硼十氢十二双乙基硫醚

仪器信息网硼十氢十二双乙基硫醚专题为您提供2024年最新硼十氢十二双乙基硫醚价格报价、厂家品牌的相关信息, 包括硼十氢十二双乙基硫醚参数、型号等,不管是国产,还是进口品牌的硼十氢十二双乙基硫醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硼十氢十二双乙基硫醚相关的耗材配件、试剂标物,还有硼十氢十二双乙基硫醚相关的最新资讯、资料,以及硼十氢十二双乙基硫醚相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

硼十氢十二双乙基硫醚相关的资料

硼十氢十二双乙基硫醚相关的论坛

硼十氢十二双乙基硫醚相关的方案

  • LC-MS/MS法测定水产品中六溴环十二烷和四溴双酚A
    使用岛津超高效液相色谱-三重四极杆质谱联用系统建立了测定水产品中六溴环十二烷及四溴双酚A含量的分析方法。水产品经过改进的QuEChERS法进行前处理,使用C18色谱柱进行分离,负离子模式电离,通过多反应监测模式对目标化合物进行测定。结果表明:使用内标法定量,六溴环十二烷和四溴双酚A在1.0 µg/L ~ 100.0 µg/L浓度范围内线性良好,所得校准曲线线性相关系数在0.999以上,各校准点准确度在86.5%~114.7%之间,且精密度和加标回收率实验结果良好。
  • LC-MS/MS法测定水源水中六溴环十二烷和四溴双酚A
    使用岛津超高效液相色谱-三重四极杆质谱联用系统建立了测定水源水中六溴环十二烷和四溴双酚A残留量的分析方法。水体样品经过二氯甲烷萃取,硅胶固相萃取柱净化后,使用C18色谱柱进行分离。采用负离子模式进行电离,通过多反应监测模式对目标化合物进行测定。结果表明:使用内标法定量,六溴环十二烷和四溴双酚A在1.0 µg/L ~ 100.0 µg/L浓度范围内线性良好,所得校准曲线线性相关系数在0.999以上,各校准点准确度在86.5%~114.7%之间,且精密度和不同浓度水平的加标回收率实验结果良好。
  • RoHS 2.0电子电器产品 有机物检测方案阻燃剂六溴环十二烷
    2014 年欧盟相关机构最新动议,计划近期在 RoHS 2.0 指令中添加六溴环十二烷 (HBCDD)、邻苯二甲酸双(2-乙基己基)酯(DEHP)、邻苯二甲酸二丁酯(DBP)和邻苯二甲酸苄基丁基酯(BBP)并优先进行评估,这将给电子电器产品制造企业带来巨大的挑战。电子电器产品中含有的 HBCDD、 DEHP、 DBP 和 BBP,以及此前 RoHS 2.0 指令中规定的多溴联苯(PBBs)和多溴联苯醚(PBDEs),均采用气相色谱-质谱联用法作为标准检测方法。气相色谱-质谱联用仪 GC-MS 6800,作为天瑞仪器精心打造的一款性价比高的气质联用仪,拥有多项发明专利,具有分析高效快速,定性定量准确,软件操作简便等特点。仪器易于维护及清洗,适合企业和实验室用户长期稳定地使用。 GC-MS 6800 用于有机物的检测,具有检出限低,定性能力强、定量准确的特点,可有效的应用于 RoHS 2.0 中阻燃剂六溴环十二烷的检测。

硼十氢十二双乙基硫醚相关的资讯

  • 十二五减排初定“双八双十”目标
    据悉,《国家环境保护 “十二五”规划(初稿)》已经完成,“十二五”减排最受关注的化学需氧量 (COD)、二氧化硫、氨氮和氮氧化物四项约束性指标的总量控制目标初定为降低8%、8%、10%和10%。   知情人士透露,该“双八双十”目标虽然拟定,但环保部内仍有争议,下一步将上报国务院,规划有望在两会期间发布。   从“双十”到“双八双十”   相比环保“十一五”规划,“十二五”减排不仅在化学需氧量和二氧化硫两项约束性指标的基础上增加了氨氮和氮氧化物,还对两项新指标同样提出绝对量减排。   上述知情人士透露,完成初稿的《国家环境保护“十二五”规划》拟定化学需氧量、二氧化硫、氨氮和氮氧化物四项约束性指标的总量控制目标分别相比2010年降低8%、8%、10%和10%。   此前,“十一五”规划化学需氧量和二氧化硫排放量的总量控制目标为相比2005年分别下降10%,即全国化学需氧量由 2005年的 1414.2万吨减少到1272.8万吨,二氧化硫排放量由2549.4万吨减少到2294.4万吨。   “由于‘十一五’的总量控制,废水的COD和废气中的二氧化硫排放量下降较快,但生活废水中的氨氮和废气中的氮氧化物却上升很快,所以新的五年规划在继续降低COD和二氧化硫排放量的基础上将氨氮和氮氧化物也加入约束性指标进行总量控制。”上述知情人士表示,“由于COD和二氧化硫 ‘十一五’控制得比较好,所以在‘十二五’期间有所调低”。   根据环保部最新公布的数据,二氧化硫在2009年以下降13.14%提前完成“十一五”规划目标,COD减排目标今年完成也几无悬念。   在新增的两项约束性指标中,氨氮主要来源于生活污水和化工、冶金、化肥等工业废水中,氮氧化物则主要由汽车尾气和工业窑炉的燃料燃烧产生。   其中,氮氧化物是造成机动车污染和形成酸雨的重要原因。根据今年中国首次公布的《中国机动车污染防治年报》,机动车尾气排放成为大中城市空气污染的主要来源,去年全国机动车氮氧化物排放高达583.3万吨,全国113个环保重点城市中三分之一的城市空气质量不达标,部分地区甚至出现了每年200多天的灰霾天气,这些问题的产生与机动车排放的氮氧化物直接相关。   据记者了解,初稿将由编写组根据日前环保部相关会议的讨论意见进行修改完善,在与中央有关部门进行衔接后,再提请环保部常务会议审议公布。   “下一步规划将上报国务院,有望在两会期间发布。”上述知情人士表示。   “两上两下”突出结构减排   “由于目标的制定取决于下一步经济增长的控制,所以对于‘双八双十’的目标,环保部门内部还有争议。”上述知情人士称。   而这也是今年以来一些地方拉闸限电的原因,即由GDP目标变动导致节能减排任务难以完成。   国际气候组织总裁吴昌华日前接受记者采访时表示,由于地方政府的减排任务是年初按照GDP的增长预期进行的减排量分配,所以到年中或年末时由于经济增长过快,计算基数变化了,所以减排量需要重新换算并加大力度,因此为了达到既定减排目标导致了拉闸限电现象的产生。   对此,记者了解到,“十二五”规划将改变减排方式,由“十一五”以建污水处理厂和脱硫设施为主的工程减排转变为继续推进工程和管理减排的同时,以结构减排为主推进发展方式的转变。   此前,环保部部长周生贤撰文称,“十二五”环保发展的主要目标为主要污染物排放总量显著减少,生态环境质量明显改善,积极探索代价小、效益好、排放低、可持续的中国环境保护新路子。   “‘十二五’污染减排很大程度上取决于产业结构调整和落后产能淘汰力度。”环境保护部总量司司长赵华林日前在接受记者采访时表示,他表示,“十二五”期间将把结构减排放在首位,强化工程减排和管理减排,坚持全防全控、重点攻坚、高效治理。“进一步提高造纸、纺织、皮革、化工等行业的主要污染物排放标准,全面启动县县建设污水处理厂工程,开展农业源污染减排工程建设 继续加强燃煤电厂脱硫,切实加强电厂脱硝,严格控制机动车尾气排放。”   其中,在减排任务分解上将采取“两上两下”的方式。即环保部制定一份“十二五”减排的指南给各个省区,然后省区根据这个指南上报该省“十二五”减排计划的初稿,此为“一上” 随后环保部组织专家进行审查,再发给省区称为“一下” 地方根据该稿再进行修改,此为“二上” 最后经过中央同意,最终确定下发“十二五”的减排计划,称为“二下”。   “由于减排的污染物控制种类增加,农业源、机动车减排等新领域的拓展,‘十二五’减排将强化减排设施的升级改造,完善污水处理收费、脱硝电价、排污权交易等环境经济政策。”赵华林表示,“十二五”将把农业源,主要是畜禽养殖、COD和氨氮,还有机动车的污染控制纳入总量控制约束性指标的控制范围。
  • 加拿大发布十溴联苯醚和六溴环十二烷限制提案
    据CHEMICAL WATCH网站消息,近日,加拿大环境部公布了一份对多溴联苯醚(PBDEs)的限制提案。该提案认为十溴联苯醚可在有机体内大量累积,并可能转化成生物蓄积毒性或潜在生物蓄积毒性物质,对有机体高度有害。但溴化阻燃剂行业协会(BSEF)对此结论并不认同,特别是在十溴联苯醚的脱溴相关问题上,两者分歧十分严重。   加拿大政府于今年3月公布的多溴联苯醚风险管理修正策略在经过60天的公众评议后,现在做出最终决策论断:   按照加拿大环境保护法(CEPA)要求,需立即正式禁止制造、使用、销售和进口产品中的四溴、五溴、六溴二苯醚及所有多溴联苯醚。使用、销售和进口领域的禁令扩大到七溴、八溴、九溴和十溴联苯醚同类及所有树脂类或含有这些物质的聚合物。   禁止使用、销售和进口含四溴到十溴联苯醚超过0.1%的所有新产品。   加强联邦环境质量手册对多溴联苯醚的检测。   对包括含有多溴联苯醚及相关成分的堆填区、焚化炉和回收设施制定风险管理战略措施。   检测加拿大民众对于多溴联苯醚的暴露情况和空气中的多溴联苯醚浓度。   此外,加拿大环境部还针对六溴环十二烷(HBCD)发布了一份评估筛选报告草案和一份风险管理范围文件,两份文件的公众评议日期皆为60天,截至日期为10月27日。   BSEF协会还补充说,加拿大现在发布的六溴环十二烷筛选评估和风险控制范围报告即表示支持聚苯乙烯保温泡沫在联合国和欧盟整体过渡阶段授权使用六溴环十二烷。
  • 国科大杭州高等研究院陈效双团队:基于六方氮化硼封装技术的钽镍硒非制冷红外光电探测器
    近日,国科大杭州高等研究院物理与光电工程学院陈效双研究员团队提出了一种通过六方氮化硼封装技术,实现从520 nm到4.6 μm工作波长的钽镍硒(Ta2NiSe5)非制冷红外光电探测器(PD)。该探测器在室温空气环境条件下具有较低的等效噪声功率(4.5 × 10−13W Hz−1/2)和较高的归一化探测率(3.5× 1010cm Hz1/2W−1),而且通过表征时间、偏置、功率和温度依赖等多方面因素,研究其不同波长辐射产生光电流的多重机制。此外,还展示了器件的偏振灵敏度和在不同的可见光、近红外、中波红外波长范围内的多功能成像应用。这些结果揭示了多功能的探测模式,为设计新型的纳米光电器件提供了一种新的思路。该成果以“H-BN-Encapsulated Uncooled Infrared Photodetectors Based on Tantalum Nickel Selenide”为题发表在期刊Advanced Functional Materials上(IF=19)。本工作也得到了国家自然科学基金委、上海市科委、中国科学院和浙江省自然科学基金委等项目的资助。本文利用干法转移堆叠,采用平面h-BN封装的金属-Ta2NiSe5-金属(源极和漏极)结构设计了Ta2NiSe5基PDs,如图1a所示。图1b的左侧面板显示了横截面透射电子显微镜图像,并证明原子堆中没有污染或无定形氧化物。图1d显示了在黑暗条件下和不同功率强度的激光照射(1550nm)下的I-V特性的比较,显示了近线性行为,表明Ta2NiSe5薄片和Cr/Au电极之间具有良好的欧姆接触。如图1e所示,对于窄带隙半导体Ta2NiSe5,光激发载流子的短瞬态寿命减少了电荷分离时间。Ta2NiSe5的高迁移率可以实现电场驱动的光生载流子的快速传输,降低复合的概率。520 nm至2 µm范围内的光响应机制被认为是光电导效应(PDE)。由于PDE,带间跃迁产生的电子-空穴对被施加的电场分离,并被图1h左侧面板中的电极收集。在可见光和近红外光谱中吸收光子,只要它们具有超过带隙的能量,就会触发电子-空穴(e-h)对的产生,从而调节材料的电导率。随后,这些产生的e-h对在外部电场的诱导下分离,产生光电流。基于Ta2NiSe5的PD在1550 nm处0 V和±1 V的扫描光电流映射(图1h)很好地验证了上述光电流起源的推测。图1. Ta2NiSe5基PD在大气环境中不同激光波长和功率下的光电特性。(a)基于Ta2NiSe5的PD的示意图。(b)Ta2NiSe5基PD的横截面TEM图像和相应的元素映射。(c)剥离的Ta2NiSe5纳米片的SEM图像和EDS元素图谱。(d)在1550 nm激光照射下,不同功率下的Iph-Vds曲线。(e)基于Ta2NiSe5的PD的单个响应过程,Vds为1V。(f)从具有绝对值的I-t曲线中提取的Vds和Plight相关光电流。(g)在1V偏压下基于Ta2NiSe5的PD下的光电流的线性功率和亚线性功率依赖性。(h)1550 nm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下从Ta2NiSe5到电极的光生载流子传输过程的说明。泡利阻塞抑制了在4.6 μm(0.27 eV)处产生电子-空穴对的直接光学跃迁。热效应机制被认为是控制MWIR区域光探测过程的潜在物理机制,如光热电效应和辐射热效应。对于辐射热效应的贡献,不需要外部偏置来产生光电流,如图2a所示,而不是依赖于自供电的工作模式。辐射热效应是指沟道材料由于吸收均匀的红外辐射而引起温度升高,从而导致电导率或光吸收等电学或光学性质变化。值得注意的是,辐射热效应需要外加电场。为了确定控制MWIR探测过程的主要机制,光响应被记录为功率和Vds的关系。光电流呈现负极性、零极性和正极性三个特征区域,分别对应图2a中的区域I、II和III。通过测量Ta2NiSe5基PDs电阻的温度依赖性(4-400 K),器件电阻的温度依赖性表现出典型的半导体热激发输运性质,表明热效应可以有效地增强器件电导(图2b)。电阻的温度系数(TCR)是辐射热效应的一个关键指标,在Vds=1 V时,Ta2NiSe5基PDs的TCR为-1.9% K-1。与快速的可见光-近红外光响应相反,在关闭光后漏极电流缓慢恢复,响应时间≈24 ms(图2c)。辐射热效应可以解释明显的光响应与缓慢的下降和上升时间,而不是光电导效应。该值是典型的辐射热特性(1-100 ms),因为吸收MWIR光子后热电子的能量转移到晶格,进一步改变沟道电导。此外,在传热和耗散过程中,h-BN利用极高的导热系数有效地消散探测器产生的热量。光电流的产生分为两种状态。首先,沟道材料在吸收MWIR光子后改变自身电导率,其次,通过驱动外电场产生光电流(图2d)。与PTE中取决于塞贝克系数的光电流符号不同,辐射热光电流的符号取决于外部电场。为了直观地揭示Ta2NiSe5基PDs的光响应机制,本文利用扫描光电流成像技术对光电流分布进行成像(图2e)。在0 V偏置照射下,几乎没有观察到光电流,而在±1 V的外偏置照射下,整个沟道的光电流相当均匀。诱导的电导变化可能是入射光下温度升高期间产生电流的载流子数量变化的结果。Ta2NiSe5基PDs具有独特的性能,它们可以在室温下工作而不会性能下降,这使得它们有希望用于辐射热探测应用。此外,该器件无需p-n结即可工作,简化了制造过程。图2. 基于Ta2NiSe5的PD在4.6 µm光照下的光响应。(a)从I-t曲线中提取的Vds和Plight相关光电流。(b)Ta2NiSe5纳米片电阻的温度依赖性。(c)Vds为1V的基于Ta2NiSe5的PD的单个响应过程。(d)基于Ta2NiSe5的器件在4.6 µm激光照射下的晶格加热的典型示意图。(e)4.6 µm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下测辐射热机制器件的能带对准。接下来,520nm-4.6 µm波长范围内的光的光谱响应度如图3a(左纵轴)所示,在4.6 µm处峰值为0.86 A W−1。在图3a(右纵轴)中,在不同激发波长上进行的EQE测量表明,随着波长的增加,EQE逐渐下降。由入射光子和晶格振动之间的相互作用产生的有限的能量转换效率,以及两端电极的有限收集,通过阻碍入射光子到光生载流子的有效转换,降低了材料的量子效率。重要的是,从可见光到MWIR光谱范围(520 nm-4.6 µm)实现了0.23至82.22的EQE值。与许多传统报道的基于低维材料的PD相比,基于Ta2NiSe5的PD的EQE显著更高,如图3b所示。从1 Hz到10 kHz测量的电流噪声功率谱如图3c所示,然后将NEP计算为NEP=in/RI(图3d),其中在520 nm处获得的最小NEP≈0.45 pW Hz−1/2,在4.6 µm处获得的最低NEP≈18 pW Hz−1/2。基于Ta2NiSe5的PD的较低NEP证明了它们区分信号和噪声的优异能力。图3e显示了与传统大块材料和基于2D材料的PD相比,基于Ta2NiSe5的PD在不同偏压下的波长依赖性特异性检测。对于光电导和测辐射热计响应,D*显示出3.5×1010至8.75×108cm Hz1/2W−1的轻微波动。我们的PD的D*与最先进的商业PD相当,并且高于基于可见光到中红外区域的2D材料的PD。图3. 基于Ta2NiSe5的PD的可见光至MWIR区域的宽带光响应。(a)Vds=1时RI(蓝色实心正方形)和EQE(红色实心圆)的波长依赖性。(b)基于Ta2NiSe5的PD与2D和块体材料PD的EQE的比较。(c)从1 Hz到10 kHz测量的电流噪声功率谱。(d)基于Ta2NiSe5的PD与以前的PD的NEP性能比较,插图显示了NEP的波长依赖性。(e)不同波长下的比探测率(D*)与基于2D材料的最先进的其他PD以及商用红外PD的比较。为了确定基于Ta2NiSe5的PD的偏振依赖性,我们进行了如图4a所示的实验。垂直入射光使用格兰泰勒棱镜进行偏振,通过旋转半波片同时保持恒定的激光功率来改变样品的激光偏振方向和b轴之间的关系。对最具代表性的638 nm激光偏振特性进行研究,图4b,c显示,随着极化角的变化,光电流表现出显著的周期性变化,最大值和最小值分别沿Ta2NiSe5纳米片的b轴和a轴方向获得。值得注意的是,图4c中的偏振依赖性光响应图显示了由于Ta2NiSe5晶体的[TaSe6]2链的潜在1D排列而导致的两片叶子的形状。最终结果显示,各向异性比(Iph-max/Iph-min)达到约1.47,表明基于Ta2NiSe5的PD的整体性能优于大多数其他报道的PD,如图4f所示,并为设计未来的多功能、空气稳定的光电子器件提供了广阔的前景。图4. 基于Ta2NiSe5的PD的偏振敏感光电检测。(a)利用Ta2NiSe5材料的基于纳米片的偏振敏感光电探测器的示意图。(b)在638 nm激光源下记录的光偏振方向为0°至360°的时间分辨光响应。(c)在638 nm偏振激光下,Vds为−1至0V的光电流中各向异性响应的各向异性响应图。(d)通过在638 nm激光下扫描Ta2NiSe5基PD获得的光电流图,偏振角从0°到180°不等。(e)创建极坐标图以显示在638 nm线性偏振激光照射下在40、36和17 nm厚度下产生的角度分辨光电流。(f)与其他常用的2D和1D材料相比,光电流各向异性比和光响应范围。为了充分探索基于Ta2NiSe5单元的PD在多应用成像中的潜力,如图5a所示构建了一个成像系统。采用逐点或逐像素覆盖整个物体区域,用聚焦的可检测光束照射物体,PD检测到的光电流信号由锁定放大器、前置放大器和计算机收集,计算机记录位置坐标生成高质量图像。为了测试基于Ta2NiSe5的PD的成像能力,将具有“HIAS”图案(15 cm×5 cm)的中空金属板放置在520 nm激光器前面,并以优于0.5 mm的高分辨率成功捕获了所产生的成像,如图5b所示。通过控制外部偏置,可以改变PD在638 nm照明下的响应,并成功实现物体成像清晰度,如图5c所示。在NIR范围内,在基于Ta2NiSe5的PD中获得了覆盖载玻片的钥匙锯齿状边缘的高对比度图像(图5d)。此外,基于Ta2NiSe5的设备在近红外和MWIR区域都表现出高度稳定的响应,确保了高对比度成像以智能识别宏观物体。为了证明这一特性,在1550 nm和3.2 μm处实现了复合物体(硅片和长尾夹)的双通道成像。如图5e所示,近红外光只能检测到一半的长尾夹,而MWIR辐射可以显示整个长尾夹。结果证明了基于Ta2NiSe5的PD在军事和民用应用中检测隐藏物体的潜力。图5. Ta2NiSe5基PD的光电成像应用。(a)使用PD作为成像像素的成像系统的示意图。(b)520 nm处的“HIAS”物体(上图)和相应的高分辨率成像图(下图)。(c)在638 nm处,Vds为0.05、0.1、0.5和1 V的“H”对象。(d)1550 nm覆盖载玻片的钥匙成像。(e)在1550 nm和3.2 µm处被硅片部分隐藏的长尾夹的成像。本文揭示了h-BN封装的Ta2NiSe5基PD在环境条件下在520 nm至4.6 µm的宽光谱范围内工作的特殊光电特性,受光电导和测辐射热效应的控制。光电探测器同时表现出宽带和快速的光电探测能力,具有显著的响应性,超过了现有商业室温探测器的性能。基于Ta2NiSe5的PD的室温响应度达到了34.44 AW−1(520 nm)、32.14 AW−1(638 nm)、29.81 AW−1(830 nm)、20.92 AW−1(1550 nm),16.58 AW−1(2 µm)和0.86 AW−1(4.6 µm)。基于Ta2NiSe5的PD的独特光学特性使其适合于各种应用,包括传感、成像和通信,并且它们与其它2D材料的集成可以进一步增强它们的性能和功能。因此,这项工作的研究为利用2D材料设计稳定的光电探测器铺平了道路,为推进下一代红外光电子研究的发展做出了贡献。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202305380

硼十氢十二双乙基硫醚相关的仪器

  • MiraPette 电子十二道移液器介绍MiraPette 电子十二道移液器是一款精致、小巧的自动化液体处理工具,具有多种优点:◆具有灵活多样的移液功能◆简单直观的软件操作界面,无须繁琐培训◆金属吸头锥设计,更耐用以及更好的吸头密封性和适配性◆高精密的液体操作精度减少人为误差◆双电池设计,保证移液器长时间续航工作灵活多样的移液功能、可多级调速精致小巧的设计,增强操作稳定性特别适合各种多孔板高通量液体操作。“一键飞梭”功能,简单直观的操作界面只要依靠大拇指旋转和按键,就可以实现各种功能切换和容量转变。4 种工作模式、强大的记忆功能PIPETTE 自动移液模式:吸多少排多少,吸液1ml排液1ml,常用于一般操作,定量吸取废液,无需紧盯液面或屏幕。MANUAL-手动移液模式:手动控制吸多少排多少,可实时显示吸液量、排液余量。适用于不定量液体的移取,可灵活吸取上清液或沉淀物。ASPIRATE-多级吸液模式:数次吸取等量液体,一次全部排出。如吸取4次,每次吸取20ul,排液时排出80ul,适用于试剂制备、成份调配等操作。STEPPER-分液模式:一次吸入全部液体,分数次排出。如一次吸入5ml,分5次排出,每次排液1ml,适用于重复性操作。MiraPette 电子十二道移液器 VS统手动移液器与传统手动移液器相比,MiraPetteE电子移液器由于电子马达驱动,只需轻轻按下按键,就可以得到稳定的重复性和高精密的液体操作精度。不会因为操作者的经验差异而产生人为误差,保证了实验的精度操作稳定。 MiraPetteE系列电子移液器充电支架即插即拔,充电方便单道、多道枪通用,无需额外工具支持USB Type-c充电,简单好用设计可靠牢固,保护移液器安全小巧轻便,方便实验台间搬运直立放置,减少交叉污染充电过载过流保护,充电红色指示,充满蓝色指示双充电设计,使用时间更长产品采购,需另询。
    留言咨询
  • MiraPette 电子十二道移液器介绍MiraPette 电子十二道移液器是一款精致、小巧的自动化液体处理工具,具有多种优点:◆具有灵活多样的移液功能◆简单直观的软件操作界面,无须繁琐培训◆金属吸头锥设计,更耐用以及更好的吸头密封性和适配性◆高精密的液体操作精度减少人为误差◆双电池设计,保证移液器长时间续航工作灵活多样的移液功能、可多级调速精致小巧的设计,增强操作稳定性特别适合各种多孔板高通量液体操作。“一键飞梭”功能,简单直观的操作界面只要依靠大拇指旋转和按键,就可以实现各种功能切换和容量转变。4 种工作模式、强大的记忆功能PIPETTE 自动移液模式:吸多少排多少,吸液1ml排液1ml,常用于一般操作,定量吸取废液,无需紧盯液面或屏幕。MANUAL-手动移液模式:手动控制吸多少排多少,可实时显示吸液量、排液余量。适用于不定量液体的移取,可灵活吸取上清液或沉淀物。ASPIRATE-多级吸液模式:数次吸取等量液体,一次全部排出。如吸取4次,每次吸取20ul,排液时排出80ul,适用于试剂制备、成份调配等操作。STEPPER-分液模式:一次吸入全部液体,分数次排出。如一次吸入5ml,分5次排出,每次排液1ml,适用于重复性操作。MiraPette 电子十二道移液器 VS统手动移液器与传统手动移液器相比,MiraPetteE电子移液器由于电子马达驱动,只需轻轻按下按键,就可以得到稳定的重复性和高精密的液体操作精度。不会因为操作者的经验差异而产生人为误差,保证了实验的精度操作稳定。 MiraPetteE系列电子移液器充电支架即插即拔,充电方便单道、多道枪通用,无需额外工具支持USB Type-c充电,简单好用设计可靠牢固,保护移液器安全小巧轻便,方便实验台间搬运直立放置,减少交叉污染充电过载过流保护,充电红色指示,充满蓝色指示双充电设计,使用时间更长产品采购,需另询。
    留言咨询
  • MiraPette 电子十二道移液器介绍MiraPette 电子十二道移液器是一款精致、小巧的自动化液体处理工具,具有多种优点:◆具有灵活多样的移液功能◆简单直观的软件操作界面,无须繁琐培训◆金属吸头锥设计,更耐用以及更好的吸头密封性和适配性◆高精密的液体操作精度减少人为误差◆双电池设计,保证移液器长时间续航工作灵活多样的移液功能、可多级调速精致小巧的设计,增强操作稳定性特别适合各种多孔板高通量液体操作。“一键飞梭”功能,简单直观的操作界面只要依靠大拇指旋转和按键,就可以实现各种功能切换和容量转变。4 种工作模式、强大的记忆功能PIPETTE 自动移液模式:吸多少排多少,吸液1ml排液1ml,常用于一般操作,定量吸取废液,无需紧盯液面或屏幕。MANUAL-手动移液模式:手动控制吸多少排多少,可实时显示吸液量、排液余量。适用于不定量液体的移取,可灵活吸取上清液或沉淀物。ASPIRATE-多级吸液模式:数次吸取等量液体,一次全部排出。如吸取4次,每次吸取20ul,排液时排出80ul,适用于试剂制备、成份调配等操作。STEPPER-分液模式:一次吸入全部液体,分数次排出。如一次吸入5ml,分5次排出,每次排液1ml,适用于重复性操作。MiraPette 电子十二道移液器 VS统手动移液器与传统手动移液器相比,MiraPetteE电子移液器由于电子马达驱动,只需轻轻按下按键,就可以得到稳定的重复性和高精密的液体操作精度。不会因为操作者的经验差异而产生人为误差,保证了实验的精度操作稳定。 MiraPetteE系列电子移液器充电支架即插即拔,充电方便单道、多道枪通用,无需额外工具支持USB Type-c充电,简单好用设计可靠牢固,保护移液器安全小巧轻便,方便实验台间搬运直立放置,减少交叉污染充电过载过流保护,充电红色指示,充满蓝色指示双充电设计,使用时间更长产品采购,需另询。
    留言咨询

硼十氢十二双乙基硫醚相关的耗材

  • 多烯酸乙酯中二十碳五烯酸乙酯和二十二碳六烯酸乙酯的分离,色谱柱:PEG毛细管柱
    多烯酸乙酯中二十碳五烯酸乙酯和二十二碳六烯酸乙酯的分离,色谱柱:PEG毛细管柱 关键词:多烯酸乙酯,二十碳五烯酸乙酯,二十二碳六烯酸乙酯,2010年药典,北京绿百草 2010年中国药典标准:二十碳五烯酸乙酯和二十二碳六烯酸乙酯色谱条件:照气相色谱法(附录Ⅵ E)测定,采用以聚乙二醇为固定液的石英毛细管柱(0.25× 30m,0.25um);程序升温,初始柱温190℃,进样口温度为250℃;检测器温度为270℃。二十碳五烯酸乙酯峰、二十二碳六烯酸乙酯峰分别与相邻峰之间的分离度均应大于1.0。(中国药典二部P273) 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cN
  • 减压蒸馏装置(高硼硅抽真空加热)
    减压蒸馏装置(高硼硅抽真空加热)由上海书培实验设备有限公司提供,采用高硼硅玻璃材质加工,减压蒸馏(又称真空蒸馏)是分离和提纯化合物的一种重要方法,尤其适用于高沸点物质和那些在常压蒸馏时未达到沸点就已受热分解、氧化或聚合的化合物的分离和提纯。产品介绍:产品名称:减压蒸馏装置(高硼硅抽真空加热)规格:500ml材质:高硼硅玻璃 用途:减压蒸馏(又称真空蒸馏)是分离和提纯化合物的一种重要方法减压蒸馏的操作方法: 减压蒸馏开始时的操作顺序是:打开真空泵→调好真空度→接通冷凝水→开始加热蒸馏。具体如下:(1)在圆底蒸馏烧瓶中,放置待蒸馏的液体(不超过蒸馏烧瓶容积的1/2)。按图3所示安装好减压蒸馏装置。(2)旋紧毛细管上的螺旋夹,打开安全瓶上的双通活塞,然后开启真空泵抽气。慢慢关闭双通活塞,从测压计上观察系统所能达到的真空度。如果达不到所需要的真空度,可能是因为漏气(假如不是真空泵本身效率的限制造成的),需检查各部分塞子和橡皮管的连接是否严密等,必要时可用熔融的固体石蜡密封(密封只有在解除真空后才能进行)。如果超过所需的真空度,可小心地旋转双通活塞,放入少量空气,以调节至所需的真空度。调节毛细管上的螺旋管,使液体中有连续平稳的小气泡通过(如无气泡,毛细管可能已经阻塞,需要及时更换)。(3)开启冷凝水,选用合适的加热方式进行蒸馏。加热时,圆底蒸馏烧瓶至少应有2/3浸入浴液中。蒸馏速度以每秒1-2滴为宜。在整个蒸馏过程中,要注意蒸馏情况,不断观察温度计和测压计的读数。在压力稳定的情况下,纯物质的沸程不应超过1℃ - 2℃。在前馏分蒸完后,需要更换接受瓶接受所需的馏分。此时应先移去热源,取下热浴,待稍冷后,慢慢地旋开双通活塞,使系统与大气相通,然后松开毛细管上的螺旋夹,切断真空泵的电源,卸下接受瓶,换上另一洁净的接受瓶,再重复前述操作。如果使用的是多头接引管,则只要转动其位置即可收集不同沸程的馏分。减压蒸馏结束时的操作顺序恰好相反,先移去热源→关闭冷凝水→体系稍冷后慢慢打开毛细管上的螺旋夹→慢慢打开安全瓶上的双通活塞放气→等体系内外压力平衡后再关闭真空泵。 注意事项:(1)当被蒸馏物中含有低沸点物质时,应先进行常压蒸馏,然后用真空泵减压蒸去低沸点物质。最后再用真空泵减压蒸馏。(2)根据化合物的沸点不同,选用合适的加热方法。不能用明火直接加热,通常选用水浴或油浴,总的要求是加热均匀,尽量避免局部过热。控制浴温,保持比液体的沸点高20℃-30℃。(3)蒸馏沸点较高的物质时,用石棉绳或石棉布包裹克氏蒸馏头的两颈,以减少散热。(4)要特别注意真空的转动方向。如果真空泵接线位置搞错,则会使真空泵反向转动,导致水银冲出压力计,造成污染。(5)蒸馏完毕,或蒸馏过程中需要中断(例如调换毛细管、接受瓶)时,应先灭去火源,撤去热浴,待稍冷后缓缓解除真空,使系统内外压力平衡后,方可关闭油泵。否则,由于系统中的压力较低,油泵中的油会吸入吸收塔。
  • 分析双氰胺专用柱-- TSK Amide-80 色谱柱
    近日在新西兰恒天然集团的样本检测中发现了二聚氰胺(双氰胺)残留。目前国际标准未对食品中的双氰胺限量,但高剂量的双氰胺对人体是有毒的,含有双氰胺的奶类产品可能会对婴幼儿产生副作用,婴幼儿器官的构造、发育和机能都不完善,对食品十分敏感,容易导致堵塞肾脏等情况发生。针对此次食品安全事件,绿百草科技发展有限公司立刻做出回应,针对分析双氰胺出了整套方案。 下图一为乙腈/甲醇=6/1 时,分析双氰胺标准品时的谱图。流动相中甲醇的比例升高时,样品峰出峰较快,反之,则出峰较晚。下图二为含有双氰胺的肥料的分析谱图。样品的配制方法如下: ① 称取 0.1g 样品,加入 20ml 的样品瓶中。② 向上述样品瓶中加入 10ml 甲醇,激烈震荡 10分钟后静置。③ 将澄清液经 0.45um 膜过滤后,滤液用流动相稀释100倍后,进样。图一:双氰胺标准品(10ug/ml)图二:含有双氰胺的肥料的分析谱图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制