阿洛西林钠

仪器信息网阿洛西林钠专题为您提供2024年最新阿洛西林钠价格报价、厂家品牌的相关信息, 包括阿洛西林钠参数、型号等,不管是国产,还是进口品牌的阿洛西林钠您都可以在这里找到。 除此之外,仪器信息网还免费为您整合阿洛西林钠相关的耗材配件、试剂标物,还有阿洛西林钠相关的最新资讯、资料,以及阿洛西林钠相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

阿洛西林钠相关的资料

阿洛西林钠相关的论坛

  • 【原创大赛】近红外光谱分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测

    【原创大赛】近红外光谱分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测

    [align=center][b][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测[/b][/align][align=left][b]摘要: [/b]利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术,对美洛西林钠、舒巴坦钠混合过程进行了在线监测。在研究中,分别建立了基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型,通过3个平行实验的在线混合过程,结果显示MBSD法和舒巴坦钠百分含量测定法均能有效的监测其混合过程,有效的证明了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于舒巴坦钠、美洛西林钠混合在线监测的可行性。[/align][b]关键词[/b]:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url];分析模型;混合均匀度;在线监测自从2004年美国食品与药品监督管理局提出“过程分析技术”以来,全球的药品生产企业正在向着更高技术含量的生产方式和质量控制方式进军。近红外(Near infrared,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url])光谱分析技术因其快速,无损的特点成为“过程分析技术”的重要组成部分,是制药企业进行产品中间体质量控制的重要方法之一。传统的检测方法为高效液相色谱法,紫外可见分光光度法等需要停止混合操作时才能取样检测,并且等待检测结果所需的时间也比较长,工作效率比较低,而[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱可以进行在线检测,连续记录不同混合时间内混合物的光谱图,建立数学模型对采集数据进行分析,从而判断各组分之间是否已经达到质量均一,工作效率大幅度的提高。本研究利用 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] 光谱分析技术在线监测美洛西林钠舒巴坦钠的药物混合过程,从而实现混合终点的准确判断。[b]1 材料1.1试剂[/b]美洛西林钠(13102041,山东瑞阳制药有限公司)舒巴坦钠(SS201310-26,江西东风制药有限公司)[b]1.2仪器和软件[/b]AntarisII型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](美国ThermoFisher公司),附有积分球采样模块;RESULT采样软件;电子分析天平(Sartorius BT224S,德国);TQ数据处理软件;表面皿;药匙;自制搅拌器。[b]2 方法2.1样品的准备[/b]精密称取舒巴坦钠固体原料药10.00g,美洛西林钠固体原料药40.00g,以备进行在线混合光谱的采集。平行制备3批样品,进行混合光谱的采集。[b]2.2模型的建立[/b]目前,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于混合过程在线监测的方法可分为活性药物成分(API)定量分析模型监测和基于移动块标准偏差(MBSD)的定性分析模型监测。前者为基于API药物含量的定量监测模型,当达到混合终点时,API的含量趋于一定值,可以依据模型监测的含量是否达到理论值并趋于稳定进行混合终点的监测;后者为基于光谱的标准偏差的定性监测模型。MBSD法的基本原理为:连续采集的若干张光谱间的标准偏差变化率趋于稳定并小于限定的一阈值时可认为达到了混合终点。其具体的计算步骤为:首先确定用于计算光谱标准偏差的光谱的条数n(即移动块的宽度),当[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析仪器采集到n张光谱后计算n张光谱的峰面积(或最大峰高、平均峰高等)的标准差,当采集到n+1张光谱时将第一张光谱移除,计算最近n张光谱的标准差,如此类推,最终得到随时间变化的光谱的标准偏差,根据标准差的变化进行混合终点的监测。本研究中建立了舒巴坦钠含量的定量分析模型和基于MBSD法的定性分析模型同时对用于混合终点的判断。[b]2.3在线混合光谱的采集[/b]将称取的美洛西林钠、舒巴坦钠原料药样品放入表面皿中,然后将表面皿放在Antaris II型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]积分球采样模块的上面,采用积分球漫反射采样方式进行光谱的采集。在运行在线混合工作流的同时采用自制的搅拌器进行样品的混合,采集得到混合过程的原始光谱,同时监测混合过程。波长范围10000-4000cm[sup]-1[/sup],每张光谱扫描次数4,混合过程中每间隔5s进行一张光谱的采集,光谱分辨率为8.0cm[sup]-1[/sup],每4个小时进行背景光谱的采集。每张[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱由1557个变量点组成。[b]2.4定量定性分析模型用于终点判断数据分析[/b]将在线混合过程进行监测,得到在线混合过程数据进行分析,以便了解混合全过程信息以及混合过程的监测。[b]2.5混合终点分析[/b]当得到混合终点时分别采集混合后的样品6处的原始[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,利用舒巴坦钠的定量分析模型预测混合终点时不同样品点处的舒巴坦钠的含量,判别是否混合均匀。[b]3 实验结果3.1分析模型的建立[/b]本研究中分别建立了在线混合过程的舒巴坦钠定量监测模型和基于移动块标准偏差的定性监测模型。[b]3.1.1 定性分析模型的建立[/b]目前混合均匀度在线监测常用的方法为MBSD法,本研究中MBSD法定性建模的参数为:选择的3个光谱区间包括全光谱、5275.6-4806.3cm[sup]-1[/sup](称为Region1)及7096.76-6344.66cm[sup]-1[/sup](称为Region2);用于计算光谱偏差的光谱的条数为5(即移动块的宽度为5)。[b]3.1.2 定量分析模型的建立[/b]本研究中所建立的定量分析模型用于监测混合过程中舒巴坦钠的百分含量的变化,因为本实验中舒巴坦钠和美洛西林钠两者间的混合比为4:1,当达到混合终点时,舒巴坦钠的百分含量应该在20%左右。其模型的具体参数见上一章中得到的舒巴坦钠百分含量的定量分析模型。[b]3.2混合在线过程数据分析[/b]本研究中平行进行了3次混合过程的在线监测,分别对3次实验结果进行分析,以充分了解混合监测过程。[b]3.2.1 第一批实验结果分析3.2.1.1 原始光谱图[/b]图1给出了混合过程中采集得到的208张原始光谱,由图中可知,处于下面的光谱较稀疏,可能属于混合刚开始的阶段,光谱会有较大的差异;处于上面的光谱较密集,其原因为随着混合的不断进行,光谱间差异越来越小,所以光谱较集中。[align=center][img=,498,274]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141912_01_1626619_3.png[/img][/align][align=center]图1 第一批混合过程原始光谱[/align][align=center] [/align][b]3.2.1.2 在线混合过程结果分析[/b]图2为定性分析模型中得到的3个光谱区间的峰面图,其中M1为全光谱建模的峰面积变化,M2为Region 1(5275.6-4806.3cm-1)的峰面积变化,M2为Region 2(7096.76-6344.66cm-1)的峰面积变化,由峰面积的变化图可知,混合过程的前100s其变化较为明显,M1不断升高,M2和M3(7096.76-6344.66cm-1)不断下降,之后峰面积值趋于稳定。[align=center][img=,525,234]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141913_01_1626619_3.png[/img][/align][align=center]图2 光谱区间峰面积图[/align]图3为舒巴坦钠含量及标准偏差变化图,由图中显示在混合的初期阶段,尤其是前100s左右,四个表征混合均匀度的参数均有着较大的变化趋势,在200-300s间四个参数有稍微较小的波动,此后随着混合过程的不断进行,表征混合均匀度的四个参数变化范围均变小,模型给出的舒巴坦钠的百分含量在20%左右,舒巴坦钠和美洛西林钠混合较为均匀,达到了混合终点。由图可知前100s是混合的主要阶段,此阶段舒巴坦钠的百分含量和标准偏差均有着明显的变化。[align=center][img=,538,292]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141914_01_1626619_3.png[/img][/align][align=center]图 3 含量和标准偏差变化图[/align][align=center](a舒巴坦钠百分含量变化 b全光谱峰面积标准差 c Region1峰面积标准差 d Region2峰面积标准差)[/align][align=left] 当达到混合终点时分别采集表面皿下6个点的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,根据建立的模型测定其舒巴坦钠的百分含量,看混合是否均匀。表2给出了用所建模型得到的6个点的舒巴坦钠的百分含量值,6个点舒巴坦钠的百分含量值在20%左右,说明混合较为均一,但是最大的值达到了22.41%,可能是由于混合装置过于简陋,加上是人为搅拌进行混合,不能达到很好的混合,部分地方没有进行很好的混合。从实验的可行性方面,初步证实了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]技术用于美洛西林钠舒巴坦钠混合的可行性。[/align][align=center]表1混合后不同点舒巴坦钠百分含量值[/align][align=center] [img=,570,70]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141915_01_1626619_3.png[/img][/align][b]3.2.2 第二批实验结果分析3.2.2.1 原始光谱图[/b]图4给出了第二批混合过程中采集得到的203张原始光谱,其混合过程原始光谱的特征和第一批混合过程较为相似,混合初期光谱变化较为明显,随着混合的进行,光谱差异变小,光谱较为密集。[align=center][img=,488,280]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141915_02_1626619_3.png[/img][/align][align=center]图4 第二批混合过程原始光谱[/align][align=left] [b]3.2.2.2 在线混合过程结果分析[/b][/align]图5为各个光谱波段峰面积的变化图,由图中显示开始的100s内峰面积有着较大的变化幅度,随着混合的不断进行,峰面积的变化趋势不断减小并逐渐趋于稳定。[align=center][img=,516,307]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141916_01_1626619_3.png[/img][/align][align=center]图5 光谱区间峰面积图[/align][align=center](a 全光谱峰面积 bRegion 1峰面积 cRegion 2峰面积)[/align]图6为舒巴坦钠含量及标准偏差变化图,由图可知在混合的初期阶段大约0-100 s时,舒巴坦钠百分含量值及峰面积的标准偏差值有着明显的变化,全光谱峰面积的标准偏差(Full Range STD)在200-400 s间有较为明显的波段,此后随着混合过程的不断进行,四个参数变化范围均变小,模型给出的舒巴坦钠的百分含量在20%左右。由此可知前100 s是混合的主要阶段,此阶段舒巴坦钠的百分含量和标准偏差均有着明显的变化。[align=center][img=,551,327]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141917_01_1626619_3.png[/img][/align][align=center]图6 含量和标准偏差变化图[/align][align=center](a 舒巴坦钠百分含量 b 全光谱峰面积标准偏差 c Region 1峰面积标准偏差 d Region 2峰面积标准偏差)[/align]当达到混合终点时,采集表面皿底部6处的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,检测混合过程是否达到均一,表2列出来了6处的舒巴坦钠的百分含量值,由表2可知达到混合结束后得到的6处的舒巴坦钠的百分含量均在20%左右,说明混合较为均匀。同时,由于实验条件的限制加上搅拌时人为因素的影响等,各点之间含量也着较大的差异。[align=center]表2 舒巴坦钠百分含量[/align][align=center] [img=,566,84]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141918_01_1626619_3.png[/img][/align][b]3.2.3 第三批实验结果分析3.2.3.1 原始光谱图[/b]图7给出了混合过程中采集得到的207张原始光谱,由图中可知,得到的原始光谱图与第一批和第二批有着相似的结果,即混合的初期光谱差异大,因此光谱较为稀疏(偏下方的光谱),随着混合的进行,光谱间差异变小,光谱变得密集(偏上方的光谱)。[align=center][img=,505,262]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141919_01_1626619_3.png[/img][/align][align=center]图7 第三批混合过程原始光谱[/align][b]3.2.3.2 在线混合过程结果分析[/b]图8给出了混合过程中3个光谱区间峰面积的变化趋势值,由图中可知0-100s间三个光谱区间的峰面积有着明显的变化,100-200s间峰面积有着明显的变化,但是变化幅度没有前100s大,200s以后峰面积变化趋势变小。说明前200s是混合的主要阶段,峰面积变化较为明显。[align=center][img=,519,343]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141919_02_1626619_3.png[/img][/align][align=center]图 8 光谱区间峰面积图[/align][align=center](a 全光谱峰面积 bRegion 1峰面积 cRegion 2峰面积)[/align]图9为舒巴坦钠百分含量及光谱峰面积的标准偏差随时间变化的趋势图,其变化趋势和峰面积的变化趋势相似,前100s变化幅度较大,100-200s间也有较为明显的变化,但是变化幅度不是很明显,200s后舒巴坦钠的百分含量和峰面积的标准偏差均趋于稳定,说明此时光谱差异变小,混合趋于均匀。[align=center][img=,529,352]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141920_01_1626619_3.png[/img][/align][align=center]图9 含量和标准偏差变化图[/align][align=center](a舒巴坦钠百分含量变化 b全光谱峰面积标准差 c Region1峰面积标准差 d Region2峰面积标准差)[/align]表3为达到混合终点时采集表面皿底部的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱得到的不同点的舒巴坦钠的百分含量值,由表中显示6个点的舒巴坦钠的百分含量值在20%左右,但是6个点之间舒巴坦钠百分含量间存在较大的差异,测得的最小值为17.80%,其原因可能是一方面由于实验条件的限制混合不够均匀,一方面用于舒巴坦钠含量测定的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]定量分析模型也有一定的偏差,可能引起含量检测的差异存在。[align=center]表3 混合后不同点舒巴坦钠百分含量值[/align][align=center] [img=,564,66]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141921_01_1626619_3.png[/img][/align][b]3.3小结[/b]通过3个混合平行实验的进行可知所建立的基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型能够有效的监测舒巴坦钠、美洛西林钠的混合过程。由舒巴坦钠百分含量和标准偏差变化图可知两者的变化有着相关性,当舒巴坦钠的百分含量变化幅度大时,其标准偏差的变化幅度也较大,因此两者均可以用于混合过程的在线监测,证实了实验的可行性。[b]4 结论和讨论[/b]本研究采用AntarisII傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]对美洛西林钠、舒巴坦钠混合过程进行了在线监测。在研究中,分别建立了基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型,然后Antaris II傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]漫反射采样方式采集混合过程中的光谱,实时监测混合过程的进行。通过3个平行实验的在线混合过程,结果显示MBSD法和舒巴坦钠百分含量测定法均能有效的监测其混合过程,有效的证明了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于舒巴坦钠、美洛西林钠混合在线监测的可行性。此外,MBSD法因为无需进行一级数据的采集,方法较为简单且容易理解,目前常用于混合过程的在线监测。本研究中有效证实了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术在舒巴坦钠美洛西林钠样品在线混合过程中应用的可行性,在样品的在线混合监测中有着重要的应用价值和应用前景。该技术能够克服传统方法费时、繁琐等缺点,而且可以实现过程的实时在线监测,让生产者充分了解整个生产过程中的参数变化。 [b]参考文献[/b]陆婉珍, 褚小立. [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url])和过程分析技术(PAT). 现代科学仪器, 2007(004):13-17.SieslerH, Ozaki Y, Kawata S, et al. Near-infrared spectroscopy: principles .Instruments, Applications, 2002:35-181.Bhushan,K.R.,et al.Detection of breastcancer microcalcifications using a dual-modality SPECT/[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] fluorescent probe. J Am Chem Soc, 2008. 130(52):17648-17649.贾燕花. [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在化学药品生产过程控制应用初探. 北京协和医学院, 2011.Fevotte.G,et al.Applications of [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]spectroscopy to monitoring and analyzing the solid state during industrialcrystallization processes . Int J Pharm, 2004, 273(1):159-169.张敏.盐酸林可霉素多晶型分子构象对其红外光谱行为的影响.中国抗生素杂志, 2005, 30(009):529-532.Blanco M,R Goz"01ez Ba,E.Bertran,Monitoring powder blending in pharmaceutical processes by use of nearinfrared spectroscopy . Talanta, 2002, 56(1):203-212,田科雄.不同装载系数和混合时间对添加剂预混料混合均匀度的影响.河北畜牧兽医, 2004, 20(9):52-53.孙栋. 基于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的几种固体粉末混合均匀度快速检测研究. 山东大学硕士学位论文, 2012年.

  • 【资料】阿佛加德罗常数

    阿佛加德罗常数[em09511]12克C-12含有的碳原子个数称为阿伏加德罗常数,用NA表示,单位是个/摩。1摩尔任何物质均含NA个微粒。NA的近似数值为6.02205×10^23,可通过单分子膜法、电解法等测出。   阿伏加德罗常数(符号:NA)是物理学和化学中的一个重要常量。它的数值为:  一般计算时取6.02×10^23或6.022×10^23。它的正式的定义是0.012千克碳12中包含的碳12的原子的数量。历史上,将碳12选为参考物质是因为它的原子量可以测量的相当精确。  阿伏加德罗常数因意大利化学家阿伏加德罗(Avogadro A)得名。现在此常量与物质的量紧密相关,摩尔作为物质的量的国际单位制基本单位,被定义为所含的基本单元数为阿伏加德罗常数(NA)。其中基本单元可以是任何一种物质(如分子、原子或离子)。[color=#DC143C]  NA的历史[/color]  早在17-18世纪,西方的科学家就已经对6.02×10^23这个数字有了初步的认识。他们发现,1个氢原子的质量等于1克的6.02×10^23分之1。但是直到19世纪中叶,“阿伏加德罗常数”的概念才正式由法国科学家让贝汉(Jean Baptiste Perrin)提出,而在1865年,NA的值才首次通过科学的方法测定出,测定者是德国人约翰洛施米特(Johann Josef Loschmidt)。因此此常数在一些国家(主要是说德语的国家)也叫洛施米特常数。  [color=#00008B]NA的定义[/color]  正如先前所提及,阿伏加德罗常数可以适用于任何物质,而不限于分子、原子或离子。因此,化学上利用这个数值来定义原子量或分子量。根据定义,阿伏加德罗数是组成与物质质量(用克表示)相等必要的原子或分子的数量。例如,铁的原子量是55.845原子量单位,所以阿伏加德罗数的铁原子(一摩尔的铁原子)的质量是55.845克。反过来说,55.845克的铁内有阿伏加德罗数的铁原子。所以阿伏加德罗数是克和原子量的转换系数:[color=#DC143C]  NA的测量[/color]  由于现在已经知道m=nM/NA,因此只要有物质的式量和质量,NA的测量就并非难事。但由于NA在化学中极为重要,所以必须要测量它的精确值。现在一般精确的测量方法是通过测量晶体(如晶体硅)的晶胞参数求得。由多国实验室组成的国际阿伏加德罗协作组织采用测量1个重1千克、几乎完全由硅-28组成的晶体球的体积、晶胞参数等物理量的方法来精确地测定该值,以便用NA来重新定义千克。  NA与其它常量的关系  阿伏加德罗常数常作为其他常量之间的纽带。如:  R = NA × k   R是气体常数,k是玻耳兹曼常数;  F = NA × e   F是法拉第常数,e是元电荷。

阿洛西林钠相关的方案

阿洛西林钠相关的资讯

  • 冻干过程中西林瓶破损现象分析
    冻干工艺是将液体产品在容器内进行冷冻,然后在低压环境下,通过升华形式进行干燥。而冻干制剂生产过程中可能会遇到的一个问题,就是作为容器包材的玻璃西林瓶偶尔出现破裂或破损,虽然这种现象相对罕见,但一旦发生,就可能是一个严重的问题,因为它会导致产品损失、甚至带来溢出产品和破碎玻璃渣对设备内部造成的污染。由于整个冻干过程会处于一定温差范围内进行,因此一些观点认为,这种破损现象与包材热应力有关,可以通过改变西林瓶的热性能来减少发生概率。 但事实是这样吗?本文将告诉你答案。西林瓶破损原因及种类分析在本篇引用文章中,作者通过分析西林瓶破裂形式来寻求答案,尽管文章研究的主体针对管制瓶,但破损现象在模制瓶和管制瓶上都可能发生。当然精确判断西林瓶破损的原因是复杂的,因为在冻干过程中可能会出现几种明显不同类型的破损。这些破损类型有不同的原因,需要采取不同的纠正措施。此文将重点介绍更常见的管制西林瓶的破损类型,即在大多数情况下,断裂模式如下图1所示。这种模式的特点是在玻璃瓶外表面下侧壁区域出现垂直断裂,有时在原点上方和/或下方出现分叉。 图1:冻干过程中的典型瓶裂现象当力作用在玻璃物体上时,玻璃会发生弹性变形(应变),从而产生压缩应力和拉伸应力。这些应力在玻璃中的独特分布取决于瓶型设计因素、玻璃厚度分布以及施加在物体上的力的类型。玻璃只有在拉伸应力的影响下才会破损,裂纹会沿着垂直于拉伸应力分布的方向扩展。因此,裂纹样式对应于破损时作用在玻璃物体上的力的类型是仅有的,从而有助于识别导致破裂事件的力。破裂西林瓶的不同裂纹样式示例如下图2和下图3所示。图2中的西林瓶被一个内部压力打破,这个压力是通过将西林瓶装满水,并使装满的瓶子承受液压而产生的。 图2:由于内部压力而造成的瓶裂压力最初很低,一直升高,直到小瓶破裂。断裂样式由垂直裂纹组成,该裂纹在断裂发生的精确位置上下出现分支。上图2-a)中的西林瓶显示出广泛的破裂,这是典型的相对高压。上图2-b)中的小瓶在低得多的压力下破损,显示出一个相对简单的样式,仅由一条直直的垂直裂缝构成,在下端为环状裂缝。下图3中的西林瓶被热冲击力打破,热冲击力是通过西林瓶在烘箱中加热,然后浸入冷水浴中产生的。断裂样式包括许多弯曲裂纹贯穿侧壁和瓶底区域。下图3-a)中的西林瓶在侧壁上显示出广泛的裂纹,表明在破损时存在相对较高的温差。下图3-b)中的西林瓶在较低的温差下破损,并且显示出一个相对简单的样式,该样式仅由瓶子底部周围的单个环向裂纹构成。 图3:由于热冲击而导致的瓶裂根据一些文献中总结的断裂判断方法,如上图2和上图3中的示例所示,可以得出一个假设判断,即上图1中所示的断裂样式是由于施加在西林瓶内表面的力导致瓶子向外膨胀而破裂的独特特征。同时,对在正常商业操作条件下生产的一种管制瓶进行了计算机应力分析。分析中使用的玻璃瓶的轮廓和玻璃厚度分布如下图4所示,并模拟了水冻结成冰时的膨胀水平力。下图5中显示的分析结果表明,向外膨胀力在玻璃内外表面产生的拉伸应力几乎相等,同时伴随厚度远小于圆柱体直径的薄壁圆柱体的膨胀。断裂起源将发生在外表面的该区域,因为与内表面相比,该表面具有足够严重缺陷的可能性更大。冻干过程中温度梯度是否会影响西林瓶破损?破损是否也可能是由于温度梯度产生的应力引起的呢?毕竟冻干过程中存在假定的温度梯度现象。如果温度梯度引起的断裂应力被认为与冻干过程中玻璃瓶的破损有关,则断裂样式将包括侧壁和底部区域的弯曲裂纹,其起源很可能位于底部或跟部区域的玻璃外表面,如图3所示。这与图1所示的商业生产期间破裂的西林瓶观察到的破裂样式形成直接对比。另外事实上,在正常的冻干过程中,装满药品的小瓶放在冻干机腔体内的板层上。冷量通过板层内的导热流体传导板层金属面,再缓慢冷却西林瓶的支承面区域,同时伴随辐射、对流冷却西林瓶周围的环境。由于装满产品的西林瓶瓶从室温到大约-40°C的总冷却时间通常需要较长时间才能完成,因此假设玻璃瓶内外表面之间可能产生的任何瞬时温度梯度都相对非常小。为了验证这一假设,使用理论公式来估计产生许多商业破损事件中观察到的应力大小所需的温度梯度。为了达到27.6 MPa的总断裂应力,玻璃瓶内外表面之间需要125°C的温差。对于69.0 MPa的断裂应力,需要314°C的温差。而在正常的商业冻干过程中,西林瓶冷却的方式相对柔和,玻璃中不太可能产生如此高的温度梯度。冻干过程中西林瓶破损原因总结 为证明上述论断,作者进行了如下几种实验,观察不同情况下的裂痕样式,进行进一步对比分析:Freezer test 冷冻设备试验(仅外向力)Liquid Nitrogen Immersion 液氮浸泡(加上显著的热梯度)GDFOvento Cold Bath Thermal Shock Test 烘箱至冷浴热冲击试验(仅热梯度) *得出结论:文章讨论的常见破损断裂类型是由于冷冻药品在预冻过程中产生的向外膨胀力导致的,而不是由于温度梯度。因此,玻璃瓶热性能的变化(玻璃瓶的设计变化或使用具有较低热膨胀系数的玻璃)不太可能对典型冻干过程中可能经历的破损频率产生显著差异。解决破损断裂问题的方法是进行详细的断裂分析。这种分析将清楚地区分破裂的原因,要么是由于西林瓶在生产、运输或灌装过程中的问题导致的玻璃强度降低,要么是由于产品在冻预过程中膨胀导致的作用力过大所导致的。如何减少冻干过程中的西林瓶破损?那么,如何减少产品在预冻过程中由于膨胀而产生的应力,从而减少冻干过程中西林瓶的破损呢? 让我们一起先来了解一下预冻过程中的成核理论。传统冻干的预冻过程中,晶核的形成都是随机的,如下: 图6:随机成核成核温度不同,产生的冰晶形态和大小各不相同,晶核生长的方向也是杂乱无章,导致产品在冻结过程中膨胀产生的应力比较大,从而导致西林瓶破损现象,尤其是瓶子比较大,装样量比较多时,破损现象更明显。经Controlyo技术控制成核后,所有样品在同一时间、同一温度瞬间成核,晶体生长方向也比较规则,*可以显著减少预冻时的应力,减少西林瓶破损现象。 图7:Controlyo控制成核经典案例分享用于治疗癌症的小分子药物 配方:2.5 wt% API 2 wt% NaCl (pH 7.7-7.9)100ml西林瓶,22ml 的灌装量每批85个样品 图8:随机成核与控制成核对比 从上图可以看出:用Controlyo技术在预冻过程中控制成核后,冻干后的产品显著降低了西林瓶破损率。Controlyo技术不仅可以显著减少破瓶率,还具有以下优势:样品更均一适用于高剂量样品或灌装体积较大的样品保证同一批样品及不同批次样品的均一性提高药效缩短干燥时间(30%左右)改善产品外观减少破瓶率提高产量减少产品复水时间以下引用是FDA出版并认可的结论:Controlyo晶核控制可以显著减少主干燥时间,提高蛋糕状外形,蛋糕形态,减少比表面积,提高瓶子间的均匀性,缩短复水时间。[文章摘译]:David R. Machak and Gary L. Smay,Failure of Glass Tubing Vials during Lyophilization,PDA J Pharm Sci and Tech 2019, 73 30-38*本文图片来源于网络,版权归原作者所有,如有侵权请立即联系我们删除。
  • 采用直接进样 LC-MS/MS 检测环境水及饮用水中的阿莫西林
    由于地表水、饮用水中抗生素含量相对较低,对仪器的检测灵敏度要求非常高。大多数实验室现有检测方法需要对大量水样进行富集和净化,方可用于大部分液相色谱/质谱系统分析。 而常规液液萃取或固相萃取法富集过程不仅费时费力,还可能对环境造成二次污染,一次分析需要耗时数天。更麻烦的是,一旦使用萃取和富集方法,会导致整体回收率非常低,已经超过了方法学对检测准确度 所能容忍的最差下限。 本文采用高灵敏度的 AB SCIEX Triple Quad 5500 液质联用系统对环境水直接进样分析,省去了繁琐的前处理富集过程。 一次样品分析仅需要几分钟时间,就可测得水中数个纳克每升级别的阿莫西林量。~由于地表水、饮用水中抗生素含量相对较低,对仪器的检测灵敏度要求非常高。大多数实验室现有检测方法需要对大量水样进行富集和净化,方可用于大部分液相色谱/质谱系统分析。 而常规液液萃取或固相萃取法富集过程不仅费时费力,还可能对环境造成二次污染,一次分析需要耗时数天。更麻烦的是,一旦使用萃取和富集方法,会导致整体回收率非常低,已经超过了方法学对检测准确度 所能容忍的最差下限。 本文采用高灵敏度的 AB SCIEX Triple Quad 5500 液质联用系统对环境水直接进样分析,省去了繁琐的前处理富集过程。 一次样品分析仅需要几分钟时间,就可测得水中数个纳克每升级别的阿莫西林量。 附件:采用直接进样LC-MS/MS 检测环境水及饮用水中的阿莫西林.pdf
  • 【重磅】阿莫西林一致性评价申报企业达17家;广生堂、齐鲁、科伦等进军TAF首仿
    p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 摘要: /strong /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 1、仿制注册申请回升,一致性评价申请同比基本持平& nbsp /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 2、有6家企业提交阿莫西林胶囊一致性评价申请& nbsp /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 3、人福药业提交麻醉新药磷丙泊酚二钠上市申请& nbsp /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 4、TAF(富马酸替诺福韦艾拉酚胺)首仿申请进入CDE& nbsp /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 5、多个印度企业提交5.2类仿制药进口申请& nbsp /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 6、华海药业盐酸多奈哌齐片获批上市,视同通过一致性评价 /span /p p span style=" color: rgb(0, 112, 192) " strong 总体承办情况:仿制申请回升,一致性评价申请持平 /strong /span /p p style=" text-indent: 2em text-align: justify " 据MED中国药品审评数据库2.0统计,2018年10月CDE共承办药品注册申请587个,总体有所下滑,从申请类型看,新增新药申请为17个,同比出现明显下滑,仿制申请和进口申请同比均有所上升,补充申请(一致性评价)有83个,同比基本持平。 /p p br/ /p p style=" text-align: center " strong 图1:2018年1-10月CDE承办药品注册申请情况(按受理号计) /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/71b49a58-8eb0-40f7-a1ea-ed9a4a1bba8d.jpg" title=" 11.png" alt=" 11.png" / /p p br/ /p p span style=" color: rgb(0, 112, 192) " strong 一致性评价承办情况: 6家企业申报阿莫西林胶囊一致性评价 /strong /span /p p style=" text-align: justify text-indent: 2em " 10月有51个一致性评价品种获CDE承办,同比继续增加(9月有47个品种),其中注射剂有11个。 /p p style=" text-align: justify text-indent: 2em " 10月再有6家企业的阿莫西林胶囊一致性评价申请进入CDE。据MED中国药品审评数据库2.0统计,截至10月31日,申报阿莫西林一致性评价的企业已达17家,其中胶囊剂有16家,颗粒剂有1家,通过一致性评价目前有2家(珠海联邦制药股份有限公司中山分公司以及浙江金华康恩贝生物制药有限公司的胶囊剂)。 /p p br/ /p p style=" text-align: center " strong 表1:2018年10月CDE补充申请(一致性评价)品种承办情况 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/0aa13d57-ce0c-4900-b1e1-6bc158267047.jpg" style=" " title=" 22.png" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/04cd7b14-7326-47b7-ad29-d4b1ff6ede3a.jpg" style=" " title=" 333.png" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/7826c3c2-210a-4ea7-aaa3-0433ee2d17da.jpg" style=" " title=" 444.png" / /p p span style=" color: rgb(0, 112, 192) " strong 国内1类新药承办情况:人福药业提交麻醉新药磷丙泊酚二钠上市申请 /strong /span /p p style=" text-indent: 2em text-align: justify " 10月共有10个1类新药进入CDE。宜昌人福药业有限责任公司和四川大学华西医院联合提交麻醉新药注射用磷丙泊酚二钠上市申请。据了解,磷丙泊酚二钠是一种水溶性的丙泊酚前药,也是目前国外研究最先进的短效全身静脉麻醉药。其他情况请见下表。 /p p br/ /p p style=" text-align: center " strong 表2:2018年10月国内1类新药承办情况 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/14349198-d4df-4a72-92a3-54492eff5b0b.jpg" title=" 555.png" alt=" 555.png" / /p p br/ /p p span style=" color: rgb(0, 112, 192) " strong 国内仿制申请承办:富马酸替诺福韦艾拉酚胺首仿申请进入CDE /strong /span /p p style=" text-indent: 2em text-align: justify " 10月CDE共长湴47个品种的仿制申请,其中有27个品种目前为国内独家品种,6个品种目前已有企业通过一致性评价。 /p p style=" text-indent: 2em text-align: justify " 正大天晴和江西青峰药业在10月先后提交TAF(磷丙替诺福韦片,又称富马酸替诺福韦艾拉酚胺片)的仿制申请。目前福建广生堂药业(临床试验登记号:CTR20181674)、齐鲁制药 (CTR20181971)以及四川科伦药业(CTR20182012)也在布局TAF,生物等效性试验(BE)尚在进行中。 /p p style=" text-indent: 2em text-align: justify " 广东东阳光药业以及齐鲁制药在10月份各有5个仿制药进入CDE。长春西汀注射液(16家)、替格瑞洛片(14家)、他达拉非片(10家)等品种仿制申请在审厂家超过10家,竞争十分激烈。 /p p br/ /p p style=" text-align: center " strong 表3:2018年10月仿制药承办情况 /strong /p p img src=" https://img1.17img.cn/17img/images/201811/uepic/ae968f63-f71f-405d-a31f-7f34f7187e79.jpg" style=" " title=" 666.png" / /p p img src=" https://img1.17img.cn/17img/images/201811/uepic/0da7035f-f263-4b89-bf40-8a4e361bf497.jpg" style=" " title=" 777.png" / /p p img src=" https://img1.17img.cn/17img/images/201811/uepic/7406f7a9-91ba-4b7d-9a6e-60593807a7fc.jpg" style=" " title=" 888.png" / /p p span style=" color: rgb(0, 112, 192) " strong 进口申请承办情况:多个印度仿制药申请进口 /strong /span /p p style=" text-indent: 2em " 10月CDE共承办35个品种的进口申请,ABTL0812、BAY1895344、BMS-986165、Enzalutamide、Guselkumab、LAE001、LB1148等品种为CDE首次承办品种。印度瑞迪博士实验室、阿拉宾度制药、印度太阳药业等印度企业均有仿制品种提交进口申请,详细情况请见下表。 /p p br/ /p p style=" text-align: center " strong 表4:2018年10月CDE进口品种承办情况 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/fb2f35a4-0d75-41b6-9860-6e116bb5443c.jpg" style=" " title=" 1111.png" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/d281911b-807f-42a1-9fab-b9797f07f120.jpg" style=" " title=" 2222.png" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/1f52b092-6fbb-429a-9ed5-12e36d4905c2.jpg" style=" " title=" 3333.png" / /p p span style=" color: rgb(0, 112, 192) " strong 获批情况:华海药业盐酸多奈哌齐片获批 /strong /span /p p style=" text-indent: 2em " 据米内网MED中国药品审评数据库2.0显示,10月有多个品种通过仿制药一致性评价。华海药业4类仿制药盐酸多奈哌齐片获批生产,视同通过一致性评价。 /p p style=" text-align: center " strong 表5:2018年10月部分品种获批情况 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/4d200ab6-4ddd-4ee0-9604-526d91288ba5.jpg" style=" " title=" 4444.png" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/05ebf9af-dfa6-4079-8a85-8ca69686b581.jpg" style=" " title=" 5555.png" / /p p span style=" color: rgb(165, 165, 165) font-size: 14px " strong 文章作者:菜小白& nbsp /strong /span /p

阿洛西林钠相关的仪器

  • 阿贝折光仪 400-858-8867
    ABBE-3LTM 阿贝折光仪是广泛应用于分析领域的工业仪器,包括:纯度的研究膜厚度二元混合物糖溶液(糖度)色散的研究液体,固体和粉末的折射率不透明材料这款结实耐用、可靠性高的分析仪器,可以放在实验室、生产车间或者教室里年复一年的日常使用。ABBE-3L阿贝折光仪能迅速、简便地测定大范围的液体和固体样品的折射率。折射率&eta D的测量范围为1.30~1.71,而且能够通过外接水浴循环器来进行严格的温度控制。该仪器还能直接测定糖度(Brix)范围为0~85%。ABBE-3L阿贝折光仪是教学科研和质量控制实验室中必不可少的工具。 应用食品和饮料 - 水果产品中的可溶性固形物 - 食用油中的不饱和脂肪酸 - 蜂蜜和草莓酱中的水分含量 - 牛奶中固态物、水和脂肪的总含量 - 鸡蛋中的固态物质 - 牛油果和橄榄中的油 - 巧克力里的脂肪 - 肉类含水量 石油 - 油砂中的石油 - 烯烃,芳烃,烷烃 - 润滑油中的乙二醇 农业 - 种子含油量 - 玉米糖浆 工业流体 - 电镀液 - 电池酸 - 盐度 优势特点易于使用&mdash &mdash 操作人员会又快又容易地学会简单的上样,调光试和读数。准确性和高精精度&mdash &mdash 折射率读数的准确度为± 0.0005,&eta D量程为1.30~1.71相当于糖度测量准确度为0.2%,溶出固体(糖度Brix)测量范围:0~85%易于读数&mdash &mdash 双称阿米西补偿器(阿米西棱镜)提供高强单色D光(钠元素产生)。安全、便利&mdash &mdash 外部变压器直接插入标准电源插座为照明刻度板和样品照射提供AC6.3V的工作电压。结实耐用&mdash &mdash 坚硬且抗化学腐蚀的金属外壳可以保护仪器的关键部件不受粉尘、烟雾和液体的影响,从而大大减轻了维护保养工作。易于使用 &ndash 只要上样、调光、读数即可上样&mdash &mdash 只需将少量样品(对于液体样品0.03ml即可)直接加在测量折射棱镜表面,锁紧棱镜时保证被测液体均匀地充满棱镜间隙。调光&mdash &mdash 强大功能的照明系统能够简单地调整角度,进行透射光束或反射光束的测量。通过一个开关您可以轻松地选择三种模式: 照射样品,即时刻度照明,电源&ldquo 关闭&rdquo 。读数&mdash &mdash 在内置照明刻度板上能直接读出折射率读数指数和糖度的读数。 粗调旋钮在目镜视场中找到明暗分界线的位置,再进行微调得出精确的读数。定量测量只需要建立一个标准的曲线(&eta D与已知浓度的关系曲线)。色散值和Nu值可从色散表中用内插法确定。每台仪器都有配套的色散表。
    留言咨询
  • 仪器简介:NAR-3T ----是为了提高测量准确度与更容易使用而研发。基本的改善为视觉系统的改进,使用更大的标度,加上高强度灯和使用能够更快速准确操控的双重控制旋扭。 NAR-4T ----新材质在现代科技的研发一直被各个工业领域所积极运用。许多新材质(特别是聚合物胶卷和相关材质)具有相当高的折射指数-通常太高以致于现行的阿贝折射仪无法测量,但是现在测量范围在nD1.4700 至1.8700的4T产品已经能够做到。 NAR-2T ----为需要在高温下测量的混和物一起使用而设计。技术参数: ■精密型阿贝折光仪NAR-3T ■阿贝折光仪NAR-1T &bull 测量范围:折射率(nD)1.30000~1.71000; Brix(%) 0.00~95.00% &bull 最小标度:折射率(nD)0.0002; Brix(%) 0.1% &bull 测量精度:折射率(nD) ± 0.0001; Brix(%) ± 0.05% &bull 数字式温度计: 指示范围0.0~50.0℃ 精度± 0.2℃ 最小标度0.1℃ &bull 平均分散值:nF~nC(根据换算表换算) &bull 测量范围:折射率(nD) 1.3000~1.7000;       Brix(%) 0.0~95.0% &bull 最小标度:折射率(nD) 0.001;       Brix(%) 0.5% &bull 测量精度:折射率(nD) ± 0.0002;       Brix(%) ± 0.1% &bull 数字式温度计:指示范围0.0~50.0℃         精度± 0.2℃         最小标度0.1℃ &bull 平均分散值:nF~nC(根据换算表换算) ■高温型阿贝折光仪NAR-2T ■高折射率型阿贝折光仪NAR-4T &bull 测量范围:折射率(nD) 1.3000~1.7000;       Brix(%) 0.0~95.0% &bull 最小标度:折射率(nD) 0.001;       Brix(%) 0.5% &bull 测量精度:折射率(nD) ± 0.0002;       Brix(%) ± 0.1% &bull 数字式温度计:指示范围0.0~120.0℃         精度± 0.2℃         最小标度0.1℃ &bull 平均分散值:nF~nC(根据换算表换算) 测量范围:折射率(nD) 1.4700~1.8700; &bull 最小标度:折射率(nD) 0.001; &bull 测量精度:折射率(nD) ± 0.0002; &bull 数字式温度计:指示范围0.0~50.0℃         精度± 0.2℃         最小标度0.1℃ 主要特点:■精密型阿贝折光仪NAR-3T:精密型,高强度灯、双控制钮,使测量更快、更精细。 ■阿贝折光仪NAR-1T:标准型阿贝折光仪,能迅速、准确地测量固体、液体的折射率,它的设计使得无须钠灯即可得到D线折射率。
    留言咨询
  • 西林瓶偏光应力仪 400-860-5168转3730
    西林瓶偏光应力仪YLY-H智能偏光应力仪可广泛的应用于玻璃容器、塑料容器等内应力的测量。该款仪器提供定性、定量两种试验模式,利用偏振场中的干涉色序原理,可以准确的测量出玻璃内应力数值。是制药企业、玻璃制品厂、实验室作测量光学玻璃、玻璃制品及其它光学材料的应力值测试的专用仪器。产品特点◎ 定性、定量两种试验模式,试验空间可调,适用范围广。◎ 仪器可存储200组数据,每组数据 50个测量值。◎ 采用高精度式角度编码器进行测量,测量精度优于2.0Nm。◎ 触摸屏显示,可同时显示测量角度及光程差数值,用户可直观获得所需数据,使测量直观易读。◎ 暗视场无需校准,采用了式编码器,偏振场的暗视场总是处于零角度点,因此无需用户校。对零点,避免了人为校对暗视场造成的误差。◎ 绿色节能,采用了更加节能环保的LED光源,相对传统光源节能80%以上。◎ 配备微型打印机,方便打印输出试验数据。◎ 配备USB接口,可接PC软件控制仪器运行。◎ 自动保存历史试验记录,本地查询,并可导出至电脑端EXCEL格式保存。◎ 触屏端操作用户三级权限设置,完全满足GMP权限认证。◎ 测试记录审计、追踪功能。◎ 试验结果同步上传至云端服务器保存,在世界各地,有网络就可浏览。◎ 本地数据与云端数据双重备份,确保数据不会丢失。 测试原理YLY-H内智能偏光应力仪应用偏振光干涉原理检查玻璃内应力或晶体双折射效应的仪器。由于仪器备有灵敏色片,并应用1/4波片补偿方法,因此本仪器不仅可以根据偏振场中的干涉色序,定性或半定量的测量玻璃的内应力,还可以准确定量的测量出玻璃内应力数值。 应用领域适用于玻璃输液瓶、玻璃管制(模制)药瓶、管制(模制)注射剂瓶、安瓿瓶、口服液体瓶等偏光内应力测试; 还可以应用于啤酒瓶、白酒瓶等玻璃容器内应力测试。西林瓶偏光应力仪测试标准YLY-H依据标准:JJG196-2006《常用玻璃量具检定规程》、GB/T4545 《玻璃瓶罐内应力检验方法》、GB/T12415 《药用玻璃容器内应力检验方法》 、YBB00032005-2005 《钠钙玻璃输液瓶》、YBB00332002-2015 《低硼硅玻璃安瓿》 售后服务承诺三月内只换不修,一年质保,终身提供。快速处理,1小时内响应问题,1个工作日出解决方案。 体系荣誉资质ISO9001:2008质量体系认证、计量合格确认证书、CE认证、软件著作权、产品实用新型、外观设计。实力铸造品牌三大研发中心,两条独立生产线,一个综合体验式实验室。赛成自2007年创立至今,全球用户累计成交产品破万台,完善四大产品体系,50多种产品。
    留言咨询

阿洛西林钠相关的耗材

  • 天津市奥淇洛谱西林瓶(无盖)西林瓶(无盖)西
    天津市奥淇洛谱西林瓶(无盖)西林瓶(无盖)西
  • 天津市奥淇洛谱西林瓶(无盖)西林瓶
    底部直径2.2cm,高4cm西林瓶(penicillin bottle),又称:硼硅玻璃或钠钙玻璃管制(模制)注射剂瓶,是一种胶塞封口的小瓶子。早期盘尼西林多用其盛装,故名西林瓶。西林瓶有棕色、透明等种类、硼硅材质的西林瓶为市场上的主流产品。瓶颈部较细,瓶颈以下粗细一致。瓶口略粗于瓶颈,略细于瓶身,一般用做疫苗、生物制剂、粉针剂、冻干等药品的包装。1、制法不一样,管制瓶是先拉成玻管,然后用玻璃管在立式转盘式机器制成瓶子,模制瓶是用硼砂、 石英砂在窑炉行列机生产做成瓶子的,管制瓶不使用模具,只使用两套模轮,模制瓶需要整套模具;2、外观不一样,管制瓶外表看起来光亮些,透明度比较好,模制瓶粗糙些。西林瓶与安瓿瓶的区别:安瓿瓶:一种密封的高质量薄玻璃做的小瓶,常用于存放注射用的药物以及疫苗、血清等。最常见的就是医用的,打点滴用的药一般都是安瓿瓶。西林瓶:一种胶塞封口的小瓶子,有棕色,透明等种类,一般为玻璃材质。瓶颈部较细,瓶颈一下粗细一致;瓶口略粗于瓶颈,略细于瓶身一般用做药用注射液瓶、口服液瓶等。它们最大的区别就是安瓿瓶是密封一体的,而西林瓶是有胶塞密封的而且都比安瓿瓶厚。西林瓶一般都装无菌分装的粉末,或冻干粉针;而安瓿瓶都是用来装液体制剂的。
  • 天津市奥淇洛谱西林瓶(无盖)西林瓶
    西林瓶(penicillin bottle),又称:硼硅玻璃或钠钙玻璃管制(模制)注射剂瓶,是一种胶塞封口的小瓶子。早期盘尼西林多用其盛装,故名西林瓶。西林瓶有棕色、透明等种类、硼硅材质的西林瓶为市场上的主流产品。瓶颈部较细,瓶颈以下粗细一致。瓶口略粗于瓶颈,略细于瓶身,一般用做疫苗、生物制剂、粉针剂、冻干等药品的包装。1、制法不一样,管制瓶是先拉成玻管,然后用玻璃管在立式转盘式机器制成瓶子,模制瓶是用硼砂、 石英砂在窑炉行列机生产做成瓶子的,管制瓶不使用模具,只使用两套模轮,模制瓶需要整套模具;2、外观不一样,管制瓶外表看起来光亮些,透明度比较好,模制瓶粗糙些。西林瓶与安瓿瓶的区别:安瓿瓶:一种密封的高质量薄玻璃做的小瓶,常用于存放注射用的药物以及疫苗、血清等。最常见的就是医用的,打点滴用的药一般都是安瓿瓶。西林瓶:一种胶塞封口的小瓶子,有棕色,透明等种类,一般为玻璃材质。瓶颈部较细,瓶颈一下粗细一致;瓶口略粗于瓶颈,略细于瓶身一般用做药用注射液瓶、口服液瓶等。它们最大的区别就是安瓿瓶是密封一体的,而西林瓶是有胶塞密封的而且都比安瓿瓶厚。西林瓶一般都装无菌分装的粉末,或冻干粉针;而安瓿瓶都是用来装液体制剂的。

阿洛西林钠相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制