MS-TIC谱图(右)。 在分析单克隆抗体时,icIEF-MS的信号响应比SCX-MS高。虽然icIEF-MS的样品载量只有SCX-MS的十分之一,但如图3所示。icIEF-QE Plus MS的TIC强度与SCX-Orbitrap Exploris 240相同(Orbitrap Exploris 240比QE Plus MS具有更高的检测灵敏度)。icIEF-MS比SCX-MS灵敏度高的原因有两个:首先,icIEF-MS的纳流流速(小于5μL/min)远低于SCX-MS的流速(300 μL/min),这导致icIEF-MS的去溶剂化效率和离子化效率较高,从而极大的提高了MS灵敏度和动态范围,即使样品量低至1 ng。此外,在icIEF-MS中,补偿液采用含0.5% FA的50%乙腈,流速为5 μL/min,纳流泵速为50-100 nL/min。在此比例下,进入MS的最终流动相处于酸性条件,而文章中用于SCX-MS的洗脱流动相的pH接近mAb的pI点 (pH 7~10),洗脱是在中性碱性条件下进行的,而在中性/碱性条件下,蛋白质与质子结合的能力比酸性条件下弱得多。因此,与SCX-MS相比,icIEF-MS在较低的电荷状态下具有更多的电荷数量,从而增加了电离和质谱效率。 总之,icIEF和SCX是两种有效的单克隆抗体分离工具,在高通量条件下分离效率都很高。然而,在icIEF-MS中,由于低迁移流速和酸性流动相的使用,其灵敏度比SCX-MS更高。这些结果表明,icIEF-MS是一种具有优越性能的单克隆抗体分离和表征方法,可以应用于生物制药的研究发现和质量控制。(A)(D) 图4 阿替利珠单抗的高灵敏度icIEF-MS表征分析:不同浓度(0.0 5 ~ 2 mg/mL ) 阿替利珠单抗(A) 的UV谱图,TIC (B) 和 MS(C )谱均为0.05 mg/mL;电荷变异体的浓度与MS响应强度的关系如图(D)所示。 图4展示了icIEF-QE Plus MS 在不同浓度阿替利珠单抗的结果,见图4。从酸性变异体和碱性变异体的 TIC和MS谱图得出,即使在 0.05 mg/ mL的最低浓度 (3倍S/N的UV信号)下,MS仍然检测到所有电荷变异体的明显信号。而SCX-QE Plus MS不能达到0.05 mg/ml的检出限。而在已报道的传统cIEF-MS研究中,典型的蛋白质分析浓度为 0.1~ 2 mg/mL。● icIEF-MS和SCX-MS的质量准确度比较 ●icIEF-MS 不仅在灵敏度上表现更优,而且在质量准确度方面也优于 SCX-MS。质量准确度是 MS 检测的一个关键指标,这取决于 MS 的分辨率。可达到的质量分辨率不仅取决于仪器的质量分辨率极限,还受电离过程的影响。加合物会使离子信号变宽,因为它们不仅来自于多重质子化的分析物,还来自于携带加合物的分析物。因此,更多的加合物会导致较差的分辨率和较大的质量误差(即较差的精度)。虽然源内碰撞诱导裂解(CID)可以减少加合物的形成,但并不是所有加合物都可以被去除。如表2所示,尽管使用了110 V 的源内CID值,但SCX-MS 获得的质谱峰仍然比 icIEF-MS 获得的质谱峰宽,导致SCX-MS 主成分的 MW 偏差(5.4 ppm)大于 icIEF-MS(2.7 ppm)。另一个例子是贝伐珠单抗,在没有脱盐预处理的情况下,SCX-MS 对贝伐珠单抗的 MW 偏差高达33.9 ppm。脱盐后进行分析,贝伐珠单抗的偏差降低到12.8 ppm。而 icIEF-MS,由于加合离子形成较少,即使不脱盐,获得的贝伐珠单抗的偏差也仅为9.6 ppm。表2 阿替利珠单抗的电荷变异体的icIEF-MS和SCX-MS分析结果比较● icIEF-MS和SCX-MS的残留效应 ●相比 SCX-MS,icIEF-MS 的残留效应要小得多。在对阿替利珠单抗分析后,icEF-MS 使用含有4% HR 8.5&minus 9.5 两性电解质的水溶液作为空白样本,而 SCX-MS 使用水作为空白样本。在 icIEF-UV 检测中未观察到明显信号,而 SCX-UV 在阿替利珠单抗峰值处检测到了信号残留。SCX-TIC 和 icIEF-TIC 中有信号峰相对明显,保留时间分别为6.82和21.5 min,。从这两个信号峰提取的 MS 数据通过去卷积得出,SCX-TIC检测到的残余信号是阿替利珠单抗,而 icIEF-TIC 检测到的信号只是两性电解质,这意味着 icIEF-MS 中没有检测到残余分析信号。低残留率使得 icIEF-MS 对微量蛋白电荷变异体的检测更加准确和可靠,避免了假阳性结果。图5 icIEF-MS和SCX-MS的残留效应的比较:SCX-MS (A-C)显示残留阿替利珠单抗信号,而icIEF (D-F)没有残留分析物信号。如图4和图5所示,观察到1500~2500 m/z 的背景信号,MS信息证实它们不是蛋白质,而是来自两性电解质和溶剂背景,背景离子不干扰mAb电荷变异体的鉴定。 ● icIEF-MS鉴定蛋白质的可重复性 ● 针对阿替利珠单抗电荷变异体进行的重复性考察表明,icIEF-MS 平台对其测定表现出良好的重复性。通过 icIEF-MS 对批间蛋白质样品进行鉴定,所有批间检测到的相同电荷变异的质量偏差都很小(表3列出了所有9种mAb的电荷变异体的修饰鉴定结果。酸性变异体的表征比碱性变异体更具挑战性,因为酸性变异体具有更复杂的修饰。虽然这种酸性修饰通常可以通过 pI 来区分,但它们在分子质量上的差异相当小。icIEF在线串联高分辨率质谱可以通过结合完整的蛋白质分子量和测量的pI值来阐明蛋白质的结构信息,为解决酸性电荷变异体的难题提供一个有用的icIEF-MS联用平台。表3 九种单克隆抗体的电荷变异体的iCIEF-MS表征结果在对一系列不同的治疗性单克隆抗体进行电荷变异体表征时,icIEF-MS 和 SCX-MS 可以获得类似的结果。然而,icIEF-MS 在分离分辨率、灵敏度、低残留效应和 MW 测量准确度方面比 SCX-MS 展现出更多的优势。因此,将 icIEF-HRMS 分析与更常见的 SCX-MS 相结合,通过正交的验证,可以为分离和鉴别蛋白电荷变异体提供更加全面的分析策略。 如需进一步了解相关信息,可联系我们获取更多文献。艾易尔斯生物科技(AES)致力于全柱成像毛细管等电聚焦技术(icIEF)技术与质谱的联用、馏分制备以及高分辨分离等领域。

克洛索隆相关的仪器

  • 多功能全自动细胞克隆分析及分离系统CellCelector Flex 将高内涵成像系统,高精度全自动细胞挑取机械臂和强大的成像处理分析软件相结合,可对单细胞、细胞团、球体、类器官、单细胞克隆以及贴壁细胞进行全自动检测、筛选、挑取和分离。挑取技术:已经获得专利的挑取技术支持极快的细胞扫描和挑取,从而快速分离细胞。温和地进行细胞转移,保证高度的细胞完整性和生长速率。对于一些应用,如单细胞克隆,可以实现高达 100% 的挑取/转移效率。CellCelector Flex关键特征多功能 &bull 适用于贴壁细胞、悬浮细胞或半固体培养基中的细胞 &bull 单细胞、细胞团、球体或菌落 &bull 原代细胞或细胞系 &bull 活细胞或固定细胞灵活 &bull 明场、相差和荧光成像 &bull 自动、半自动或手动细胞筛选,以供挑取分离 &bull 兼容标准或定制源容器和目标容器,如微孔板、培养皿、载玻片、过滤器、芯片、PCR板或管&bull 可升级的定制解决方案,可整合至大平台可靠 &bull 对特定细胞亚群超过95%的挑取准确性 &bull 对移动的检查对象进行自动重新定位 &bull 如果挑取失败,可重新挑取 &bull 软件自动检测是否成功挑取温和挑取 &bull 不影响细胞特性 &bull 可分离准备用于分子表征或下游培养的纯完整细胞 &bull 挑取后的细胞完整性和存活率高(包括单细胞克隆应用中高达95%及以上的存活率)快速 &bull 实验操作时间短 &bull 每次挑取仅20至30秒上游|下游兼容 &bull 无需复杂的样本制备,无需昂贵的耗材 &bull 与多个上游富集技术(免疫磁珠富集、基于尺寸的分离等)兼容 &bull 抽吸和点样体积小(降至约1 nL) &bull 单细胞PCR、NGS、RNA-Seq、细胞克隆、滴度分析、放大工艺等记录 &bull 符合GLP和GMP标准的完整工作流程记录 &bull 通过在每次挑取事件前后拍摄的实时、高质量图像进行质量控制 &bull 每一个被检测/捕获的对象都可以通过其唯一的ID进行识别,并可以在整个过程中从源板到终板进行完整的追踪,方便导出所有捕获的图像和数据 CellCelector Flex 关键应用单细胞分离&bull 稀有单细胞分离&bull 循环肿瘤细胞CTCs分析和分离&bull 胎儿细胞cbNIPT&bull 精子细胞分离&bull 原生质体/植物细胞&bull 单细胞异质性分析&bull CRISPR单细胞克隆细胞系开发&bull 用于细胞系开发的单细胞克隆 &bull mini Pool建立及筛选 &bull 从半固体培养基中进行菌落挑取及转移抗体发现&bull 单B细胞筛选 &bull 基于纳米孔的杂交瘤筛选 &bull 来自半固体培养基的杂交瘤克隆的筛选和挑取 &bull 杂交瘤亚克隆 &bull 基于微球的检测干细胞&bull iPS单细胞克隆 &bull 干细胞克隆挑取 &bull 造血干细胞克隆挑取 &bull 球体分离 CellCelector Flex 挑头我们根据CellCelector Flex 在不同领域的应用提供多种挑头。针对特定的细胞类型和挑取捕获模块对所有毛细管和挑头进行了优化,以保证温和、精准地挑取挑取细胞、细胞团以及克隆,整个过程无污染。CellCelector Flex 纳米孔板CellCelector Flex 纳米孔板含有十万到数百万个纳米孔,将细胞悬液接种后,数万个纳米孔有效地将细胞隔离开来,并确保共培养环境以促进单克隆生长。有效替代有限稀释法,FACS。&bull 高通量:每孔可获得400-600个单细胞(相当于有限稀释法25块96孔板!)&bull 高效节约:避免重复稀释,单次试验即可获得单克隆性、活力且高产的克隆&bull 100%单克隆性:自动图像鉴别单细胞并跟踪其生长到克隆,避免交叉污染&bull 单细胞活率超95%,无需昂贵外源生长因子CellCelector 机柜当处理活细胞时,无菌条件和经过调节的生理相关环境是关键因素。FlowBox 孵育箱可提供以下独特组合: &bull 经过HEPA过滤的垂直层流 &bull 对温度、湿度和CO2水平的精确控制 &bull 即使在检修门打开时,也能智能控制风速和排气量 &bull 高能紫外线灯,用于表面灭菌 &bull 源板和终板的最优细胞存活率 &bull 用户友好型控制面板 &bull 在不失去受控条件的情况下,充分方便地接触放置在里面的仪器和实验装置
    留言咨询
  • Cellvento 4CHO-C克隆培养基是一种化学成分限定、无动物成分的培养基,开发用于单细胞克隆(SCC)和中国仓鼠卵巢(CHO)细胞系的稳定细胞库筛选和恢复。这款升级版培养基支持CHO和CHOZN细胞株开发,可用于替代CHOZN技术指南中的EX-CELL CHO克隆培养基。它为从细胞株开发到生产规模的整个工艺提供了化学成分限定的培养基解决方案。该配方设计不含水解产物或其他未知成分,具有卓越的性能和批间一致性。该培养基含有次黄嘌呤和胸苷(HT),但为了提高筛选灵活性,它不含L-谷氨酰胺、甲硫氨酸亚砜亚胺(MSX)或甲氨喋呤(MTX)。更多信息,e.g., 培养方案,贮存,表现性能,订购信息等,可参见本页面核心参数 – 样本下载中的资料手册。
    留言咨询
  • AUTOPET克隆菌落挑选仪 400-860-5168转5880
    微生物的培养及挑克隆是一件繁琐且耗费精力的重要工作,会占用实验室大量的人力投入。人工挑克隆也难免会疲惫和容易出错,自动化替代人工挑克隆已经势在必行。Autopet-CP全自动克隆菌落挑选仪是我们针对科研及工业客户就繁琐重复的微生物实验操作开发出来的自动挑菌仪。盘面布局产品功能1.挑菌头XY轴与摄像头视觉定位结合,枪头会非常精准的点在菌落上面,不差分毫。单通道取菌针头:使用常规小体积tip头耗材,可吸喷液体,更可靠将菌体散布到溶液中。吸头可更换,确保无交叉污染的风险,无需灭菌,吹干等操作。2.适用场景3.菌落形态筛选和聚类分析4.更多组合推荐5.参数
    留言咨询

克洛索隆相关的耗材

  • 可更换锁定环,用于手拧式螺帽
    这款独特的不锈钢气相色谱柱螺帽能够实现牢固连接,无需昂贵的升级或使用转接头。产品采用创新的弹簧推压推杆,会连续挤压短石墨/聚酰亚胺密封垫圈。因此,即使进样数百次,也可确保无泄漏密封。它尤其适用于对氧敏感的检测器,例如质谱检测器和 ECD。牢固的色谱柱连接能够降低背景噪音,确保结果的可靠性,使用过程中无需重新拧紧接头,从而可节省大量时间。熔融石英色谱柱的安装十分困难。从安装密封垫圈和色谱柱螺帽、测量色谱柱深度到将其装配到仪器,处处都可能引入误差,进而影响结果的准确性。新一代安捷伦手拧式色谱柱螺帽添加了锁定环,能够有效简化安装过程,降低引入误差的可能性。您可以利用锁定环将色谱柱固定到位,确保始终实现准确且可重现的色谱柱安装。 减少时间浪费:无需重新拧紧 易于使用:手拧式设计使任何人都可在无需工具的情况下实现高质量的、一致的连接 快速维护:低扭矩密封垫可防止密封垫圈发生粘连或破损 柱流失更低:更长的色谱柱使用寿命 新增锁定环:在安装过程中测量色谱柱深度并将其固定到位,确保实现一致且可重现的色谱柱安装
  • 克隆环(Cloning cylinders,Cloning rings)
    玻璃的克隆环由高硼硅玻璃borosilicate glass 3.3制造,克隆环是筛选单克隆细胞的一个简单易行的方法,用克隆环可以有效的从培养板或者培养皿等培养耗材获得单克隆细胞。这种玻璃克隆环在应用时,首先将克隆环灭菌,用无菌硅脂实现克隆环的密封,然后用胰酶消化,以获取单克隆。其中无菌硅脂可以用甘油替代,甘油可以正常的高温高压灭菌。另外,建议使用水晶胰酶,可以在消化细胞时减少对细胞的伤害。塑料的克隆环无菌包装(PS制造),底部环略大于顶部,形成一定收缩口样子,可提供3种大小。订购信息:货号产品名称规格HG1980004克隆环(Cloning cylinders,Cloning rings)OD6mmX8mm100个/包HG1980003克隆环(Cloning cylinders,Cloning rings)OD8mmX8mm100个/包我们也提供实验过程中密封需要的硅脂,硅脂是必须选择的产品,如果您的手上没有!
  • 安捷伦 7820A0535-0043 螺母,六角,带锁定器,M4
    部件号:0535-0043Nut, hex, with lockwasher, M4螺母,六角,带锁定器,M4Table Brackets, insulation, PMT, and filtersItemDescriptionPart numberQty1Front detector cover assemblyG3435-8133012Chimney insulationG3435-0034013Nut, hex, with lockwasher, M40535-004324Chimney Insulation, MiddleG3435-0034215Screw, machine, M4 x 10-mm long0515-249556FPD Chimney back19256-0032017WHC-375 Wire Clip1400-319618Filters1FPD Sulphur filter 394nm1000-1437Filter, P 5890 FPD19256-800109FPD Filter spacer (for sulfur filteronly)19256-20910110Spring, compression1460-1160111PMT Assembly (single FPD+)G3435-60360112FPD Main bracketG3435-003701
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制