次野鸢尾黄素

仪器信息网次野鸢尾黄素专题为您提供2024年最新次野鸢尾黄素价格报价、厂家品牌的相关信息, 包括次野鸢尾黄素参数、型号等,不管是国产,还是进口品牌的次野鸢尾黄素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合次野鸢尾黄素相关的耗材配件、试剂标物,还有次野鸢尾黄素相关的最新资讯、资料,以及次野鸢尾黄素相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

次野鸢尾黄素相关的资料

次野鸢尾黄素相关的论坛

  • 35.1 高效液相色谱法测定射干利咽口服液中射干苷、次野鸢尾黄素的含量

    35.1 高效液相色谱法测定射干利咽口服液中射干苷、次野鸢尾黄素的含量

    1.5。以峰面积对进样浓度(ng.mL-1)线性回归,射干苷回归方程:Y=7 485.5X+82.95,r=0.999 7,线性范围:150~3 000 ng.mL-1;次野鸢尾黄素回归方程:Y=2 031X-78.14,r=0.999 9,线性范围:50~1 000 ng.mL-1。射干苷和次野鸢尾黄素的回收率分别为97.2%和98.7%、RSD分别为2.1%和2.8%。结论本方法操作简便,测定结果准确可靠,可用于射干利咽口服液中射干苷、次野鸢尾黄素的含量测定。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208061051_381727_1606903_3.jpg

  • 射干中次野鸢尾黄素成分的测定

    射干中次野鸢尾黄素成分的测定

    [align=center][img=,600,400]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111545058835_3538_932_3.jpg!w690x460.jpg[/img][/align]今天为您带来月旭Ultimate LP-C18(4.6×250mm,5μm)色谱柱对射干中次野鸢尾黄素成分的测定。[align=center][b]色谱条件[/b][/align]色谱柱:月旭Ultimate LP-C18(4.6×250mm,5μm)。流动相:0.2%磷酸溶液/甲醇=47/53;检测波长:266nm;柱温:40℃;流速:1.0ml/min;进样量:10μL。[align=center][b]谱图和数据[/b][/align][b]1、对照溶液图[/b][align=center][img=,600,317]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111545087418_772_932_3.jpg!w690x365.jpg[/img][/align][align=center][img=,600,38]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111545138748_9028_932_3.png!w690x44.jpg[/img][/align][align=left]2、样品溶液图[/align][align=center][img=,600,310]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111545196029_4284_932_3.jpg!w690x357.jpg[/img][/align][align=center][img=,600,38]https://ng1.17img.cn/bbsfiles/images/2019/09/201909111545249614_3231_932_3.png!w690x44.jpg[/img][/align][b][/b][align=center][b][/b][/align][align=center][b][/b][/align][align=center][b]结 论[/b][/align]使用月旭Ultimate LP-C18(4.6×250mm,5μm),在此色谱条件下,能满足检测需求。

  • 17.4 HPLC法测定胃力片中大黄酸、大黄素、大黄酚和大黄素甲醚的含量

    17.4 HPLC法测定胃力片中大黄酸、大黄素、大黄酚和大黄素甲醚的含量

    HPLC法测定胃力片中大黄酸、大黄素、大黄酚和大黄素甲醚的含量张红霞,金艺,许海燕,赵怀清(沈阳药科大学药学院,辽宁沈阳110016)摘要:目的建立胃力片中大黄酸、大黄素、大黄酚、大黄素甲醚的含量测定方法。方法采用HPLC法,色谱柱:Diamonsil c18(4.6 mm×200 mm,5弘m),以甲醇一体积分数为0.1%的磷酸水溶液(体积比为82:18)为流动相,流速:1.0 mL·min~,柱温:35℃,检测波长:254 nm。结果大黄酸、大黄素、大黄酚、大黄素甲醚分别在1.42~12.79、2.02~18.14、1.28~11.52、0.76~8.36 mg·Lo内呈良好的线性关系,相关系数分别为O.999 1、O.999 4、O.999 0和0.999 6,平均回收率分别为102。7%(RSD=l。0%,魁=9)、10l。2%(RSD=2.7%,露=9)、99.4%(RSD=1。6%,n=9)和97.9%(RSD=2.8%,咒=9)。结论本方法可作为胃力片质量控制方法之一。关键词:胃力片;大黄酸;大黄素;大黄酚;大黄素甲醚;高效液相色谱法http://ng1.17img.cn/bbsfiles/images/2012/07/201207241901_379466_2355529_3.jpg

次野鸢尾黄素相关的方案

  • 射干中次野鸢尾黄素的检测
    色谱柱:Agilent Zorbax SB C18 250mm x 4.6mm,5um进样量:20ul检测波长:266nm, 柱温:28.0℃流 速: lml/min流动相:甲醇:0.2%磷酸溶液=53:47
  • 姜黄素纳米乳液稳定性受高压微射流均质条件的影响 Part-1
    姜黄素(curcumin,二阿魏酰基甲烷)是一种从姜黄根茎中获得的天然黄色色素,姜黄素独特的风味和颜色,被广泛作为香料或着色剂等在国内外使用。研究发现其具有抗氧化、抗炎,护肝、抗癌和抗肿瘤等多种生物和药理活性,已成为国内外研究热点。然而其在碱性和光照条件下易分解,稳定性及水溶解性差,纯水中的溶解度约为11ng/mL。此外,直接口服姜黄素后几乎都以粪便和尿液形式被排泄出去,仅有少量被人体吸收,严重影响其在功能性食品和医药品中的应用。如何提高姜黄素的生物利用率、稳定性与水溶性是目前的研究重点及难点。最近研究表明,将一些脂溶性的,具有生物活性的化合物植入运载体系中,如制备姜黄素纳米乳液,姜黄素磷脂复合物,姜黄素多糖复合物等,姜黄素经处理,其液滴尺寸较小,对姜黄素起到保护作用,大大提高了其稳定性及水溶解性等。本研究目的是通过高压微射流均质建立4种(蛋白质类、多糖类、小分子合成乳化剂、磷脂类)稳定的姜黄素乳液运载体系,采LUMiSizer快速稳定性分析仪研究不同均质压力、均质次数、乳化剂浓度对姜黄素乳液稳定性的影响。
  • 叶黄素水分含量检测解决方案
    叶黄素,别名植物黄体素,是一种类胡萝卜素,化学式为C40H56O2,在蔬菜、水果、花卉等植物中广泛存在,是存在于人眼视网膜黄斑区的主要色素。本试验采用AKF-V6卡尔费休水分测定仪,通过直接进样测定某叶黄素样品中的水分含量。

次野鸢尾黄素相关的资讯

  • 【瑞士步琦】天然抗氧化剂的保护伞——使用步琦微胶囊造粒仪制备叶黄素微球和微胶囊
    1简介叶黄素是植物中常见的天然类胡萝卜素。外表为红橙色,具有天然抗氧化性能,因此也具有氧敏感性;此外,叶黄素基本上也不溶于水。叶黄素和类胡萝卜玉米黄质素存在于人类眼部视网膜中,对视觉非常重要。本研究的目的是保护抗氧化剂免于氧化,并使其在水中分散。因此,利用微胶囊造粒仪 B-390/B-395 Pro 仪器搭配气流振动喷嘴和同心喷嘴分别制备叶黄素微球和微胶囊。制备的微球呈球形、大小均匀,微胶囊由内核和外壳两种不同成分组成。如 下图所示,微球和微胶囊均呈现均匀的球形形貌。含叶黄素的微球模型含叶黄素的微胶囊模型2实验设备和材料实验设备:步琦微胶囊造粒仪 B-390/B-395 Pro实验材料:1.5%(w/w)和1.8%(w/w)海藻酸钠溶液0.1 M CaCl2样品1:7.5g 叶黄素粉末分散于 142.5g 浓度为 1.5% 的海藻酸钠溶液中样品2:5g 叶黄素粉末溶于 100mL 花生油中,磁力搅拌均匀3实验过程实验1:使用气流振动喷嘴制备包埋叶黄素的海藻酸钙基质的微球,仪器参数如下 表1所示。表1:实验 1 的过程参数。仪器微胶囊造粒仪 B-390气流振动喷嘴750 μm(核)/1.5 mm(壳)频率870 Hz进样(外置注射泵)样品1:5.45 mL/min压力1013 mbar喷嘴气体流量1 L/min分散电压0 V振幅9固化液0.1 M CaCl2搅拌温和搅拌(无旋涡)实验2:使用同心喷嘴制备包埋叶黄素油的核壳结构海藻酸钙微胶囊,仪器参数如下 表2 所示。表2:实验 2 的过程参数。仪器微胶囊造粒仪 B-395 Pro同心喷嘴450 μm(核)/ 700 μm(壳)频率300 Hz进样核:样品2(注射泵进样)壳:1.8 %海藻酸钠溶液(压力瓶进样)核进样速度11.5 mL/min压力300 mbar分散电压0 V振幅9固化液0.1 M CaCl2搅拌温和搅拌(无旋涡)4实验结果本实验成功使用气流振动喷嘴制得球型叶黄素微粒,如下图(a)所示。图中叶黄素粉末嵌入在海藻酸钙微球内部,微球直径尺寸在 300μm 到 600μm 之间。与叶黄素微球相比,实验2 制备的核壳结构叶黄素微胶囊如下图(b)所示。通过使用同心喷嘴,海藻酸盐基质形成的外壳可以将叶黄素油完全包覆,形成保护层,微胶囊直径在 1200μm 到 1400μm 之间。(a)使用气流振动喷嘴制得的叶黄素微球(b)使用同心喷嘴制得的叶黄素微胶囊5结论本研究提出两种使用微胶囊造粒仪包埋油溶性物质的可行方法,步琦微胶囊造粒仪 B-390 和 B-395 Pro 可用于制备含叶黄素的球型微粒和微胶囊。
  • 《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》等2项团体标准公开征求意见
    各有关单位及专家:由惠州市食品药品检验所提出,惠州市食品药品检验所、贸耕实业(惠州)有限公司,广东省惠州市质量技术监督标准与编码所、广东省惠州市质量计量监督检测所等单位负责起草的《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准已完成征求意见稿的编制,根据《惠州市标准化协会团体标准管理办法》的相关规定,为保证标准的科学性、严谨性和适用性,现公开征求意见。请各有关单位及专家对本标准提出宝贵建议和意见,于2023年4月28日前以邮件的形式将《征求意见表》反馈至指定邮箱。联系人:杜琦杰电话:0752-2780906邮箱:hz_bzhxh@163.com附件:1. 惠州市标准化协会关于《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》2项团体标准公开征求意见的通知2.《牛樟精油》(征求意见稿)3.《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》(征求意见稿)4. 征求意见表惠州市标准化协会2023年3月28日惠州市标准化协会关于《牛樟精油》、《食品中毒黄素和米酵菌酸的测定液相色谱-质谱 质谱法》2项团体标准公开征求意见的通知.pdf《牛樟精油》(征求意见稿).pdf《食品中毒黄素和米酵菌酸的测定液相色谱-质谱/质谱法》(征求意见稿).pdf征求意见表.docx.doc
  • Resonon | 利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度
    利用Resonon Pika XC2高光谱成像预测新鲜姜黄根茎中姜黄素浓度姜黄素是一种天然化合物,具有良好的抗炎、降血脂、抗氧化和抗癌等特性。姜黄素是从姜科、天南星科中一些植物的根茎中提取的一种二酮类化合物。其中,姜黄中约含姜黄素3%~6%,是植物界很稀少的具有二酮结构的色素。了解栽培根茎中姜黄素的水平并确定高产品种非常重要。传统上测量姜黄素是通过从新鲜根茎或干粉中将其提取出来,并使用高效液相色谱(HPLC)或紫外-可见分光光度法进行分析。从植物材料中分离姜黄素费事、费力、成本高,且需要专门的实验室设备和有经验的操作人员。而高光谱成像(HSI)是一种快速且无损的技术,已成功用于土壤和农产品(坚果、水果和蔬菜)各种化学成分和质量指标的评估。然而,目前尚未探索使用新鲜姜黄根茎的HIS图像来预测姜黄素。基于此,为了填补研究空白,在本文中,来自澳大利亚的一组研究团队进行了相关研究,旨在(1) 比较澳大利亚东部不同采样点3个姜黄品种(黄色、橙色和红色)的总姜黄素浓度和不同类姜黄素的分布;(2)评估利用可见-近红外(Vis/NIR)光谱(400-1000 nm)建立的PLSR模型预测新鲜姜黄根茎中总姜黄素浓度的潜力。作者在2018年11月至2019年11月,从五个研究地点共收集了190个样本,以捕捉生长周期的变化。利用光谱范围为400-1000 nm,光谱采样间隔为1.3 nm,光谱分辨率为2.3 nm的Resonon Pika XC2高光谱相机获取样品的高光谱图像。扫描后,提取根茎中的姜黄素,分析其总浓度和分布。建立偏最小二乘回归(PLSR)模型来预测总姜黄素浓度,并通过R2和RMSE来评估模型的准确度。图1 高光谱成像系统Resonon Pika XC2高光谱相机扫描姜黄根茎(a),选择根茎肉(横截面)(b)和皮(c)感兴趣区域(ROI),用于提取每个样品的平均光谱反射率。 图2 实验设计和模型开发流程图。【结果】表1 校准和测试集中不同品种和采样地的总姜黄素 (%) 浓度的描述性分析。图3 不同姜黄品种中三种姜黄素类化合物:双去甲氧基姜黄素 (a)、去甲氧基姜黄素 (b) 和姜黄素 (c) 的百分比分布。 图4 使用三个姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)表2 使用各种光谱分析技术的PLSR模型预测性能。 图5 仅使用橙色姜黄品种的原始反射光谱和根茎皮(a)与根茎肉(b)的所有可用波长开发的模型;测试集中单个样本的姜黄素(%)预测值(实心圆)(利用根茎肉模型)和测试数据集中单个样本测量值(“×”)和偏差线(与校准样本的相似度)分布图(c)。【结论】红色姜黄品种姜黄素最高,建议农民可以培育该品种。本研究结果表明Vis/NIR高光谱成像结合PLSR有潜力仅使用根茎肉图像而不是根茎皮图像预测新鲜姜黄中的姜黄素。在收获和清洗过程中,指状根茎通常从母根茎中折断,仍可销售,因此,通过扫描从加工批次中随机选择的任何折断的根茎碎片,并使用所开发的PLSR模型,可以在两级系统下基于农场手段对包装根茎进行分级。针对每个品种开发模型可以提高预测性能和可靠性。使用单一姜黄品种(橙色)开发的模型预测结果更准确,预测性能和可靠性更高。波长选择(Jack knifing)进一步改进了这些方法,使其适用于更小、更便携的多光谱成像系统。然而,在未来的研究中,应针对每个特定品种采集更大的样本量,并对从其他光谱区域收集的数据进行调查。此外,该方法应被用于预测单个姜黄素类化合物,未来新兴的图像深度学习算法可能会进一步提高模型预测性能。请点击如下链接,阅读全文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310032&idx=1&sn=18f01ae402460e5da378f1ca6611014e&chksm=bee1a96f8996207988d67e735544aa15e26988c1a3cbb97e8aef9859a4a796e09c2f2202826e#rd

次野鸢尾黄素相关的仪器

  • APDPHYL500 在线叶绿素分析仪/APDALG500 在线蓝绿藻分析仪叶绿素 a 是藻类的主要光合色素,是评价藻类生物量的重要指标。叶绿素 a 在激发光的照射下可发射出荧光,其强度与叶绿素 a 的浓度成正比。Thermo ScientificTM APDPHYL500 在线叶绿素分析仪利用对藻细胞的叶绿素 a 的荧光特性进行原位检测,无需试剂。水体中微囊藻华爆发期的优势种群,而微囊藻及其他蓝藻属所产生的微囊藻毒素,是可能的致癌物质,有肿瘤促进作用,并会导致原发性肝癌。蓝绿藻特有的藻蓝蛋白(海水中藻类为藻红蛋白)是把蓝藻从总藻类和浮游植物中区分出来的有效特征。Thermo ScientificTM APDALG500在线蓝绿藻分析仪利用藻蓝蛋白和藻红蛋白在不同波长下的微弱荧光特性对水样中活体的蓝绿藻类生物量进行监测。应用领域饮用水源地监测自来水厂进水口检测水华暴发预警功能特点1. 基于荧光原理,无需试剂2. 长期连续进行原位检测,无送样要求3. 高量程和低量程通道自动切换4. 根据趋势监测分析并预警有害藻类爆发5. 易校正,长期运行稳定6. 可记录 1000 组数据,并可经由 USB 下载7. 可经由USB 端口现场对仪表固件进行升级,可快速拷贝、复制多台仪表的配置8. 可同时连接多达4 个电极,灵活配置任意通道为各分析参数,如pH/ORP,电导率,溶解氧(含RDO),臭氧,余氯,浊度,悬浮物,酸碱浓度等9. 支持多种数据通讯协议,可远程对各传感器进行校准、设置、诊断订货信息
    留言咨询
  • 叶绿素花青素测定仪 400-860-5168转4713
    该设备是一款叶夹传感器,可用于测量植物叶片叶绿素和多酚含量。光学传感器可进行简单、快速、无损测量叶片中的叶绿素、多酚以及花青素。叶绿素含量精确测量叶绿素在光合与植物发育过程中起到关键的作用。该设备通过分析投射过叶片的光测量叶绿素。系统经过化学校准,测量值为 μg/cm2 (5-80 μg/cm2量程内)。夹设计传感器-测量叶片中多酚和花青素多酚主要是在接收光后合成。因而其实植物光互作历史的良好指示因子。该设备通过分析多酚以及花青素对叶绿素荧光的屏蔽效应来测量多酚和花青素。多酚和花青素含量以相对吸收单元显示:多酚,0-3;花青素,0-1.5.NBI:氮平衡指数叶绿素经常用于植物氮状态指示。多年研究和实验显示,多酚,特别是黄酮醇,也是植物氮状态的良好指示因子。NBI (氮平衡指数) 组合了叶绿素和黄酮醇与氮/碳分配相关)。该指数是植物氮状态指示因子,与大量氮元素含量直接相关。与叶绿素荧光(叶龄、叶片厚度)相比,NBI 氮平衡指数对环境条件变化不敏感。测量材料对叶绿素荧光的透射和屏蔽效应测量参数叶绿素 (CHL), 多酚 (FLAV), 叶黄素 (ANTH), NBI精度5%可重复性CHL(4,5% ), FLAV(3,5%)和ANTH可重复性CHL(1,3%), FLAV(2%)和ANTH测量区域19,6 mm2叶片厚度最大1.5 mm测量时间 1 s用户界面LCD屏,声音报警定位内置 GPS相对精度 2,5 m (CEP, 50%, 24 h 静态)存储10000多参数数据数据输出.csv 文件数据传输USB
    留言咨询
  • 三为科学致力于中药中草药分离纯化、天然药物活性成分有效成分分离纯化应用的快速纯化制备液相色谱技术的开发,sanotac高压层析系统同时兼容Biotage 快速纯化制备液相色谱、ge AKTA、isco、biotage,buchi、biorad等中压分离纯化制备色谱的色谱柱和纯化柱,是一款高效、功能强大的模块化快速纯化制备液相色谱,在中药化学成分分离纯化与合成化合物的分离纯化领域已经得到广泛应用:皂苷类离纯化 ,黄酮分离纯化,异黄酮分离纯化,香豆素分离纯化,色原酮分离纯化,生物碱分离纯化,酚酸分离纯化,萜类分离纯化,蒽醌分离纯化,木脂素分离纯化。黄酮类化合物是以黄酮(2-苯基色原酮)为母核而衍生的一类黄色色素,其中包括黄酮的同分异构体及其氢化和还原产物,也即以C6一C3一C6为基本碳架的一系列化合物。天然黄酮类化合物母核上常含有羟基、甲氧基、烃氧基、异戊烯氧基等取代基。由于这些助色团的存在,使该类化合物多显黄色。又由于分子中γ-吡酮环上的氧原子能与强酸成盐而表现为弱碱性,因此曾称为黄碱素类化合物。黄酮类化合物可分为下列几类:黄酮类(flavone),黄酮醇类(flavonol),二氢黄酮类(dihydroflavone),二氢黄酮醇类(dihydroflavonol),异黄酮类(isoflavone),二氢异黄酮类(dihydroisoflavone),查尔酮类(chalcone),橙酮类(aurones),黄烷类(flavanes,花色素类(anthocyanidins),双黄酮类(biflavone) 高压层析系统技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-50.00ml/min(梯度)流速精度±0.5%压力范围0-30MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求 三为科学黄酮类化合物分离纯化案例:(二)黄酮类化合物 Flavonoids中文名英文名CAS No纯度(%)植物来源大波斯菊苷;芹菜素-7-葡萄糖苷;芹菜素-7-O-葡萄糖苷;芹菜素-7-O-β-D-葡萄糖苷;芹黄素葡糖苷;芹黄春Apigenin-7-glucoside;Apigenin-7-O-β-D-glucopyranoside Apigetrin578-74-5≥98.5黄菊花香叶木素-7-葡萄糖苷 香叶木素-7-O-葡萄糖苷;香叶木素-7-O-β-D-葡萄糖苷Diosmetin-7-glucoside;Diosmetin-7-O-β-D-glucopyranoside20126-59-4≥98.5芹菜苷 芹黄苷;芹菜素-7-O-葡萄糖-2-O-芹糖苷Apiin Apigenin-7-(2-O-apiosylglucoside)26544-34-3≥98.5芹菜芹菜素;芹黄素;4’,5,7-三羟基黄酮Apigenin 4’,5,7-Trihydroxyflavone Apigenin Apigenol520-36-5≥98.5山奈素;3,5,7-三羟基-4’-甲氧基黄酮;山奈酚-4’-O-甲醚Kaempferide;3,5,7-trihydroxy-4′-methoxyflavone491-54-3≥98.5高良姜高良姜素;3,5,7-三羟基黄酮Galangin 3,5,7-trihydroxyflavone Norizalpinin548-83-4≥98.5山奈酚Kaempferol520-18-3≥98.5油菜花粉香叶木素Diosmetin520-34-3≥98.5苏薄荷异槲皮苷;异栎素;罗布麻甲素;槲皮素-3-O-葡萄糖苷Isoquercitrin Isoquercitroside Quercetin 3-O-glucofuranoside21637-25-2≥98.5桑叶紫云英苷;黄芪苷;紫云英甙;莰非醇-3-O-葡萄糖苷;山柰酚-3-葡萄糖苷;百蕊草素ⅡAstragalin;Kaempferol-3-glucoside 3-Glucosylkaempferol480-10-4≥99.0百蕊草素I;山柰酚-3-葡萄糖鼠李糖苷;阿福豆苷Kaempferol-3-O-glucorhamnoside40437-72-7≥98.5百蕊草槲皮素Quercetin117-39-5≥98.5鱼腥草 桑寄生槲皮苷Quercitrin522-12-3≥98.5木犀草苷;木犀草素-7-O-β-D-葡萄糖苷;木犀草素-7-O-葡萄糖苷;青兰苷Luteolin-7-O-β-D-glucoside Luteoloside Glucoluteolin Cynaroside Cinaroside Cymaroside5373/11/5≥99.0金银花水仙苷;水仙甙;异鼠李素-3-O-β-D-芸香糖苷;异鼠李素-3-O-芸香糖苷Narcissoside;Narcissin Isorhamnetin-3-O-β-D-rutinoside604-80-8≥98.5芦笋异鼠李素Isorhamnetin480-19-3≥98.5蒲黄异鼠李素-3-O-新橙皮糖苷Isorhamnetin-3-O-neohespeidoside;55033-90-4≥98.5香蒲新苷Typhaneoside104472-68-6≥98.5异鼠李素-3-O-葡萄糖苷;异鼠李素-3-O-β-D-吡喃葡萄糖苷Isorhamnetin-3-O-β-D-glucoside;Isorhamnetin-3-O-glucoside5041-82-7≥98.5蒙花苷Acaciin Acaciin Linarin Buddleoflavonoloside Buddleoglucoside480-36-4≥95.0野菊花芸香柚皮苷;柚皮素-7-O-芸香糖苷Narirutin;Isonaringenin;Naringenin 7-rutinoside14259-46-2≥98.5枳实柚皮苷;柚皮甙;柚皮素-7-O-新橙皮糖苷Naringin;Naringenoside Naringenin 7-neohesperidoside10236-47-2≥98.5橙皮苷;橙皮甙Hesperidin;Hesperidoside Hesperetin 7-rutinoside 520-26-3≥98.5新橙皮苷;新橙皮甙Neohesperidin;Hesperetin 7-neohesperidoside13241-33-3≥98.5柚皮苷二氢查尔酮Naringin dihydrochalcone18916-17-1≥98.5柚皮素;柚皮苷元;柑橘素Naringenin;4’,5,7-Trihydroxyflavanone480-41-1≥98.5山奈苷;山奈酚-3,7-二鼠李糖苷Kaempferitrin Kaempferol 3,7-L-dirhamnoside Lespedin482-38-2≥98.5鸡冠花 罗汉果异荭草苷Isoorientin Homoorientin Lespecapitoside4261-42-1≥98.5竹叶异牡荆素(under development)Isovitexin Apigenin 6-C-β-D-glucoside38953-85-4≥98.5牡荆素鼠李糖苷;牡荆素-2-O-鼠李糖苷Rhamnosylvitexin Vitexin-Rhamnoside Vitexin 2' ' -rhamnoside64820-99-1≥98.5山楂叶牡荆素葡萄糖苷;牡荆素-4″′-O-葡萄糖苷Glucosylvitexin Vitexin glucoside Vitexin-4″-O-glucoside76135-82-5≥98.5金丝桃苷Hyperoside Hyperin Hyperosid Quercetin 3-galactoside482-36-0≥98.5牡荆素Vitexin Apigenin 8-C-glucoside Vitexina3681-93-4≥99.0白杨素;5,7-二羟黄酮;柯因Chrysin480-40-0≥98.5汉黄芩苷Wogonoside Oroxindin Wogonin 7-β-D-glucuronide51059-44-0≥98.5黄芩野黄芩苷;灯盏花乙素Scutellarin 27740-01-8≥98.0木蝴蝶素A-7-葡萄糖醛酸苷 木蝴蝶素A-7-0-β-D-葡萄糖醛酸苷 千层纸素A-7-0-β-D-葡萄糖醛酸苷Oroxyloside Oroxylin A-7-glucoronide ≥98.5Oroxylin A-7-O-β-D-glucoronide黄芩素Baicalein491-67-8≥98.5黄芩苷;黄芩素-7-O-葡萄糖苷Baicalin21967-41-998.5草质素苷;草质素甙;草质素-7-O-鼠李糖苷Rhodionin;Herbacetin 7-O-α-rhamnopyranoside≥98.5红景天红景天素;草质素甙;草质素-7-O-(3′′-β-D-葡萄糖基)-α-L-鼠李糖苷Rhodiosin Herbacetin-7-O-glucorhamnoside86831-54-1≥98.5射干苷;鸢尾种苷;鸢尾黄酮苷;鸢尾甙Shekanin Tectoridin611-40-5≥98.5射干杨梅素Myricetin 3,5,7,3' ,4' ,5' -hexahydroxyflavone529-44-2≥98.0侧柏叶杨梅苷;杨梅素-3-O-鼠李糖苷Myricitrin Myricetin3-O-rhamnoside Myricitroside Myricitrine17912-87-7≥98.0淫羊藿苷Icariin Icariine Icariln Ieariline489-32-7≥98.0淫羊藿朝藿定AEpimedin A110623-72-8≥98.0朝藿定BEpimedin B110623-73-9≥98.0朝藿定CEpimedin C Baohuoside VI110642-44-9≥98.0甘草素;4′,7-二羟基黄烷酮Liquiritigenin 4′,7-dihydroxyflavanone578-86-9≥98.5甘草甘草苷;甘草甙;甘草素-4’-O-葡萄糖苷Liquiritoside Liquiritin Likvirtin Liquiritigenin 4′-O-glucoside551-15-5≥98.5芹糖甘草苷;甘草苷芹糖;甘草苷元-7-O-D-芹糖-4’-O-D-葡萄糖苷;甘草素二糖苷Liquiritin apioside≥98.5异甘草素;4,2' ,4' -三羟基查耳酮Isoliquiritigenin 2′,4, 4′-Trihydroxychalcone961-29-5≥98.5异甘草苷;异甘草甙Isoliquiritin5041-81-6≥98.5芹糖异甘草苷;异甘草苷芹糖;异甘草苷元-7-O-D-芹糖-4’-O-D-葡萄糖苷;异甘草素二糖苷Isoliquiritin apioside; Neolicuroside120926-46-7≥98.5氯化矢车菊素-3-O-葡萄糖苷Cyanidin-3-O-glucoside;Kuromanin Chloride7084-24-4≥97.0黑米皮 黑豆衣 更多制备液相色谱/蛋白纯化系统/中压制备色谱近20个型号详见三为科学官网: 流量:50ml、100ml、200ml、 1000ml 流通池:半制备池、制备池泵材料:不锈钢泵、peek泵
    留言咨询

次野鸢尾黄素相关的耗材

  • SupelMIP SPE 核黄素(维生素B2)
    SupelMIP SPE 核黄素(维生素B2) 25mg/10ml,50支/盒 高选择性的 MIP 相,用于从牛奶和其他含水样品中选择性萃取核黄素(维生素 B2)。 SupelMIP 固相萃取 &mdash 核黄素是开发用于当存在结构相似的维生素和类似物时萃取核黄素。稳定获得高达 85% 的回收率。 SupelMIP 固相萃取相由 MIP Technologies AB 所开发,它是分子印迹聚合物的的领导者和商业先锋之一。此固定相可用于大规模分离、分析色谱和样品制备。 SupelMIP 固相萃取产品线是由高度交联聚合物组成。该类特殊的固定相对提取单个目标分析物或结构相似的分析物具有极高的选择性。 在 MIP 合成过程中模仿目标分析物设计模板分子,该模板分子形成的洞穴或印记正好与目标分析物的立体和化学结构相匹配,这使得在 MIP 合成中引入选择性成为可能。 精心设计的印迹点是通过分子模拟、实验设计或筛选方法形成的,该印记点或洞穴能够提供多种与目标分析物的相互作用点。这可实现固相和分析物之间更强的相互作用。从而,在固相萃取方法中可允许更苛刻的冲洗条件,最终得到更干净的萃取物。由于萃取选择性得到显著提高,观察到的背景更低,使得分析物的检测限更低。
  • 中国上海三爱思姜黄素试纸姜黄素试纸
    中国上海三爱思姜黄素试纸姜黄素试纸
  • SupelMIP SPE 小柱---核黄素(维生素B2) ,25mg/10ml
    .分子印记聚合物固定相(MIP),特别开发应用于生物样品中核黄素(维生素B2)的选择性提取 . 极高的选择性能获得更低的检测限 . 在色质联用中减小离子抑制效应 . 快速可靠的方法,省时又降低费用 . 很少或无需方法开发(产品包装中含操作方法资料) . 在高温下和宽的PH范围内稳定 . 严格的质量控制条件

次野鸢尾黄素相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制