四丁基氯化铵

仪器信息网四丁基氯化铵专题为您提供2024年最新四丁基氯化铵价格报价、厂家品牌的相关信息, 包括四丁基氯化铵参数、型号等,不管是国产,还是进口品牌的四丁基氯化铵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合四丁基氯化铵相关的耗材配件、试剂标物,还有四丁基氯化铵相关的最新资讯、资料,以及四丁基氯化铵相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

四丁基氯化铵相关的资料

四丁基氯化铵相关的论坛

  • 四丁基碘化铵浓度的标定

    2.5 g/L的四丁基碘化铵水溶液如何标定其浓度?做多库酯钠原料的含量是要用到2.5 g/L的四丁基碘化铵来滴定其含量,故请教各位大侠,如何才能准确确定2.5 g/L的四丁基碘化铵的浓度

四丁基氯化铵相关的方案

四丁基氯化铵相关的资讯

  • 赛默飞发布针对左乙拉西坦中四丁基铵的检测方案
    2015年8月20日,北京——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布针对左乙拉西坦中四丁基铵的检测方案。左乙拉西坦是一种新型吡咯烷酮衍生物型抗癫痫药物。左乙拉西坦的结构和作用机制均与已上市的其他抗癫痫药物不同,具有较强的抗癫痫作用。四丁基溴化铵是在左乙拉西坦的合成过程中作为相转移催化剂使用,原料药的合成工艺准则要求必须要严格控制其残留量。赛默飞发布的测定左乙拉西坦原料药中四丁基胺的离子色谱方法,采用Thermo ScientificTM DionexTM ICS-900 基础型离子色谱系统,样品中基体不影响待测物质的准确分析。ICS-900配备SCS1柱容量较小的分析柱,采用MSA+35%乙腈作为淋洗液,采用抑制电导的方式检测,四丁基胺的检出限可以做到8 ug/L,待测物四丁基胺在SCS1上的峰形很对称,方法分析速度快,操作简便,灵敏度等均可完全能够满足左乙拉西坦中残留的四丁基胺根离子的检测要求。ICS-900基础型离子色谱系统检测方案下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/Chrom/pharma/documents/Suppressed-Conducitivity-Ion-Chromatography-Method-Determination-Tetrabutyl-Ammonium-Levetiracetam.pdf----------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 听说抄袭我们的都火了?今天带来原创的杂质分离方法开发过程
    zui近月旭科技除了产品以外,我们发布的内容也越来越受到大家的喜爱,遭到了多家公众号的自主发布,热度也颇高,我们十分“欣慰”。我们的内容能够得到大家的喜欢,真的是我们zui高兴的事情。但是其发表的内容因为水印等问题,谱图截取并不完整,影响大家的观看体验。所以小编就来以正视听,将完整的谱图,以及zui完整的杂质分离方法开发过程分享给大家,我们一起变得更强!首先来看看需要分离的三个物质的结构式:01 分析目的要求开发一种合适的分析方法,使上述3种化合物在浓度1.0mg/mL的情况下分离度大于1.50。开始方法开发之前,di一件该做的事是什么呢?当然是去了解这几个物质的性质,尽可能的得到有关这些物质的信息,这样可以为后面工作节省zui多的时间。而对这三个物质得到的信息大致如下:三种物质极性比较强,水溶性比较好,在常规C18色谱柱保留太弱,基本上与溶剂峰重叠。结构式上主要是官能团的差异,分别为-NH2,-Br,-COOH,差异性很大。综合考虑,有两种方案:一是加离子对试剂,用反相C18色谱柱增强保留,进行分离;二是使用离子交换色谱柱进行分离。首先由于个人的习惯,离子交换色谱被我直接排除(离子色谱平衡比较慢,而且离子交换色谱柱非常容易出现重现性问题)。所以本实验采用C18添加离子对试剂的方法。考虑的实验过程中需要使用离子对试剂,且流动相pH需要大范围调整(可能用到碱性流动相),所以色谱柱选择月旭Xtimate C18(4.6×250mm,5μm)色谱柱,流速:1.0mL/min,柱温30℃,检测波长220nm。02 流动相优化及测试结果图谱2.1 初步尝试流动相:0.05mol/L庚烷磺酸钠+0.05mol/L磷酸二氢钾,PH=4.60。结果:化合物3保留时间2.6min,化合物1不出峰。估计是化合物1保留太强未洗脱下来。接下来,调整pH并增加有机相的比例,来加大洗脱能力。2.2 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):甲醇=60:40。混合对照图谱如下:实验中将庚烷磺酸钠改为辛烷磺酸钠,增加有机相(甲醇)比例,结果三个物质分离良好,但是化合物1(19.9分钟)峰型太差,下一步优化化合物1的峰型。2.3 流动相:缓冲液(1.00g辛烷磺酸钠,10mM磷酸二氢钾至500mL水中,用磷酸调pH=2.30):乙腈=80:20。化合物1图谱:基于上一次实验,将有机相甲醇变为乙腈,通过改变选择性看是否峰型会有改善。结果发现并没有任何改善,而且发现这个方法中有机相只提供洗脱能力,不提供选择性改变作用。2.4 流动相:缓冲液(缓冲液:1.00g十二烷基磺酸钠,50mM氯化铵至500mL水,用磷酸调pH=1.80):甲醇=60:40。混合对照图谱:当时换成这个流动相的主要思路是,加十二烷基磺酸钠使保留更强,加氯化铵提高离子浓度,调pH至1.80强酸性使化合物1中-NH2官能团作用更弱,达到优化峰型的目的,但是效果很差。回头总结发现我们所有的目光都聚焦在三种物质的不同官能团上,导致越走越偏离分离的轨迹,这里,三个物质共同含有的官能团可能也是影响分离的主要因素,换了个角度后,豁然开朗了。推翻了之前的方案,将离子对试剂换为四丁基氢氧化铵,从头开始。2.5 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=9.30):乙腈=80:20。混合对照图谱:流动相中添加三乙胺和并将pH调成9.3目的是抑制化合物1的拖尾,但是结果发现三种物质没有分开。继续优化条件将pH值降低。2.6 流动相:缓冲液(4mL 10%四丁基氢氧化铵水溶液,1.36g磷酸二氢钾至500mL水中,用三乙胺调pH=7.00):乙腈=80:20。混合对照图谱:看到这结果是不是项目就OK了。但是既然是方法开发,方法重现性实验实验是必不可少的,需要用一根新色谱柱重现该色谱条件。结果问题就来了.....化合物1图谱:化合物1峰型一直分叉,zui终发现应该是色谱柱使用多种离子对试剂,造成色谱柱改性,新色谱柱不能重现结果。好吧,再开始。然后又是继续摸索。不得不说有时候运气也是成功的一部分,在一次流动相配置过程中,看到四丁基氢氧化铵试剂旁边还有一瓶四丁基溴化铵,突然我就冒出想法,用四丁基溴化铵试试,不知道结果会怎么样,说做就做。2.7 流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20。混合对照图谱:03 结果结果:分离度,峰型都满足要求,完美。当然还是需要重现方法的。三根新色谱柱重现结果:zui终色谱条件:色谱柱:月旭Xtimate C18(4.6*250mm,5μm)。流动相:缓冲液(1.00g四丁基溴化铵,1.36g磷酸二氢钾,1.0mL三乙胺至500mL高纯水。用磷酸调节pH=7.10):乙腈=80:20检测波长:220nm;柱温:30℃;流速:1mL/min;进样体积:10μL。搞定交差!04 实验小结在液相应用方法开发过程中,首先需结合需要分离的目的,确定思路,一个方法zui初的思路,是决定这个方法开发的效果,效率的zui根本因素;其次是细节,任何细节都有可能导致你实验的成功与否;zui后是运气,牛顿发现万有引力还有运气成分呢,说不定你是下一个。同时,在一个方法确定好之后,一定需要使用一根新的色谱柱来验证,因为在方法开发过程中,我们会使用到各种流动相条件,会对色谱柱一个改性,特别是使用离子对试剂的方法,否则后续的重现性问题会是一个非常头痛的事情。
  • SAXS有奖征文精选 | 膜孔道的溶剂化环境调控,实现锂离子选择性传输
    一、介绍 锂资源作为电子设备和电动汽车的关键原料,被誉为 "白色黄金"。为了确保锂资源的稳定供应,人们开始尝试从盐湖中提取锂资源。然而,盐湖中含有大量与Li+离子化学性质相似的Mg2+离子,这极大地增加了盐湖提锂的难度。因此,实现离子的高效分离以及盐湖提锂成为当前研究的重点。目前的研究主要集中在调控膜的尺寸和电荷量,以实现Li/Mg分离。研究表明,许多生物离子通道通过离子与孔道官能团之间的溶剂化/配位相互作用实现对离子的高效分离。然而,对于这种溶剂化/配位相互作用选择性机制在Li/Mg分离的研究仍然相对较少。二、测试和结果Li+/Mg2+离子分离膜的设计原理 由三醛基间苯三酚(Tp)制成的COF以其化学稳定性和与多种酰肼衍生物单体的兼容性而著称。这使得我们能够在图1中很好地研究膜的孔道环境和选择性之间的关系。因此,我们利用Tp与连接不同数量环氧乙烷(EO)单元的酰肼单体制备了膜,这些膜具有不同数量的EO单元,并将其命名为COF-EOx,其中x代表EO单元的数量。 图 1. COF-EOx的化学结构。 我们使用掠入射小角XRD衍射 (GIWAXS)技术评估了以COF-EO2/PAN 膜为代表的COF膜的结晶度。尽管活性COF层非常薄,而且腙键连接的COF具有一定的柔性,这导致该类COF的信号较弱,但XEUSS 3.0*仍然观察到了它们的衍射峰,表明其良好的结晶度(见图2)。此外,我们对COF-EO2/PAN膜进行了取向分析,证实了PAN基底上的COF膜在平面方向上没有优先取向,Qz = 0处的圆形模式证明了这一点(见图2)。这可能是孔道内的醚氧链官能团影响了最终的结果。 图2.(A)PAN基底和(B)COF-EO2/PAN膜对应的2D-GIWAXS图像。(C)上述2D-GIWAXS图像对应的一维图。 为了探究不同长度醚氧链COF膜对Li+和Mg2+跨膜传输的影响,我们首先进行了分子动力学(MD)模拟。结果显示,随着醚氧链长度的增加,Li+和Mg2+的跨膜能垒逐渐下降。这表明,醚氧链在促进离子传输方面发挥了重要作用。有趣的是,含有最长醚氧链的COF-EO4膜在Li+和Mg2+离子间的跨膜能垒上并未显示出最大的差异。相反,COF-EO2膜显示出最高的跨膜能垒差(见图2A),表明醚氧链能够有效调节COF膜的孔道环境,优化其分离Li+和Mg2+的性能。膜孔径的测量 随后,我们通过测量不易水合的四甲基氯化铵、四乙基氯化铵、四丙基氯化铵、四丁基氯化铵和四戊基氯化铵溶液的跨膜电导率,拟合出了COF-EOx/PAN膜的孔径。根据拟合结果,COF-EO0/PAN、COF-EO1/PAN、COF-EO2/PAN、COF-EO3/PAN和COF-EO4/PAN的孔径分别为2.86、2.51、2.13、1.98和1.82 nm(见图3B)。这个结果表明,不同长度的醚氧链对COF膜的孔径影响不大,这表明在水溶液中,醚氧链可以自由运动。研究Li+和Mg2+的跨膜选择性 接着我们测试了孔道醚氧链的长度对Li+和Mg2+相对扩散速率的影响。结果显示Li+和Mg2+的相对离子通量与EO单元数量呈现出明显的火山状曲线关系(见图3C,插图)。具有中等长度醚氧链的COF-EO2/PAN膜展现出Li+和Mg2+离子相对迁移率的最大差异。这一发现与MD模拟的结果非常吻合。考虑到这些差异,为了量化醚氧链对Li+和Mg2+离子跨膜传输的影响,我们首先测量了COF-EOx/PAN在单盐条件下的离子通量,并将这些膜与不含醚氧链的COF-EO0/PAN进行了比较。我们的研究结果表明,增加醚氧链的长度可以增强离子传输,因为随着EO单元数量的增加,传输速度持续增加(见图3A)。值得注意的是,含有四个EO单元的COF-EO4/PAN对Li+和Mg2+离子的传输速度最高,超过COF-EO1/PAN对Li+和Mg2+传输速度的两个数量级以上。我们注意到这些膜的孔径随着醚氧链长度的增加而略有减小,这更加为醚氧链在离子传输中的促进作用提供了确凿的证据。图3. 离子跨膜行为的研究。(A) 根据PMF曲线得出的Li+和Mg2+离子穿过COF-EOx的跨膜自由能垒;(B) 四烷基铵阳离子与Cl-离子跨膜的相对迁移率;(C) COF-EOx/PAN在两侧注入相同浓度梯度溶液的条件下记录的I-V图(插图:COF-EOx/PAN的Vr)。 为了对这些实验观察结果做出合理解释,我们测量了COF-EOx/PAN中的Li+和Mg2+离子浓度。我们发现,Li+和Mg2+离子的电导率都高于体相值,并且随着醚氧链长度的增加,偏离更为明显(见图4B)。这表明,具有较长醚氧链的膜孔道能吸附更多的Li+和Mg2+离子。为了定量评估COF-EOx/PAN膜的跨膜能垒,我们测量了离子跨膜的表观活化能。结果表明,随着膜孔道EO单元数量的增加,Li+和Mg2+的表观活化能降低,而COF-EO2的Li+和Mg2+跨膜活化能差异最大,这与MD模拟和电化学实验结果一致(见图4D)。基于上述结果,我们认为基于配位化学的离子识别(通过促进传输机制发生)可用于合理解释选择性分离(见图4E)。图4. (A) 在1 M单盐条件下测试的LiCl和MgCl2穿过COF-EOx/PAN的离子通量,以及通过DFT计算得出的Li+和Mg2+与COF-EOx的结合能;(B) COF-EOx/PAN的电导率与氯化锂浓度的关系;(C) MD计算得出的Li+(虚线)和Mg2+(实线)穿过COF-EOx的PMF曲线(灰色背景代表离子进入COF孔道的区域;(D)在1 M单盐条件下测试的COF-EOx/PAN膜上的LiCl和MgCl2跨膜活化能以及相应的Li+/Mg2+选择性,以及(E)推测的离子跨膜传输机理。 为了进一步评估COF-EOx/PAN膜的分离性能,我们使用含有相同Li+和Mg2+离子浓度(0.025-1 M)的混合溶液进行了扩散实验。Li+和Mg2+离子的二元盐选择性峰值在15到331之间(见图5A)。与单盐条件相比,COF-EOx/PAN在二元体系下测试的Li+/ Mg2+选择性更高,这可能是因为在二元体系下,由于离子存在竞争作用,Mg2+离子的通量极大地减少。为了定量分析这一现象,我们将二元体系中的离子通量与单盐溶液中的离子通量进行了归一化处理。分析表明,在二元体系下,Li+和Mg2+离子的通量分别减少至0.34-0.60和0.06-0.19。因此,导致了Li+/ Mg2+选择性的增加(见图5B)。电驱动二元盐体系下的Li+/Mg2+分离性能的研究 为了研究COF-EOx/PAN在实际应用中的性能,采用了类似工业电渗析的装置,并在5 mA cm-2的电流密度下评估了其性能。实验中使用了0.1 M LiCl和0.1 M MgCl2的二元水溶液作为进料液。结果表明,COF膜的Li+/Mg2+分离比随着膜中醚氧链上EO单元数量的增加而变化。在电驱动条件下,虽然观察到离子通量显著增加,但COF膜仍然实现了高达1352的Li+/Mg2+分离比,远超过COF-EO2/PAN在扩散渗析条件下的分离比,成为迄今为止报道中性能最优的锂镁分离膜之一。此外,COF-EO2/PAN的Li+/Mg2+选择性超过了ASTOM标准两个数量级。因此,在使用COF-EO2/PAN进行电渗析处理后,西台吉尔盐湖(中国)的模拟溶液中Li+/Mg2+的摩尔比从0.06显著提升至10.9,而阿塔卡马盐湖(智利)模拟溶液中Li+/Mg2+的摩尔比从0.61提高至230。这些结果表明,COF-EO2/PAN在盐湖提锂应用中具有巨大的潜力。另外,COF-EO2/PAN还展现出卓越的长期稳定性。尽管选择性随时间略有下降,但通过用去离子水清洗膜,其选择性至少可以在10个周期后完全恢复。COF-EO2/PAN在不同条件下展现的全面稳定性和优异的选择性,使其成为盐湖提锂工业中理想的膜材料。图5. (A) 在二元盐体系下测试的LiCl和MgCl2在COF-EOx/PAN中的离子通量以及相应的LiCl和MgCl2的选择性(各为 1 M,误差条代表三个不同测量值的标准偏差);(B) 在二元盐体系下测试的LiCl和MgCl2的离子通量与在单盐条件下测试的离子通量(各为1 M)的归一化通量;(C) COF-EO2/PAN对Li+/Mg2+的选择性和对LiCl的离子通量与其他膜材料的比较。三、结论 在本研究中,我们通过一系列系统性研究深入探讨了醚氧链对COF膜在离子进膜、跨膜扩散以及选择性方面的影响。我们的研究成果揭示了一个重要发现:与Mg2+的传输相比,醚氧链替代的离子水合物对Li+的传输更为有利。此外,Li+和Mg2+与膜中密集分布的醚氧链形成的络合作用导致了膜孔道内离子的富集,有效地将离子与体相溶液隔离。这一富集效应在静电排斥力的作用下促进了离子通过膜的传导。Li+与Mg2+跨膜传导的活化能差异决定了膜的选择性特征。在分子层面上,离子选择性的机理研究表明,通过调节离子与膜之间的结合能,可以在保持高离子通量的同时提升离子选择性。Author: Qingwei MENGZhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China 参考文献:[1] Meng, Qing-Wei, et al. "Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes." Proceedings of the National Academy of Sciences 121.8 (2024): e2316716121.随后,我们通过测量不易水合的四甲基氯化铵、四乙基氯化铵、四丙基氯化铵、四丁基氯化铵和四戊基氯化铵溶液的跨膜电导率,拟合出了COF-EOx/PAN膜的孔径。根据拟合结果,COF-EO0/PAN、COF-EO1/PAN、COF-EO2/PAN、COF-EO3/PAN和COF-EO4/PAN的孔径分别为2.86、2.51、2.13、1.98和1.82 nm(见图3B)。这个结果表明,不同长度的醚氧链对COF膜的孔径影响不大,这表明在水溶液中,醚氧链可以自由运动。

四丁基氯化铵相关的仪器

  • 玖德隆丁基胶胶带生产线_丁基胶阻尼设备特性:1.可根据客户要求加工成各种形状和不同厚度,使用安装简单方便。2.玖德隆丁基胶胶带生产线_丁基胶阻尼设备根据安装方式不同分为:自粘型、热熔型、复合型和磁性四种不同类型。3.使用范围广,成本低,减振效果优异,性能水平高。4.耐候性,耐老化性能良好。5.玖德隆丁基胶胶带生产线_丁基胶阻尼设备符合《zek-01-4-08》标准,PAHS检测合格,无毒环保。减速箱:采用ZLYJ系列专业为单螺杆橡塑挤出机配套设计的高精度硬齿面带推力座的齿轮传动装置,设计采用JB/T8853-2001《圆柱齿轮减速机》规定的各项技术规范,玖德隆丁基胶胶带生产线_丁基胶阻尼设备输出轴采用高强度42CrMo,其他齿轮和轴类零件采用高强度20CrMnTi材料;齿轮经渗碳、淬火、磨齿工艺加工,齿轮精度高、硬度高;齿轮精度为GB10095-88,6级,齿面硬度在HRC-54~62,在空心输出轴前端配置推力轴承,玖德隆丁基胶胶带生产线_丁基胶阻尼设备承受螺杆工作时的轴向推力,整机体积小、承载能力高,传动平稳、噪声低、效率高。当油位低于油标位置时,请添加中负荷工业齿轮油L-CKC220或L-CKC320(油品需客户自行采购)
    留言咨询
  • 玖德隆丁基胶泥生产线_丁基胶胶带生产线产品描述:一种粘弹性高分子阻尼材料,紧贴振动部位,起到减少噪声、减少振动的作用,玖德隆丁基胶泥生产线_丁基胶胶带生产线物理和化学性能稳定,具有优良的减振降噪性、耐热性、耐寒性、防老性和极强的粘接性。 对人体皮肤无任何刺激作用,对金属、塑料、橡胶等材料无腐蚀作用。玖德隆丁基胶泥生产线_丁基胶胶带生产线应用领域:各种航空航天飞行器及航空飞行器上仪器设备的减振静音。玖德隆丁基胶泥生产线_丁基胶胶带生产线各种交通车辆的减振降噪。空调、冰箱、洗衣机等家用电器的防噪静音。玖德隆丁基胶泥生产线_丁基胶胶带生产线其它机械振动体的减振防噪。
    留言咨询
  • 玖德隆丁基胶片材生产线_丁基胶尼片材设备产品特点(1)优异的机械性能:粘结强度、抗拉强度高,弹性、延伸性能好,对于界面形变和开裂适应性强。(2)稳定的化学性能:具有优良的耐化学性,耐候性和耐腐蚀性。(3)玖德隆丁基胶片材生产线_丁基胶尼片材设备可靠的应用性能:其粘结性、防水性、密封性、耐低温性和追随性好,尺寸的稳定性好。(4)施工操作工艺简单玖德隆丁基胶片材生产线_丁基胶尼片材设备丁基防水密封胶带(1)优异的机械性能:粘结强度、抗拉强度高,弹性、延伸性能好,对于界面形变和开裂适应性强。(2)稳定的化学性能:具有优良的耐化学性,耐候性和耐腐蚀性。(3)可靠的应用性能:其粘结性、防水性、密封性、耐低温性和追随性好,尺寸的稳定性好。(4)施工操作工艺简单玖德隆丁基胶片材生产线_丁基胶尼片材设备适用范围(1)新建工程的屋面防水、地下防水、结构施工缝的防水处理及高分子防水卷材搭接密封。(2)玖德隆丁基胶片材生产线_丁基胶尼片材设备市政工程中的地铁隧道结构施工缝的密封防水处理。(3)彩色压型板接缝处的气密、防水、减震。阳光板工程中接缝处的气密、防水、减震。
    留言咨询

四丁基氯化铵相关的耗材

四丁基氯化铵相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制