十三烷基醚聚氧代乙烯

仪器信息网十三烷基醚聚氧代乙烯专题为您提供2024年最新十三烷基醚聚氧代乙烯价格报价、厂家品牌的相关信息, 包括十三烷基醚聚氧代乙烯参数、型号等,不管是国产,还是进口品牌的十三烷基醚聚氧代乙烯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合十三烷基醚聚氧代乙烯相关的耗材配件、试剂标物,还有十三烷基醚聚氧代乙烯相关的最新资讯、资料,以及十三烷基醚聚氧代乙烯相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

十三烷基醚聚氧代乙烯相关的资料

十三烷基醚聚氧代乙烯相关的论坛

  • 【求助】烷基酚聚氧乙烯醚

    想请教大家的是用HPLC检测烷基酚聚氧乙烯醚(NPEO,OPEO)是否可行?精度怎样?有什么重要的注意事项?谢谢大家!

  • 纺织品中烷基酚聚氧乙烯醚的检测方法

    4 的烷基酚聚氧乙烯醚样品。因此,为保证仪器检测的灵敏度,常利用在线或离线的衍生化方法提高APEOs 的挥发性和降低目标化合物的极性,从而提高分析方法的选择性和灵敏度。衍生化步骤一般需要1 h 左右。除了衍生化法外,还可以用裂解剂先对烷基酚聚氧乙烯醚进行处理。甲苯磺酸作分解剂由于此裂解剂对试样断键彻底,对于分析同时存在氧乙烯和氧丙烯的聚醚比较有效 3)液相色谱-质谱联用技术(LC-MS)。具有灵敏度高、选择性好、可同时检测多种物质的能力,并具有实验步骤简单,样品预处理时间比较短等优点。王成云等以甲醇为提取溶剂,采用微波辅助萃取法提取纺织品中残留的AP和APEO,采用高效液相色谱-质谱法对其进行测定,并对前处理条件进行了优化。该方法的检测限(S/N="5)" 为0.010~0.025 μg/mL,回收率为93.19%~103.97%,精密度实验的RSD 为1.03%~4.96%。该方法简便、快速,灵敏度高,可完全满足纺织品中AP 和APEO 的检验要求。3 结语 APEOs类表面活性剂因其多种特性而广泛应用于工业生产中。然而,在带来各产业快速发展的同时,也日益凸显出它对人类身体健康和生态环境的危害。由于APEOs是多种异构体的混合物,其降解产物种类很多,性质各异,且基体复杂,浓度较低,在其检测方面存在许多尚未彻底解决的问题。本文对当前使用较多的预处理和检测方法的测试效果、适用范围及其优缺点作了简要概括,以期对纺织品中APEOs的分析检测提供一定的参考。在实际检测中,应根据待测样品的不同特性,选择合适的分离富集方法,在必要时也可将各种方法结合使用,以更好的分离富集试样,并尽可能去除各种干扰因素,然后选择合适的检测手段,从而实现APEOs的快速分析和精确检测。

十三烷基醚聚氧代乙烯相关的方案

  • 纺织品中烷基酚和烷基酚聚氧乙烯醚含量测定
    本文参照GB/T 23322-2018,使用液相色谱仪建立了纺织品中烷基酚(AP)和烷基酚聚氧乙烯醚((APnE0))含量的分析方法,并对方法的线性、重现性及加标回收率进行了考察。结果显示,烷基酚和烷基酚聚氧乙烯醚在1~100 μg/mL内线性关系良好;对照品溶液连续进6针,保留时间和峰面积的RSD%均小于1%,重复性好,稳定性强;对样品进行加标,加标浓度分别2.2、3.0、3.6 μg/g,回收率为80%~110%。方法的线性、重现性及加标回收率符合标准要求,可为纺织品中烷基酚和烷基酚聚氧乙烯醚含量测定提供参考。
  • LC-MS法分析纺织品中的烷基酚聚氧乙烯醚成分
    本文利用岛津单四极杆质谱仪LCMS-2050,建立了纺织品中烷基酚聚氧乙烯醚(APnEO,n=2~16)成分的分析方法。样本经甲醇浸泡、振荡、超声提取后,以液相色谱-质谱法进行测定。根据各成分的保留时间、定性离子进行定性检验,并基于选定的定量离子采用SIM模式进行定量分析。此外,采用阴性纺织品作为阴性基质,对该方法的回收率及基质效应进行考察,其结果显示,回收率和基质效应均表现良好。基于烷基酚聚氧乙烯醚(APnEO,n=2~16)常指的是辛基酚聚氧乙烯醚(OPnEO)和壬基酚聚氧乙烯醚(NPnEO),本方法中使用到Labsolution中组校准的方式进行定量处理。本方法适用于纺织品中烷基酚聚氧乙基醚成分的测定,也可为相关从业人员分析检测提供参考。
  • LC-MS/MS法分析抛光液中的烷基酚聚氧乙烯醚成分
    本文建立了三重四极杆液质联用仪检测抛光液中烷基酚聚氧乙烯醚(APnEO,n=3~16)成分的方法。烷基酚聚氧乙烯醚(APnEO,n=3~16)主要指辛基酚聚氧乙烯醚(OPnEO)和壬基酚聚氧乙烯醚(NPnEO),以各成分的保留时间、定性离子进行定性检验,并基于选定的定量离子采用MRM模式进行组校准定量分析,在5~800 µg/L浓度范围内标准曲线线性良好,相关系数均在0.99以上。各组分在5 µg/L浓度下信噪比均大于10.0,灵敏度良好。对50.0 µg/L和500.0 µg/L标准品溶液,连续进样6次,其峰面积重复性结果分别为1.24%和0.73%,精密度良好。50 µg/L和100 µg/L的加标样回收率考察,其回收率分别在90.2%~109.2%之间和107.6%~118.4%之间。本方法适用于抛光液中烷基酚聚氧乙基醚成分的测定,也可为相关从业人员分析检测提供参考。

十三烷基醚聚氧代乙烯相关的资讯

  • 我国学者在聚乙烯废塑料降解研究方面取得重大进展
    p   近日,中国科学院上海有机化学研究所的黄正课题组和加州大学尔湾分校管治斌课题组合作,在聚乙烯废塑料降解研究方面取得重大进展,相关成果于6月17日以“Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions”(温和条件下高效选择性降解聚乙烯制备液体燃料和石蜡)为题在Science Advances杂志上在线发表(Sci. Adv., 2016, 2, e1501591)。该研究工作得到优秀青年科学基金(21422209)和重点项目(21432011)等的支持。 /p p   烃类物质(烷烃、烯烃、芳烃等)是化石能源的重要组成体,也是重要的基础化工原料。为应对绿色、可持续发展的挑战,一方面需要从自然界丰富的烃类物质出发,发展高效、原子经济性的合成技术,直接制备高价值化学品,实现“分子价值的增量” 另一方面也需要发展温和、实用的催化降解技术,将废弃的高分子量、稳定的烃类化学化工产品转化成可再次利用的小分子物质,避免对环境造成污染,实现“污染物质的减量”。黄正课题组发展了高效的金属有机催化方法和技术,在这两方面取得了重要突破。 /p p   烷烃由高键能、非极性C-C单键和Csp sup 3 /sup -H键组成,是最惰性的有机分子之一,其在合成化学中的应用价值较低。黄正课题组一直致力于烷烃催化转化方面的研究。该课题组先前发展了一类新型的PSCOP螯钳型铱金属有机配合物,其在烷烃脱氢反应中表现出非常高的催化活性,但是在直链烷烃脱氢过程中,由于催化剂具有烯烃异构活性,在反应后期阶段不可避免地生成内烯烃混合物作为主要产物。为解决该问题,他们巧妙地利用双金属催化一锅两步法进行烷烃末端高区域选择性硅基化,实现烷烃至直链烷基硅的高效催化转化(图1a)。催化体系包括由该课题组发展的PSCOP螯钳型铱金属有机络合物作为烷烃脱氢催化剂,将烷烃脱氢生成内烯烃混合物,吡啶二亚胺铁络合物作为串联烯烃异构和端烯烃硅氢化催化剂。该转化的关键在于:烷烃脱氢所生成的烯烃中间体快速异构,并通过铁催化剂对端烯烃选择性硅氢化促使内烯烃向端烯烃转化。该工作为烷烃选择性官能团化提供了新思路,相关成果发表在Nature Chemistry上(Nat. Chem.,2016, 8, 157 Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation 利用铑-铁催化的脱氢-异构化-硅氢化串联反应实现烷烃到直链烷基硅的转化)。 /p p   聚乙烯和烷烃结构单元相似,均由C-C单键和Csp sup 3 /sup -H键组成。聚乙烯是年产量 大的塑料产品(年产超过上亿吨),由于其化学惰性,被弃置后难以降解构成“白色垃圾”主要成分。研究人员利用双金属催化交叉烷烃复分解策略,使用价廉量大的低碳烷烃作为反应试剂和溶剂,与聚乙烯发生重组反应,可有效降低聚乙烯的分子量。由于在反应体系中低碳烷烃过量存在,可多次参与和聚乙烯的重组反应,直至把分子量高至上百万的聚乙烯降解为适用于运输系统燃油的烷烃产品。该反应适用于 HDPE、 LDPE和 LLDPE的降解,且催化剂可以兼容商业级聚乙烯中包含的各类添加剂,并进一步被证明可应用于实际生活中所产生的聚乙烯废塑料瓶、废塑料膜和废塑料袋的降解(图1b)。相比较传统高温裂解方法,该方法具有反应条件相对温和,产物选择性高的优点。高温裂解方法往往需要超过400度反应温度,产生包括气、油、蜡、焦等非常复杂的混合物 产物包括直链烷烃、支链烷烃、烯烃、芳烃等,产品利用价值低。而且黄正等发展的降解方法温度较低(150-200度),生成的产物以直链烷烃为主,且可以通过催化剂结构调控或反应时间控制,选择性生成可作为柴油的C9-C22烷烃或者聚乙烯蜡。这项研究成果得到了Nature、Science、Chemical & amp Engineering News等学术杂志的正面评论,并被《洛杉矶时报》、《华盛顿邮报》和新华网等国内外新闻媒体报道。 /p p style=" TEXT-ALIGN: center" img title=" tpxw2016-06-27-01.jpg" src=" http://img1.17img.cn/17img/images/201606/insimg/0b7ccaeb-e75f-4906-95ec-5a09ef3bc04a.jpg" / /p p style=" TEXT-ALIGN: center" strong 图1. a) 烷烃选择性硅基化 b) 聚乙烯降解。 /strong /p p /p
  • 北化徐福建团队:阳离子光敏剂烷基链长度对活性氧抗菌机制的影响
    近日,北京化工大学材料科学与工程学院徐福建教授团队和济宁医学院的李敬博士在Adv. Mater.上发表了题为“Flexible Modulation of Cellular Activities with Cationic Photosensitizers: Insights of Alkyl Chain Length on Reactive Oxygen Species Antimicrobial Mechanisms”的研究论文。阳离子光敏剂与带负电荷的细菌和真菌具有良好的结合能力,在抗菌光动力疗法(aPDT)中应用广泛。然而,阳离子光敏剂对病原菌,尤其是真菌与哺乳动物细胞不具有选择性,往往会存在生物安全性的问题。同时,由于缺乏对相同光敏剂的系统性研究,目前尚不清楚细菌的哪些生物活性分子位点是光动力的有效损伤位点。因此,以小檗碱(BBR)为光敏剂核心,设计并合成了一系列具有不同烷基链长度的阳离子聚集诱导发光(AIE)衍生物(CABs),用于灵活调节阳离子光敏剂对细胞活性物质的选择性。BBR核心可以有效地产生活性氧(ROS),并在生理环境中实现高性能的aPDT。通过精确调节烷基链长度,实现了CABs在细菌、真菌和哺乳动物细胞中的不同结合、定位和光动力杀伤效果。研究发现,aPDT更有效的损伤位点是细胞内活性物质(DNA和蛋白质),而不是细菌膜。中等长度烷基链的CABs在光照下能有效地杀死革兰氏阴性菌和真菌,同时仍然保持良好的生物安全性。通过HOMO-LUMO实验证明烷基链长度的改变并不会改变核心BBR的AIE性能,但是随着烷基链的增长,CABs更容易形成分子间聚集体。与此同时,随着烷基链的增长,CABs与细菌的结合速率与结合量增加。CAB-8光照时的抗菌性能提升更明显。进一步的激光共聚焦定位实验证明,烷基链长调控CABs在细菌内的定位,CAB-8进入细菌,CAB-10卡在膜上。通过分子动力学模拟实验发现,CAB-10比CAB-8要克服更大的自由能,导致CAB-10卡在细菌膜上。透射电镜冷冻切片证明,CABs的定位调控杀伤,CAB-8损伤菌内活性物质,CAB-10损伤细菌膜上。进一步通过液质联用、DNA彗星实验以及β-半乳糖苷酶检测证明:CAB-10(膜上)膜损伤程度大于CAB-8(膜内),CAB-8(膜内)对DNA、酶损伤程度大于CAB-10(膜上)。随着烷基链的增加,CABs进入真菌的能力增强:CAB-10>CAB-8 CAB-6。同时,烷基链越长,CABs进入哺乳动物细胞的能力越强,具体表现为CAB-10的细胞毒性远大于CAB-8和CAB-6。综上所述,CAB-8可以很好的平衡光动力杀菌和生物相容性,具有高效杀菌性和生物安全性。该研究通过烷基链的定位调控,解决了阳离子光动力抗菌材料对细菌、真菌、哺乳动物细胞不具有选择性造成的生物安全问题,同时证明了相对于细菌膜来说,细菌内部的活性物质是光动力更为有效的氧化位点。本研究有望为构建具有良好选择性的高性能阳离子光敏剂提供系统的理论和研究指导。北京化工大学材料科学与工程学院博士生郑良和博士生朱艺文为本文的共同第一作者。材料科学与工程学院徐福建教授和俞丙然教授、济宁医学院的李敬博士为本文的通讯作者。北京化工大学为第一完成单位。本研究工作得到了国家重点研发计划,国家自然科学基金,和北京市优秀青年科技人才计划的资助。
  • 聚焦第十三届全国离子色谱学术报告会
    仪器信息网讯 2010年9月8-9日,中国仪器仪表学会分析仪器分会主办,山东省检验检疫科学技术研究院承办,青岛盛翰色谱技术有限公司、青岛普仁仪器有限公司协办的“第十三届全国离子色谱学术报告会”在山东青岛顺利召开,200余位行业内专业人士参加了此次会议,仪器信息网作为支持媒体应邀参加。 会议现场   中国科学院大连化学物理研究所张玉奎院士,中国仪器仪表学会分析仪器分会闫成德理事长,全国离子色谱学术报告委员会主任委员、中国科学院生态环境研究中心牟世芬研究员,山东省检验检疫局技术中心主任、山东省检验检疫科学技术研究院院长昃向君先生,山东检验检疫局技术中心技术总监、山东检科院常务副院长林黎明先生,中国仪器仪表学会分析仪器分会刘长宽秘书长,山东省分析测试学会副理事长、青岛分析测试学会副理事长兼秘书长王琦研究员等领导与专家出席开幕式,昃向君院长、牟世芬研究员分别致辞,大会开幕式由山东省检验检疫科学技术研究院崔鹤博士主持。 昃向君 张玉奎 闫成德 牟世芬 林黎明 刘长宽 王琦 崔鹤 出席开幕式的领导与专家   特邀院士报告 中国科学院大连化学物理研究所 张玉奎院士 报告题目:蛋白质样品预处理方法进展   张玉奎院士在报告中首先介绍了蛋白质组学分析面临的动态范围宽、非冗余蛋白与变异体数目大、物理化学性能差异大等方面的挑战,以及低丰度蛋白质检测难度大,选择性去除高丰度蛋白质的同时,会夹带了大量中低丰度蛋白质等问题 重点介绍了目前所研究的样品预处理中低丰度蛋白质富集(通用性富集、选择性富集)与膜蛋白预处理方法 在通用性富集方法中,介绍了基于两性电解质的蛋白质均衡器与介孔杂化C8磁性纳米颗粒两种方法 在选择性富集方法中,介绍了蛋白质印迹材料、杂化固载金属亲和色谱(IMAC)整体材料与金属氧化物气溶胶三个方面 并介绍了基于离子液体的膜蛋白质样品预处理技术等一些研究进展。 中国科学院生态环境研究中心 江桂斌院士 报告题目:典型全卤代有机污染物的分析方法   江桂斌院士在报告中首先从元素周期表中氟(F)、氯(Cl)、溴(Br)、碘(I)等卤族元素十分活跃谈起,重点介绍了全氟辛烷(PFCs)、短链氯化石蜡(SCCPs)、十溴联苯醚(PBDEs)、全氟碘烷(PFIs)四类环境中广泛存在的全球性有机污染物,对四类污染物的基本特性以及环境污染现状与毒性效应进行系统分析,并举例讲解了其课题组在环境样品的采集、预处理、目标物分离和纯化、相关仪器分析方法优劣比较等一些最新研究进展。最后,江桂斌院士还针对本届会议主题特别指出:色谱-质谱技术已经成为现代分析最为重要和可靠的工具,各种色谱分离技术(气相、液相、离子色谱)是现代分离科学的基础 样品的制备技术和QA/QC技术在很大程度上决定分析水平。   会议论文统计   本届会议强调离子色谱理念的更新,强调高水平论文的交流,强调学术交流与解决实际问题相结合。本届会议共收到论文310篇,创历史新高,这些论文既有行业技术回顾与展望、应用技术总结,也有新理论与“热点”技术的探讨,内容涉及离子色谱理论研究与综述、阴离子分析、阳离子分析、联用技术以及其它应用等。 本届会议收录论文构成统计   会议除了以上特别邀请了中国科学院张玉奎院士、江桂斌院士作专题学术报告之外,离子色谱专业委员会共推荐了近50篇论文作者做大会报告,近10家离子色谱及相关仪器生产企业参会并作技术创新宣讲与仪器应用介绍。   部分大会报告 中国科学院生态环境研究中心 牟世芬研究员 报告题目:复杂基体中痕量阴阳离子的离子色谱法分析中的几个问题   离子色谱中常见到的一个问题是高浓度的基体离子对待测离子的干扰,牟世芬研究员在报告中通过一些实例详细讨论稀释法、阀切换、两维离子色谱(2D)等几种去除高浓度基体离子干扰方法的原理及其优点。将样品适当稀释后再进样是最简单的方法,但多数情况稀释之后,待测离子浓度太低 阀切换,主要是指经过分离柱与抑制器之后,将大量高浓度的干扰基体成分切换到废液,将痕量待测离子保留于浓缩柱,由流路的巧妙设计与分离柱及淋洗液的选择,可将保留于浓缩柱的待测离子进到原来的分离柱或者另一支分离柱完成高灵敏度分离与检测 2D是近几年发展起来的解决复杂基体中痕量阴阳离子的测定的新方法,主要是用氢氧化物作淋洗液,在抑制器的抑制反应中可将淋洗液转变成没有洗脱力的水,并在第一维与第二维选用不同选择性与尺寸的分离柱。 浙江大学理学院化学系 朱岩教授 报告题目:离子色谱柱切换技术联用测定高浓度有机基体中的痕量阴离子   柱切换技术作为一种简单精确的在线样品前处理技术,通常需要多台色谱仪器,过于复杂,对实验室条件要求甚高 朱岩教授在报告中介绍利用离子色谱仪中的抑制器和一个十通阀,在同一台色谱仪上实现离子色谱柱切换技术。该简化的单泵柱切换系统,利用抑制器将KOH淋洗液转化为水,作为前处理柱的淋洗液,在同一个色谱系统中产生两种淋洗液,实现色谱分离与前处理柱再生同步进行。该新型的柱切换系统大大简化了仪器设备,节省了分析试剂和分析时间,提高分析效率。对于不同的有机物样品采用不同的前处理柱,基本上能够实现各种类型高浓度有机样品基体中痕量阴离子的检测。 厦门大学化学化工学院化学系 胡荣宗教授 报告题目:离子色谱电导检测器的进展   胡荣宗教授在报告中谈到,传统的离子色谱检测器多采用两电极,双脉冲或方波等交流激励的方法,虽然池体结构简单,但存在脉冲激励信号电路复杂,检测电路无法脱离交流激励转化为直流输出的复杂电路结构,需要高信噪比的信号放大电路等缺点 两电极直流电导检测池虽然电路简单,但难以避免电极极化和电解产物的影响。并重点讲解了自主研制的一种四电极、直流恒电流激励方式的离子色谱电阻检测器,将原来复杂的交流激励电导检测方式改为简单的直流激励的电阻检测模式,有效地简化了电路结构,完全避免了直流检测模式中的电极极化和电解产物的影响 该抑制式电阻/电导检测器可方便地自组离子色谱,扩展已有的高压液相色谱兼有离子色谱功能,还可组成抑制式单柱离子色谱仪。 华东理工大学药学院 杨丙成教授 报告题目:电渗微泵-毛细管离子色谱的联用   杨丙成教授在报告中介绍了一种电渗微泵-毛细管离子色谱联用技术,电渗泵(EOP)是利用电渗原理来实现液体的驱动,由于所产生的电渗流与施加电场直接相关,因此通过控制电流的方向和大小即可实现对电渗流方向和大小的精确控制 EOP还具有易于制作、无活动活塞、流量稳定、输出压力高等优点。采用溶胶—凝胶技术制备了一种高柱压硅胶整体柱为泵体、以离子交换微球替换传统的离子交换膜发展了一种新型的隔离电场高压接口,从而构建了一种新型高压电渗泵(EOP)。以水为工作介质,EOP驱动纯水通过一微型电致淋洗液发生器在线转化为毛细管离子色谱(CIC)所需要的淋洗液。杨丙成教授还介绍了EOP-CIC联用技术应用于阴离子分析的实例。 广东省疾病预防控制中心 钟志雄研究员 报告题目:化妆品中烷基胺的离子色谱仪测定法   钟志雄研究员在报告中谈到,烷基胺有特殊的刺激气味,对皮肤、眼睛、上呼吸道以及肺具有强烈刺激作用,并且其是化妆品禁用物质,因此检测烷基胺具有重要的现实意义。用传统的液相、毛细管电泳法、气相色谱法等测定烷基胺样品一般要经过衍生处理,容易受复杂基体的干扰,或要经过繁杂的前处理操作;我们建立了化妆品中甲胺、二甲胺、三甲胺、乙胺、丙胺和丁胺离子色谱分析方法,优化样品前处理方法和检测方法,能有效去除干扰,方法便捷、灵敏,可同时准确测定多种组分,实用性强。 华东理工大学分析测试中心 施超欧高级工程师 报告题目:被动采样-离子色谱法在博物馆微环境污染气体检测中的应用   施超欧高级工程师在报告中谈到,有机酸(如甲酸、乙酸等)、臭氧、氮氧化物等对馆藏文物影响较大,由于博物馆环境的特殊性,在现有的国家标准中缺少对应的有效检测手段。被动采样由于无需电源、操作简单、可重复使用、适合长时间检测等特点,因此非常适合博物馆特定环境的污染气体的采集。针对博物馆环境,我们设计了无动力扩散采样器,建立了被动采样-离子色谱法,根据不同类型的被测对象,选择不同的吸收液,采集一定时间后,用离子色谱法检测。 建立了对应的酸性污染气体、氧化性气体、碱性气体、氮氧化物和硫氧化物气体的被动采样-离子色谱检测体系,并将之应用到全国各地的博物馆,以及上海世博会文物展览的现场采样分析。 合影留念   附录:第十三届全国离子色谱学术报告会厂商活动集锦

十三烷基醚聚氧代乙烯相关的仪器

  • 药用低密度聚乙烯膜袋氧气透过量测定仪应用范围适用于各种塑料薄膜、复合膜、分离膜、交换膜、橡胶、聚合物材料等产品在各种温度条件下气体透过率、扩散系数、溶解度系数、渗透系数的测定。主要特点1. 真空压差法测试原理2. 三腔独立测试3. 三腔循环介质控温,各自独立温度传感器实时监控4. 智能模式,试验过程全自动,一键式操作5. 真空泵自动启停,无需人工开关6. 气体透过率、扩散系数、溶解度系数、渗透系数测试 7. 多种试验模式可选择,可满足各种标准、非标试验8. 数据审计追踪、溯源;系统日志记录9. 5 级用户权限管理10. 温度曲线、湿度曲线、压差曲线、曲线独立显示、曲线叠加11. 可支持 DSM 实验室数据管理系统,能实现生产监控、数据统一管理 (另购)技术指标测试范围:0.01~180,000 cm3/m224h0.1MPa(标准配置)分 辨 率:0.001 cm3/m224h0.1MPa试样件数:3 件,各自独立真空分辨率:0.1 Pa控温范围:5℃~95℃(循环介质控温)控温精度:±0.1℃控湿范围:0%RH,2%RH~98.5%RH(湿度发生装置另购)控湿精度:±1%RH试样厚度:≤3mm试样尺寸:≥150 mm × 94mm 或圆形试样试样面积:48cm 2试验气体:氧气、氮气、二氧化碳、空气、氦气等气体(气源用户自备)试验压力:-0.1 MPa~+0.1 MPa(标准)气源压力:0.3 MPa~1.0 MPa气源尺寸:Ф8 mm外形尺寸:730 mm(L)×510mm(B)×350 mm(H)电源:AC 220V 50Hz净重:63 kg执行标准GB/T 1038-2000、ISO 15105-1、ISO 2556、ASTM D1434、JIS 7126-1、YBB 00082003产品配置标准配置:主机、计算机、专业软件、数据扩展卡、通信电缆、恒温控制器、氧气减压阀、取样器、取样刀、真空密封脂、真空泵、快速定量滤纸选 购 件:湿度发生装置、标准膜、真空脂、快速定量滤纸、取样刀、DSM 实验室数据管理系统。
    留言咨询
  • 聚酯铝聚乙烯药用复合膜袋氧气透过量仪 应用范围 适用于各种塑料薄膜、复合膜、铝箔、片材等包装材料;也适用于包装盒、瓶、袋等各种包装容器的氧气 透过率、氧气渗透系数的测定。 主要特点 1.库仑电量原理,等压法测试 2.三腔独立测试 3.计算机控制,试验全自动,一键式操作 4.智能模式等多种试验模式可选择,可满足各种标准、非标测试 5.可支持容器测试 (选购) 6.三腔循环介质控温,各自独立温度传感器实时监控试验温度 7.试验湿度可自行设置、调节 8.数据审计追踪、溯源;系统日志记录 9.5 级用户权限管理 10.温度、流量、湿度、透过率等曲线显示 11.支持 DSM 实验室数据管理系统,可实现数据统一管理。(另购) 测试原理 将预先处理好的试样夹紧于测试腔之间,氧气在薄膜的一侧流动,高纯氮气在薄膜的另一侧流动,在氧气 浓度分压差的作用下,氧分子穿过薄膜扩散到另一侧的高纯氮气中,然后被流动的氮气携带至氧传感器, 氧传感器产生与氧分子多少等比例的电信号,通过对氧传感器的电信号分析,从而计算出氧气透过率等参 数;对于包装容器而言,高纯氮气则在容器内侧流动,氧气包围在容器外侧。 技术指标 测量范围:(薄膜)0.01~6500 cm3/m2.d(常规) 0.07~63000cm3/m2.d(可选) (容器)0.0001~62 cm3/pkg.d(常规) 分 辨 率:(薄膜)0.001 cm3/m2.d (容器)0.00001 cm3/pkg.d 控温范围:5℃~95℃ 控温精度:±0.1℃ 湿腔湿度:0%RH、35%RH~90%RH (标配) 控湿精度:±1%RH 试样数量:3 件,各自独立 测试面积:48cm2 试样尺寸:(薄膜)≥150 mm×94mm 或圆形试样 (容器) ≤Ф120mm * 400mm(H) 试样厚度:≤3mm 载 气:99.999%高纯氮气 (气源用户自备) 载气流量:0~200ml/min 接口尺寸:1/8 英寸金属管 电 源:AC 220V 50Hz 主机尺寸:730 mm(L)×590 mm(W)×350mm(H) 主机净重:56kg 执行标准 GB/T 19789、ASTM D3985、ASTM F2622、ASTM F1307、ASTM F1927、ISO 15105-2、JIS K7126-B、YBB 00082003产品配置 标准配置: 主机、计算机、专业软件、数据扩展卡、通信电缆、恒温控制器、氮气瓶减压阀、取样器 选 购 件:容器测试辅具、容器控温装置、湿度装置、标准膜、真空脂、取样刀、DSM 实验室管理系统。
    留言咨询
  • WHEATON 自然色高密度聚乙烯圆筒瓶* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)直径× 高(mm)盖规格个/ 包个/ 箱2211533027×7820-41012722211546035×9820-410127222115512541×12320-4101272WHEATON 白色高密度聚乙烯圆筒瓶* 白色高密度聚乙烯材质可以保护光敏感样品* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)直径× 高(mm)盖规格个/ 包个/ 箱2211633027×7820-41012722211646035×9820-410127222116512041×12324-4101272WHEATON 白色高密度聚乙烯圆筒瓶* 白色高密度聚乙烯材质可以保护光敏感样品* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)直径× 高(mm)盖规格个/ 包个/ 箱2211633027×7820-41012722211646035×9820-410127222116512041×12324-4101272WHEATON 高密度聚乙烯圆桶* 良好的抗化学腐蚀性* 细口设计适用于液体* 含带聚乙烯衬垫的白色聚丙烯旋盖技术参数 订货号容积(L)直径× 高(mm)盖规格包装数量2223333.78143×28538-4004WHEATON 自然色高密度聚乙烯广口Blake 瓶* 良好的抗化学腐蚀性* 广口设计适合固体储存* Blake 设计大大的提.高了存储空间* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)直径× 高(mm)盖规格包装数量20968312041×50×9438-4007220968550062×77×14943-40048209686100079×96×19253-40024WHEATON 高密度聚乙烯广口储存瓶* 良好的抗化学腐蚀性* 容积范围:2000-3840mL* 含带泡沫聚乙烯衬垫的白色聚丙烯旋盖技术参数订货号容积(mL)盖规格包装数量W209677 2000 89-400 6 W209678 3000 100-400 4 W209679 3840 89-400 4
    留言咨询

十三烷基醚聚氧代乙烯相关的耗材

  • Nalgene 312160PETG培养基瓶专用热缩密封带聚氯乙烯
    Nalgene 312160PETG培养基瓶专用热缩密封带聚氯乙烯Nalgene 无菌方形PETG 培养基瓶(Cat. No. 2019) 上的热缩密封带可以进行单独购买。这些密封袋提供良好的密封性能,可以保证内容物的完整性。配合Nalgene 工具,使用非常方便。非常适合小规模生产中的手工保护。热缩带具有gamma 射线稳定性,易撕设计。提供4 种规格,与Nalgene PETG培养基瓶配套使用。每箱1000 个(2 个拉链袋中各500 个)。新产品订货信息:Nalgene 312160PETG培养基瓶专用热缩密封带聚氯乙烯目录编号 312160 -0200 -0240 -0384 -0530配套的 Nalgene30mI PETG 瓶60mI PETG125ml-l000ml PETG2000mI PETGPETG 方形培养基瓶配 20-415 HDPE 盖配 24-415 HDPE 盖配 38-430 HDPE 盖配 53B HDPE 盖瓶 / 盖目录编号2019-0030,2019-0060,2019-0125, 2019-0250,2019-2000,3×202×-00303×202×-00602019 0500, 2019-1000,3×202×-2000适合的扭矩扳手2195-10202195-10242195-14382195-1153应用扭矩10-14in.-lb12-17 in.-lb27-33 in.-lb38-53in.-lb
  • 6255 样品袋,低密度聚乙烯
    6255 样品袋,低密度聚乙烯可以轻松便捷地收集、存储、密封并保护样品。4 密耳厚的LDPE 袋壁强度高,防水性好。耐用的双轨“拉链”能提供完全密封,防灰尘,并长时间保持存储物的原有干湿度。是存储小型实验室器具、植物样品或其它样本的理想选择。注意:不建议用于存储液体。透明订货信息:6255 样品袋,低密度聚乙烯目录编号 6255-4066255-5086255-6136255-9136255-918标称 W×L,mm102×152127×203152×330229×330229×457标称 W×L,in4×65×86×139×139×18每盒数量5050505050每箱数量500500250250250
  • 带柄带刻度烧杯,高密度聚乙烯
    1220系列带柄带刻度烧杯,高密度聚乙烯 刻于内部的以盎司和毫升为单位的刻度。直角式手柄方便携带和倒注。加厚的杯身,拥有优秀的化学抗性。不要将烧杯置于加热板上使用。(带刻度)

十三烷基醚聚氧代乙烯相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制