磁性物含量计

仪器信息网磁性物含量计专题为您提供2024年最新磁性物含量计价格报价、厂家品牌的相关信息, 包括磁性物含量计参数、型号等,不管是国产,还是进口品牌的磁性物含量计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁性物含量计相关的耗材配件、试剂标物,还有磁性物含量计相关的最新资讯、资料,以及磁性物含量计相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

磁性物含量计相关的厂商

  • 力田磁电科技有限公司(原力田磁电技术应用研究所)位于中国西部电子科技城—四川绵阳。绵阳为国家重要的国防科研基地和产业配套生产基地,拥有中国工程物理研究院、西南自动化研究所、西南科技大学等国防科研院所,以及长虹电子集团、九州电子集团等产业集团公司。公司拥有100%%的知识产权,独立经营核算、是集开发、生产、销售为一体的高科技型公司,拥有多种类型、实战十年以上工作经验的专业工程师。自2002年5月公司成立以来,公司团队认真务实,追求卓越,优质优价,先后开发出:PEM电磁铁、PTC退磁机/脱磁机/消磁器、PTM/PMC脉冲脱磁器、PFD恒压充磁机、PF/PEX数字特斯拉计(高斯计)、PF-900数字磁通计(磁通表)、PF-100B/200B/300B/400B智能振实密度仪、YCB标准磁体、CTB/N-XCRS磁选机、PXC-100H硬盘消磁器、MPS磁处理装置等系列产品。力田产品按ISO9001国际质量体系进行研发生产管理销售,力田产品性能稳定可靠,性价比高,品质高、式样美观,已得到磁性测式、磁性材料研究、电磁学研究、应用电磁产品等领域的使用认可,专为清华大学,香港理工大学,浙江大学等知名大学,中科院固体物理研究所,韩国国家材料研究所,上海硅酸盐研究所,中国工程物理研究院等研究单位设计开发了电磁应用设备。同时为威能科技(苏州)公司,铁母肯恩斯克(TIMKEN)轴承(苏州)有限公司,香港新科实业有限公司(SAE),香港兴利电脑制品有限公司,等国内外知名企业提供了力田公司产品。公司宗旨:以诚信为本;以品质求生存;制造出优质优价的产品公司坚持“管理以人为本”的工作理念,为客户提供具有专业技术水准、品质高的产品与服务。力田公司真诚地、谦虚地面对客户和广大同仁,愿与您进行多种形式的技术交流与合作,期待您的光临指导!
    留言咨询
  • 武汉埃斯特测控技术有限公司向电力、石油、化工、市政、钢铁等工业领域推广技术领先、质量可靠的产品。除经营自身生产流量计、物位计产品外,还授权代理美国Sunboard(桑柏)气动、电动、电液联动执行机构,该能够频繁地开启动作,适用于各种恶劣工况,在北美市场气动领域享有极高的声誉。广泛应用于石油、化工、电力、冶金、煤炭、环保等行业。  美国Sunboard(桑柏)气动执行机构加工精度高、气密性好、密封面耐油、耐水。  Sunboard(桑柏)电动执行机构采用绝对编码器控制阀位,避免目前最常见的霍尔板阀位控制(磁性工作原理)受现场影响、怕磁场、怕振动等不足;在力矩测定方面采用soc(片上系统)等先进控制技术,克服了传统的力矩传感器力矩不准确、不耐久等缺点,,使其产品的精确控制和高可靠性得到持久保障。  美国Sunboard(桑柏)电液联动执行机构为智能电液联动一体机,体积小、重量轻,它由电机、油泵、伺服阀、手泵、现场控制模块、力矩检测及控制、阀位测量及设置、故障检测及反馈组成,在短短几秒时间内可以输出上万牛米力矩。
    留言咨询
  • 杭州磁聚力科技有限公司,是由中科院博士团队创立的磁性材料科技公司,致力于高端稀土永磁材料及器件的研发,生产和销售。 本着“以磁聚力”的人才理念,广纳贤才,公司目前技术团队拥有博士3名,硕士3名,成员多具有行业大中型企业中高层管理经验。凭借出众的技术能力,掌握了高性能钐钴、高性能钕铁硼、及磁器件产品生产技术。 公司产品主要应用于高性能电机,5G通讯,物联网,医疗等领域。
    留言咨询

磁性物含量计相关的仪器

  • BPMB磁性底座及BP垫板、固定板 BPMB-1/BPMB-2磁性底座 磁性底座因其灵活方便的安装固定方式而广泛应用于实验室。使用时只需将需要固定物件安装在磁性底座上,移动磁性底座调整好位置后转动开关即可。本公司提供的磁性底座,吸力大,十分稳定。并在传统底座的基础上发展创新,使您在稳固的同时,还可保留灵活与方便。适用于本公司多种调整架。 BPMB-3磁性底座 它除了具备前两款磁性底座的功能外,又能进行XY 两维平移微调,并可锁紧。微调螺杆采用M4x0.3 细牙螺杆,调整精度更高。若与升降杆座或旋转杆座配合使用,即可实现XYZ 或XY&theta z 三维调节。 BPMB-4超薄磁性底座 除了具有一般磁性底座的功能外,主体材料为钢,具有轻巧、超薄、磁力可调的特点。台面可固定多种类多规格的光学器件;永久磁性提供超强吸附力,磁力从&ldquo OFF&rdquo 状态到&ldquo ON&rdquo 连续可调;其表面配有标准孔距的螺纹孔,方便各种连接,可以更好的和其它产品配套使用。 BPKB-2可复位磁性底座 上下两块板分离,之间用磁性件连接,下板可用螺丝固定在光学平台或光学面包板上,通过定位机构保证上板的复位精度。 BP-AL10/20/50铝合金垫块 BP-S1/2/5不锈钢垫板 BP-DPSS半导体激光器通用安装板 说明:● 包含67× 95,59× 81,78× 150三种尺寸的4个M6安装孔,可安装卓立提供的DPSS激光器,见375页相关产品。● 中心为M6沉孔&phi 8的通用孔● 其它地方,分布M6和M4螺纹孔及沉头孔 BP-DC相机固定板 说明:数码相机(DC)的安装接口通常为1/4",部分云台式三脚架上也有3/8" 的螺纹。BP-DC 带有标准1/4" 的螺丝,可将数码相机固定在安装板上,然后将安装板通过接杆固定。
    留言咨询
  • KXCG—6型磁性物含量测量仪产品介绍:KXCG—6型磁性物含量测量仪主要用于对磁性悬浮液、铁磁矿石或铁磁性物质进行检测和测量。如测量磁性悬浮液中磁性物质的含量、铁磁矿石品位的测量、磁性悬浮液液位的测量等,广泛的应用于钢铁、铁矿山、铁选厂、重介质选煤厂等需要对铁磁性物质进行检测和测量的工矿企业,也广泛应用于一些需要对铁磁性物质进行检测和测量的其它行业。技术性能参数:电源电压:交流220V,50Hz,消耗功率约20瓦测量范围:0~1000克/升, 可根据用户需要进行调整输出信号:直流电压:0~1000克/升对应0~5V,负载电阻>5KΩ直流电流:0~1000克/升对应4~20mA,负载电阻<0.8KΩ可根据用户需要进行调整测量误差:1%测量显示精度:1克/升管道式线圈内径:100mm、150mm、200mm、300mm管道式探测器尺寸对照表探测器内径ABCDKLnDN10060010024230180208DN15060015024280240228DN20060020030345289228DN300600300304854322612
    留言咨询
  • 磁性金属物测定仪 400-860-5168转4324
    产品概述:MEP-100 磁性金属物测定仪是依据国家标准GB5509-85《粮食、油料检验 粉类磁性金属物测定法》研制的检验粉类粮食中磁性金属物含量的专用仪器。适用于质量监督、面粉(以及各类粮食粉类)加工、粮食储运、购销、科研等需对粉类磁性金属物的含量进行测定的部门保修期和售后服务承诺自安装调试结束之日起一个月后计算,保修期12个月。为用户终身免费提供技术支持,协助方法开发以及针对特定产品的整体技术服务。安装调试、维修和保养服务安装调试:所购佩克昂产品的客户,佩克昂技术支持部将根据合同约定的安装调试时间,在客户具备安装调试环境及条件的基础之上,24小时内安排工程师为客户提供安装调试服务。安装调试内容主要包括:在用户实验室免费安装、培训,人员数量用户安排决定。培训内容:仪器的使用、日常维护保养、安全注意事项。安装培训后签署验收报告。维修:佩克昂技术支持部自接到客户电话起,能解答的问题当场电话指导用户如何解决,如需详细解答操作中遇到的问题,技术支持部将在12小时内做出书面答复。对于疑难问题,确保24小时内提出解决方案。如有必要上门提供服务,我公司将派出技术支持部工程师,在24小时内到达现场。对于不能维修的故障,更换损坏的配件,直到达到仪器最佳的工作状态。技术支持:提供贴心专业的技术支持,根据用户特定样品免费提供或协助客户开发试验方法。全国24小时客服热线:4008 055 000
    留言咨询

磁性物含量计相关的资讯

  • XPS小课堂| XPS能测磁性样品吗
    X P S为了提高XPS的检测灵敏度,高端的XPS往往会采用磁透镜技术来增加XPS的光电子的采集效率。但是如果样品本身具有磁性,磁性样品的磁场就会与磁透镜发生相互作用,干扰光电子的收集,因此也可关闭磁透镜,仅使用静电透镜模式进行XPS分析。但什么样品才是XPS测试中需要注意的磁性样品呢?首先我们需要了解一下磁性样品的分类。 磁性样品分类 在XPS测试中所指的磁性样品通常是指永磁材料,而对于软磁材料我们只需要注意样品的固定即可正常测试。在这里分享一个简单的方法判断测试的样品是不是永磁体? 注意!一定要用没有磁性的软磁材料(曲别针、大头针),不可以用永磁体!!! 永磁材料的XPS测试对于永磁材料,由于本身具有磁场,因此永磁材料在磁透镜中的情况存在如下情况 (a)永磁体材料的磁场方向与磁透镜一致,对光电子的收集有增强作用(b)永磁体材料的磁场方向与磁透镜相反,对光电子的收集有减弱的作用(c) 永磁体的杂散磁场将导致光电子的运动轨迹发生偏转,散焦而XPS不开启磁透镜,只使用静电透镜模式,测试时光电子的运动轨迹则是受样品本身的磁场情况影响,可能会使光电子的信号减弱。静电透镜模式测试时,不改变光电子的出射方向,因此测试的灵敏度较低。而岛津XPS具有最高600W的X射线源,可以弥补静电透镜下灵敏度的不足,获得信噪比极佳的测试结果。上海交通大学使用岛津XPS完成了镝代钕铁硼的XPS表征工作。使用静电透镜模式,成功完成了(Nd1-xDyx)2Fe14B (x=0,0.2,0.4,0.6,0.75,0.88) 中钕和镝的定性定量分析。[1] 软磁材料的XPS测试使用岛津XPS分析两种状态的软磁性材料:粉状镍基粉末、板状镀锡钢板,为避免样品在磁透镜作用下可能发生移动,粉末制样以量少为宜,板状材料则应将其通过螺丝、铜片等机械夹具固定在样品条上进行制样。在磁透镜模式下,对上述样品进行全谱和各元素的精细谱分析,可以得到粉末样中主要含有Ni、O、C元素,还含有少量N、Ca、Na等元素。,Ni元素主要由单质Ni(Ni1,852.01 eV)和Ni2O3(Ni3,861.05 eV)组成,此外还含有少量二价Ni成分(Ni2,855.56 eV)。图1.磁透镜模式下Ni2p精细谱图[2] 镍基粉末样品表面元素相对含量如下: 对板状镀锡钢板也同样能够得到上述的定性及定量的分析结果。此外由于岛津XPS具有最高600W的X射线源,对于只使用静电透镜模式的XPS测试,如下图所示,仍然能够获得信噪比很好的结果。 图2蓝色为磁透镜模式的板状锡钢板全谱,红色为静电模式全谱 课后小结:对于软磁材料,请固定好样品,使用磁透镜模式,对样品进行定性、定量分析。对于永磁材料(如钕铁硼体系等),建议采用静电透镜模式进行,而岛津X射线高功率(最高达600W)的配置可以弥补静电透镜下灵敏度的不足,仍然能够获得信噪比极好的结果,有利于磁性样品的分析。 [1] Wang, J., Yang, B., Liang, L., Sun, L.-min, Zhang, L.-ting, & Hirano, S.-ichi. (2015). Electronic structure of the (ND1−xDyx)2Fe14B (0 ≤ x ≤ 1) system studied by X-ray Photoelectron Spectroscopy. AIP Advances, 5(9), 097206.[2] 岛津XPS技术表征磁性材料 本文内容非商业广告,仅供专业人士参考。
  • 二维磁性材料非线性光学研究取得重要进展
    p style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "据悉,近年来,二维磁性材料在国际上成为备受关注的研究热点。它们能将自发磁化保持到单原胞层厚度,为人们理解和调控低维磁性提供了新的研究平台,也为二维磁性与自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面有着重要应用价值。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "尽管二维磁性材料的铁磁性质已有研究,但反铁磁态由于不具有宏观磁化,材料体系整体对外不表现出磁性,加之样品既薄又小,其实验研究是领域内的一大难题。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "针对这一问题,近日,复旦大学物理系吴施伟课题组与华盛顿大学许晓栋课题组合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。北京时间8月1日凌晨,相关研究成果以《反铁磁双层三碘化铬中巨大的非互易二次谐波产生》(“Giant nonreciprocal second harmonic generation from antiferromagnetic bilayer CrI3”)为题发表于《自然》(Nature)杂志。/span/pp style="text-align: center text-indent: 2em "span style="font-family: " times new roman" "img style="max-width: 100% max-height: 100% width: 400px height: 273px " src="https://img1.17img.cn/17img/images/201908/uepic/4ab2a45d-ae2c-44ff-a0d7-2d4959a3a9a0.jpg" title="caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" alt="caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" width="400" height="273" border="0" vspace="0"//span/pp style="text-indent: 2em text-align: center "span style="font-family: " times new roman" font-size: 14px "双层三碘化铬 图片来自复旦大学物理系网站/span/pp style="text-align: justify "strongspan style="font-family: " times new roman" "将经典方法引入新领域 开辟广阔研究空间/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究工作中观测到的由层间反铁磁诱导的二次谐波响应让团队成员们非常兴奋,因为他们知道,这在二维材料的研究和非线性光学领域都具有重要的意义。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "“意义首先在于其独特性。”吴施伟介绍,迄今为止二维材料领域所研究的二次谐波大多由晶格结构的对称破缺引起。“对称破缺也就是破坏对称性,例如人的左右手原本是镜面对称的,如果一只手指受伤,那么镜面对称就破缺了。”而这种由磁结构产生的非互易二次谐波和前者有本质区别,从原理上就十分新颖。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "反铁磁材料由于没有宏观的磁矩,对外部的物理激励一般难以产生宏观的可测量的响应,对仅有几个原子层厚的二维反铁磁材料往往无能为力。“过去这个问题就像是灯光照不到的地方,一片黑暗无从下手。然而就是这样的一种‘暗’状态,现在能通过二次谐波的方式变‘亮’。这也是将一种经典的方法引入一个新领域的美妙所在。”吴施伟对此颇有感触。这种二次谐波过程对材料磁结构的对称性高度敏感,为二维磁性材料的研究开辟了广阔的研究空间。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究团队同时发现,双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量级的提升,比常规铁磁界面产生的二次谐波更是高出十个数量级。利用这一强烈的二次谐波信号,团队得以揭示双层三碘化铬的原胞层堆叠结构的对称性。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "吴施伟介绍,体材三碘化铬在高温下属于单斜(monoclinic)晶系,在低温下发生结构相变而变为菱形(rhombohedral)晶系,两者的差别在于范德瓦尔斯作用(一种原子或分子之间的相互作用力,相比于化学键的相互作用,范德瓦尔斯相互作用弱得多)的层间平移。但在寡层极限下,低温下的晶格堆叠结构还存在着争议。团队在实验中使用一束偏振光测量了材料在空间不同方向的极化,通过测量偏振极化的二次谐波信号,发现它与单斜晶格的堆叠结构都具备镜面对称性,这与国际上新近发表的理论计算结果一致,为研究二维材料层间堆叠结构与层间铁磁、反铁磁耦合的关联提供了新的实验证据和研究手段。/span/pp style="text-align: justify "strongspan style="font-family: " times new roman" "创新研发实验系统 实现基础研究突破/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究团队在实验中探测的反铁磁材料仅有两个原胞层厚度(厚度在2nm以下),而在此条件下,中子散射等测量手段很难奏效。针对这一问题,团队基于过去多年在二维材料非线性光学研究领域的积累,运用了光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "光学二次谐波过程对体系的对称性高度敏感,光学二次谐波的探测方法从体系的对称性入手,能够灵敏地探测体系的反铁磁性。与通常探测磁性的实验手段不同,它不依赖于材料的宏观磁性,而取决于微观磁结构造成的对称破缺。双层三碘化铬在反铁磁态下,其磁结构不但打破了时间反演对称性,也同时打破了空间反演对称性,由此产生强烈的非互易二次谐波响应。当体系升至转变温度以上、或施加面外磁场拉为铁磁态后,磁结构的对称性却发生了改变,这一二次谐波信号也随之消失。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "自2017年至今,两年的协力共进浇灌出如今的成果。团队首先利用实验室已有的无液氦可变温显微光学扫描成像系统进行了初步测量,但由于该系统没有磁场,很多关键的实验测量受到了限制。为解决这一问题,课题组成员攻坚克难,利用一套无液氦室温孔超导磁体,自主研发搭建了一套无液氦可变温强磁场显微光学扫描成像系统,并借助新系统实现强磁场下的光学测量,完成了关键数据的探测。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "据了解,该研究工作的合作团队还包括香港大学教授姚望、卡耐基梅隆大学教授肖笛、华盛顿大学教授曹霆、美国橡树岭国家实验室研究员Michael McGuire,以及我系教授刘韡韬、陈张海、高春雷等。吴施伟和许晓栋为文章的通讯作者,我系博士研究生孙泽元和易扬帆为共同第一作者。研究工作得到自然科学基金委、科技部重大研究计划和重点研发专项计划等项目经费的支持。/span/ppbr//p
  • 磁性随机存储器(MRAM)和斯格明子研究的最新利器!可精确调控磁性薄膜或晶圆磁性的离子辐照磁性精细调控系统Helium-S®
    今年1月,三星电子在学术期刊 Nature 上发表了全球基于 MRAM(磁性随机存储器)的存内计算研究。存内计算由于毋需数据在存储器和处理器间移动,大大降低了 AI 计算的功耗,被视作边缘 AI 计算的一项前沿研究。三星电子的研究团队通过构建新的 MRAM 阵列结构,用基于 28 nm CMOS 工艺的 MRAM 阵列芯片运行了手写数字识别和人脸检测等 AI 算法,准确率分别为 98% 和 93%。研究人员表示,MRAM 芯片应用于 in-memory computing(内存内计算)电脑,十分适合进行神经网络运算等,因为这种计算架构与大脑神经元网络较为相似。 MRAM 器件在操作速度、耐用性和量产等方面具有优势,但其较低的电阻使 MRAM 存储器在传统的存内计算架构中无法达到低功耗要求。在本篇论文中,三星电子的研究人员构建了一种基于 MRAM 的新存内计算架构,了这一空白,这是MRAM研究的又一新突破。 近期,国内的众多课题组也在MRAM研究上取得了许多重量的工作。例如北航的赵巍胜课题组在2020年发表在APL上的——具有垂直各向异性的氦离子辐照W-CoFeB-MgO Hall bars中的自旋轨道矩(SOT)驱动的多层转换一文中,运用了特的氦离子辐照技术对W(4 nm)/CoFeB (0.6 nm)/MgO (2 nm)/Ta (3 nm)多层膜进行了结构的调控,通过对调控前后以及过程中磁学和电学性质变化的研究,表明这种使用离子辐照调控多层电阻的方法在实现神经形态和记忆电阻器件领域显示出巨大的潜力。图中Kerr 图像显示了 SOT 诱导的磁化转换过程中Hall bars电流的增加,白色虚线表示纵向电流线和横向电压线。红色方框对应于氦离子辐照区域。(ii) 和 (iv) 中的黄色箭头代表畴壁运动的方向。 离子辐照除了在MRAM研究领域小试牛刀外,在斯格明子的研究中也令人眼前一亮。 法国自旋电子中心(SPINTEC) 和法国Spin-Ion公司合作发表在NanoLetters上的一篇文章,题目为:氦离子辐照让磁性斯格明子“走上正轨”。文中指出,氦离子辐照可被用于在“赛道上”“创造”和“引导”斯格明子,文章证明了氦离子辐照带来的垂直磁各向异性和DMI的变小,可导致稳定的孤立斯格明子的形成。图中红色轨道尺寸为6000×150 nm2,间距为300 nm,用氦离子辐照的区域。图中显示了氦离子辐照的红色轨道区域不同磁场下的MFM图像。 以上两篇文章采用的离子辐照设备来自法国Spin-Ion公司。法国Spin-Ion公司于2017年成立,源自法国研究中心/巴黎-萨克雷大学的知名课题组。Spin-Ion公司采用Ravelosona博士的创新技术,在磁性材料的离子束工艺方面有20年的经验,拥有4项和40多篇发表文章。Spin-Ion公司推出的产品——可用于多种磁性研究的离子辐照磁性精细调控系统Helium-S,可通过紧凑和快速的氦离子束设备控制原子间的位移。该设备使用特有的离子束技术在原子尺度上加工材料,可通过离子束工艺来调控薄膜和异质结构。目前全球已有20多家科研和工业的用户以及合作伙伴使用该技术。2020年Spin-Ion公司在中国也已安装了套系统,Helium-S有的技术能力正吸引来自相关科研圈和工业领域越来越多的关注。 产品主要应用领域:磁性随机存储器(MRAM):自旋转移矩磁性随机存储(STT-MRAM), 自旋轨道矩磁性随机存储(SOT-MRAM), 磁畴壁磁性随机存储(DW-MRAM)等自旋电子学:斯格明子,磁性隧道结,磁传感器等磁学相关:磁性氧化物,多铁性材料等其他:薄膜改性,芯片加工,仿神经器件,逻辑器件等 产品特点:● 可通过紧凑和快速的氦离子束设备控制原子间的位移,通过氦离子辐照可调控磁性薄膜或晶圆的磁学性质。● 可提供能量范围为1-30 keV的He+离子束● 采用创新的电子回旋共振(ECR)离子源● 可对25毫米的试样进行快速的均匀辐照(如几分钟)● 超紧凑的设计,节省实验空间● 也与现有的超高真空设备互联 测试数据:调控界面各向异性性质和DMI 低电流诱发的SOT转换获取 控制斯格明子和磁畴壁的动态变化 用户单位 已经购买该设备的国内外用户单位:University of California San Diego (USA)University of California Davis (USA)New York University (USA)Georgetown University (USA)Northwestern University (USA)University of Lorraine (France)SPINTEC Grenoble (France)University of Cambridge (UK)University of Manchester (UK)Beihang University (China)Nanyang Technological University and A*STAR (Singapore)University of Gothenburg (Sweden)Western Digital (USA)IBM (USA)Singulus Technologies (Germany) 文章列表:[1]. Tailoring magnetism by light-ion irradiation, J Fassbender, D Ravelosona, Y Samson, Journal of Physics D: Applied Physics 37 (2004)[2]. Ordering intermetallic alloys by ion irradiation: A way to tailor magnetic media, H Bernas & D Ravelosona, Physical review letters 91, 077203 (2003)[3]. Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media, T Hauet & D Ravelosona, Applied Physics Letters 98, 172506 (2011)[4]. Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions, J-M.Beaujour & A.D. Kent & D.Ravelosona &E.Fullerton, Journal of Applied Physics 109, 033917 (2011)[5]. Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films, T Devolder & D Ravelosona, Journal of Applied Physics 113, 203912 (2013)[6]. Controlling magnetic domain wall motion in the creep regime in He-irradiated CoFeB/MgO films with perpendicular anisotropy, L.Herrera Diez & D.Ravelosona, Applied Physics Letter 107, 032401 (2015)[7]. Measuring the Magnetic Moment Density in Patterned Ultrathin Ferromagnets with Submicrometer Resolution, T.Hingant & D.Ravelosona & V.Jacques, Physical Review Applied 4, 014003 (2015)[8]. Suppression of all-optical switching in He+ irradiated Co/Pt multilayers: influence of the domain-wall energy, M El Hadri & S Mangin & D Ravelosona, J. Phys. D: Appl. Phys. 51, 215004 (2018)[9]. Tuning the magnetodynamic properties of all-perpendicular spin valves using He+ irradiation, Sheng Jiang & D.Ravelosona & J.Akerman, AIP Advances 8, 065309 (2018)[10]. Enhancement of the Dzyaloshinskii-Moriya Interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO, L Herrera Diez & D Ravelosona, Physical Review B 99, 054431 (2019)[11]. Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy, X Zhao & W.Zhao & D Ravelosona, Applied Physics Letter 115, 122404 (2019)[12]. Controlling magnetism by interface engineering, L Herrera Diez & D Ravelosona, Book Magnetic Nano- and Microwires 2nd Edition, Elsevier (2020)[13]. Reduced spin torque nano-oscillator linewidth using He+ irradiation, S Jiang & D Ravelosona & J Akerman, Appl. Phys. Lett. 116, 072403 (2020)[14]. Spin–orbit torque driven multi-level switching in He+ irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy, X.Zhao & M.Klaui & W.Zhao & D.Ravelosona, Appl. Phys. Lett 116, 242401 (2020)[15]. Magnetic field frustration of the metal-insulator transition in V2O3, J.Trastoy & D.Ravelosona & Y.Schuller, Physical Review B 101, 245109 (2020)[16]. Tailoring interfacial effect in multilayers with Dzyaloshinskii–Moriya interaction by helium ion irradiation, A.Sud & D.Ravelosona &M.Cubukcu, Scientific report 11, 23626 (2021)[17]. Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO, Christopher J. Jensen & Dafiné Ravelosona, Kai Liu, Journal of Magnetism and Magnetic Materials 540, 168479 (2021)[18]. Helium Ions Put Magnetic Skyrmions on the Track, R.Juge & D.Ravelosona & O.Boulle, Nano Lett. 2021 Apr 14 21(7):2989-2996 参考文献:[1]. Nature 601, 211-216(2022)[2]. Appl. Phys. Lett 116, 242401 (2020)[3]. Nano Lett. 2021 Apr 14 21(7):2989-2996

磁性物含量计相关的方案

磁性物含量计相关的资料

磁性物含量计相关的试剂

磁性物含量计相关的论坛

  • 【原创大赛】磁性物质含量的测定

    【原创大赛】磁性物质含量的测定

    磁性物含量测定1. 概述各种含铁矿物按其矿物组成,主要可分为四大类:磁铁矿、赤铁矿、褐铁矿和菱铁矿。磁铁矿是主要含铁矿物,其化学式为Fe3O4,其中FeO:31%, Fe2O3:69%。本方法采用磁选管法测定磁铁矿试样的磁性物含量。磁选管法的工作原理是在C行电磁铁的两极之间装有玻璃管,并作往复移动和旋摆运动。当磁选管中的试样通过磁场区时,磁性物即附着于管壁,非磁性物在机械运动中被水冲刷而排出,使磁性物与非磁性物分离。以磁性物和试样的百分比来表示磁性物含量。2. 试验主要设备:磁选仪(带磁选管),500ml烧杯,塑料桶,坩埚,烘箱,天平(精确到0.1mg),方形小磁铁等。http://ng1.17img.cn/bbsfiles/images/2013/07/201307271951_454093_1657564_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307271952_454095_1657564_3.jpg本实验的主要设备是磁选管。磁选管又名戴维斯管(Davis Tube)。它适用于选煤、矿山、冶金、地质等实验室。用来测定强磁性矿石的磁性成分含量。为矿石的分选提供参考数据。3. 操作步骤3.1 首先,检查电源是否正常,接线是否正确,水箱是否有水,玻璃管位置是否合适,手动盘车,确保设备运行正常。3.2 称取20g±20mg的样品,将试样装入一个容积为500mL的烧杯中,加入5~8mL的酒精和约400mL水,搅拌均匀,确保样品颗粒被充分地湿润。3.3 组装好全套装置后,接通电源,操作控制器,调节磁场至所需磁场强度值。磁场强度是根据磁性物磁性强弱及现场对磁性物要求来调节的。如果试样中磁性物很少或磁性物磁性较弱,则磁场强度应提高。一般将磁场强度设定在150~250mT之间。3.4 先用管夹夹紧玻璃管下端出口软管,向磁选管中加水直至距漏斗约5cm,以确保下一步骤所加磁性物悬浮于水中。3.5 将“电机启动开关”打开,此时,电机带动传动机构及玻璃管开始工作。然后将烧杯中的磁性物混合液体缓缓倒入漏斗,(玻璃管中液面不能太高,约距漏斗口处5cm,确保液体不从玻璃管上口溢出)同时打开玻璃管下部管夹,使液体缓缓流入塑料小桶中。3.6 待烧杯中磁性物混合液体全部倒入玻璃管后,再打开上面水箱的龙头,缓缓注入清水,确保磁性物悬浮于水中,而非磁性物质随水流下沉直至排出管外,磁性物颗粒在磁力作用下附着于管壁两磁极处,直至排出液体不含杂质。3.7 当排出液体不再含杂质时,停止加入清水,用管夹夹紧排水软管。将“电机启动开关”断开。电机停止工作。松开管夹。排出玻璃管内清水。3.8 断开“磁场启动开关”,当磁场显示为“0000”后,将玻璃管拆下,在玻璃管出口处放一个干净的500ml烧杯,轻轻转动玻璃管,同时用洗瓶从玻璃管上口冲刷,把磁性物从玻璃管中冲洗干净,收集到烧杯中。3.9 将装有磁性物混合液的烧杯静置约15分钟,直至磁性物沉淀,上部水澄清,慢慢倒出烧杯中的水,同时用一块强磁铁放在烧杯底部,以防止杯中磁性物有任何损失。3.10 开激磁电源,关闭螺旋夹,向磁选管中加水,打开螺旋夹,并使水流动,把第一个塑料小桶中的液体和固体慢慢加入漏斗,并使混合液通过磁选管进入第二个塑料小桶中。将第二次收集到的磁性物质和第一次的合并在一起。将磁性物质转入干燥的并已称好重量为M0的碗型坩埚中。注:

  • 磁性金属测定仪操作规程

    1 操作前准备本机具有以下主要技术参数:电源电压:220v±22V;电机功率:15W;电机转速:50转/分;刮刀转速:50转/分;电磁铁吸力:40±2公斤;最大试样量:1公斤;回收率:不小于95%;操作前要满足以上要求。2 使用方法从平均样品中称试样1公斤,倒入仪器上部的容器内,接通电源,先按下“通磁”开关,再按下电机“运转”开关,然后调节流量控制门,使试样匀速地经过淌槽流到成盛样箱内。试样全部流完后先停止电机运转,再将盛样箱取出,然后把小杯接在淌槽的下部,断磁以后,用毛刷将淌槽上的吸附物全部扫入小杯中,如此重复操作三次,将各次磁性金属物合并于已知重量的坩埚(WO)中,用四氯化碳洗数次,直至粉粒除净,然后烘干、冷却,用万分之一天平称量(W1)。结果计算:磁性金属物含量按下式计算磁性金属物(mg/Kg)=(W1-W0)×1000式中:W0-坩埚重量,g;W1-磁性金属物和坩埚重量,g。双试验以最高含量为测定结果。3 实验前后,应做好仪器使用记录,以保证其正常的工作状态。

磁性物含量计相关的耗材

  • 磁性固相萃取剂及配套耗材
    磁性固相萃取剂有Bonnacats-MA(聚合物基质)和Bonnacats-MS(硅胶基质)两种系列。Bonnacats MA聚合物基质系列包括 HLB、 WCX、 WAX、 MCX、 MAX、 PS等键合相。? Bonnacats-MA HLB是亲水亲脂平衡的水可浸润性的反相磁性固相萃取剂,表面同时含有亲水性和憎水性基团,可广泛用于酸性、碱性和中性分析物。? Bonnacats-MA WCX(Plus)是混合型弱阳离子交换反相磁性固相萃取剂,对强碱性的化合物具有高选择性,可用于提取生物基质(如血浆,尿液、胆汁及组织匀浆)中的碱性化合物。? Bonnacats-MA WAX是混合型弱阴离子交换反相磁性固相萃取剂,对强酸性化合物具有高选择性,可用于提取生物基质的酸性化合物及其代谢产物。? Bonnacats-MA MCX是混合型强阳离子交换反相磁性固相萃取剂,对碱性化合物具有高选择性。? Bonnacats-MA MAX是混合型强阴离子交换反相磁性固相萃取剂,对酸性化合物具有高选择性。? Bonnacats-MA PS 是中性的苯乙烯/二乙烯苯的反相磁性固相萃取剂。适用于反相条件下保留含有亲水基团的疏水性化合物。可用于水溶液中提取芳香族化合物和苯酚等,也可以用于动植物油脂中苯并芘的测定。系列货号型号规格备注Bonnacats-MA(聚合物基质)BNMA13300001-0Bonnacats-MA MAX 磁性固相萃取剂30-50μm;55-90?;1g/pk可自行分装BNMA14300001-0Bonnacats-MA WAX 磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA3300001-0Bonnacats-MA MCX 磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA7300001-0Bonnacats-MA HLB 磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA7300100-0Bonnacats-MA HLB磁性固相萃取剂30-50μm;55-90?;100g/pkBNMA8300001-0Bonnacats-MA WCX 磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA8300001-0-PBonnacats-MA WCX Plus 磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA12300001-0Bonnacats-MA PS磁性固相萃取剂30-50μm;55-90?;1g/pkBNMA1301-CBonnacats-MA MAX磁性固相萃取剂套装含96孔接收板2块,磁棒套4组MAX磁性固相萃取剂0.1gBNMA1401-CBonnacats-MA WAX磁性固相萃取剂套装含96孔接收板2块,磁棒套4组WAX磁性固相萃取剂0.1gBNMA3001-CBonnacats-MA MCX磁性固相萃取剂套装含96孔接收板2块,磁棒套4组MCX磁性固相萃取剂0.1gBNMA7001-CBonnacats-MA HLB磁性固相萃取剂套装含96孔接收板2块,磁棒套4组HLB磁性固相萃取剂0.1gBNMA8001-CBonnacats-MA WCX磁性固相萃取剂套装含96孔接收板2块,磁棒套4组WCX磁性固相萃取剂0.1gBNMA8001-C-PBonnacats-MA WCX Plus磁性固相萃取剂套装含96孔接收板2块,磁棒套4组WCX Plus磁性固相萃取剂0.1gBNMA1201-CBonnacats-MA PS磁性固相萃取剂套装含96孔接收板2块,磁棒套4组PS磁性固相萃取剂0.1gBonnacats MS硅胶基质系列包括 C18、Ram C18、 C8、 C4、 HILIC、 Silica等键合相。? Bonnacats-MS C18是具有较高碳含量和高疏水性的反相磁性固相萃取剂,可通过疏水性作用萃取非极性化合物,对非极性化合物有较高容量。主要用于非极性化合物萃取(如多环芳烃、抗菌素、脂溶性维生素和酯类化合物等)? Bonnacats-MS Ram C18除了具有C18官能团外,在外表面进行了亲水性修饰,具有阻挡干扰大分子的作用,主要用于生物样品的富集检测。当用于生物样品时,蛋白质等大分子干扰物既不能进入萃取剂的微孔内,又不与萃取剂表面的极性官能团作用,在磁性固相萃取剂上没有保留。 ? Bonnacats-MS C8具有中等疏水性,非常适用于C18上保留过强,较难洗脱的化合物。? Bonnacats-MS HILIC在硅胶表面键合中性的酰胺基团,利用亲水作用色谱原理,可富集强极性和水溶性的碱性化合物,可用于100%水相。? Bonnacats-MS Silica表面富含活性硅羟基,可从非极性溶剂中通过氢键相互作用提取极性化合物。主要用于极性化合物萃取(如醛、胺、有机酸、苯酚、药物、染料、除草剂和农药等)。系列货号型号规格备注Bonnacats-MS(硅胶基质)BNMS9300001-0Bonnacats-MS C18 磁性固相萃取剂30-50μm;100?;1g/pk可自行分装BNMS9300001-RBonnacats-MS Ram C18 磁性固相萃取剂30-50μm;100?;1g/pkBNMS6300001-0Bonnacats-MS C8磁性固相萃取剂30-50μm;100?;1g/pkBNMS4300001-0Bonnacats-MS C4磁性固相萃取剂30-50μm;100?;1g/pkBNMS5300001-0Bonnacats-MS HILIC磁性固相萃取剂30-50μm;100?;1g/pkBNMS2300001-0Bonnacats-MS Silica磁性固相萃取剂30-50μm;100?;1g/pkBNMS9001-CBonnacats-MS C18磁性固相萃取剂套装含96孔接收板2块,磁棒套4组C18磁性固相萃取剂0.1gBNMS9001-RCBonnacats-MS Ram C18磁性固相萃取剂套装含96孔接收板2块,磁棒套4组RAM C18磁性固相萃取剂0.1gBNMS6001-CBonnacats-MS C8磁性固相萃取剂套装含96孔接收板2块,磁棒套4组C8磁性固相萃取剂0.1gBNMS4001-CBonnacats-MS C4磁性固相萃取剂套装含96孔接收板2块,磁棒套4组C4磁性固相萃取剂0.1gBNMS5001-CBonnacats-MS HILIC磁性固相萃取剂套装含96孔接收板2块,磁棒套4组HILIC磁性固相萃取剂0.1gBNMS2001-CBonnacats-MS Silica磁性固相萃取剂套装含96孔接收板2块,磁棒套4组Silica磁性固相萃取剂0.1g配套耗材W-HC-018296孔工字板(空)方孔:20ea/pkW-HC-01828联磁棒套40ea/pk
  • 磁性密封盖(含隔垫),20 mm | 22833
    产品特点:磁性密封盖(含隔垫),20 mmMagnetic Seals w/Septa, 20 mm, preassembled5 mm孔与以下系统兼容:Carlo Erba HS500 / HS800,CTC 500,Fisons HS500 / HS800和Bruker / Varian / Chrompack 9020/25。 8mm 孔与Combi Pal兼容。 双金属和标准磁性压接帽密封比铝制压接帽密封更坚固,需要更大的力来密封和切割。 为防止用户疲劳,Restek建议在使用双金属和标准磁性压接盖密封时,使用大功率电子压接器/开盖器代替手动或电池供电的压接器/开盖器。订货信息:Magnetic Seals w/Septa, 20 mm, preassembledCatalog #Product NameModificationColorSepta MaterialMaterialUnits22833Magnetic Seals w/Septawith 5 mm HoleGoldPTFE/Siliconesteel100-pk.22834Magnetic Seals w/Septawith 5 mm HoleGoldPTFE/Siliconesteel1,000-pk.22831Magnetic Seals w/Septawith 8 mm HoleGoldPTFE/Siliconesteel100-pk.22832Magnetic Seals w/Septawith 8 mm HoleGoldPTFE/Siliconesteel1,000-pk.22835Magnetic Seals w/Septawith 8 mm HoleGoldPTFE/Butylsteel100-pk.22836Magnetic Seals w/Septawith 8 mm HoleGoldPTFE/Butylsteel1,000-pk.22441BiMetal Magnetic Seals w/Septawith 8 mm HoleRed/SilverPTFE/Siliconealuminum/steel100-pk.22442BiMetal Magnetic Seals w/Septawith 8 mm HoleRed/SilverPTFE/Siliconealuminum/steel1,000-pk.22443BiMetal Magnetic Seals w/Septawith 8 mm HoleBlue/SilverPTFE/Siliconealuminum/steel100-pk.22444BiMetal Magnetic Seals w/Septawith 8 mm HoleBlue/SilverPTFE/Siliconealuminum/steel1,000-pk.
  • BeaverBeads™ Mag COOH系列超顺磁性磁珠
    羧基磁珠BeaverBeads™ Mag COOH系列磁珠具有超顺磁性、快速磁响应性、丰富羧基官能团、单分散性和亚微米尺度粒径等特点,能够在特殊化学试剂(如EDC)的作用下将多肽、蛋白、抗体、寡聚核苷酸等生物配体共价偶联到微球表面,是医学与分子生物学研究中重要的载体工具。BeaverBeads™ Magrose COOH系列磁珠是采用蛋白分离纯化领域中最理想的天然高分子材料琼脂糖与超顺磁性材料复合形成的一种新型功能化磁性微球。与传统磁珠相比,Magrose具有更快的磁响应性同时保持微球良好的分散性、极低的非特异性吸附和更丰富的结合位点等特性,能便捷高效地与多种生物配体(蛋白、多肽、寡聚核苷酸、药物分子等)进行高载量结合,具有非常高的目标物质结合能力高,是用于分离纯化的首选材料。产品名称编号规格包装单价BeaverBeads™ Mag COOH70104-51μm 10mg/mL5mL¥1060.00BeaverBeads™ Mag COOH70104-501μm 10mg/mL50mL¥5460.00BeaverBeads™ Mag COOH70102-52μm 10mg/mL5mL¥1060.00BeaverBeads™ Mag COOH70102-502μm 10mg/mL50mL¥5460.00BeaverBeads™ Mag COOH70105-55μm 10mg/mL5mL¥1060.00BeaverBeads™ Mag COOH70105-505μm 10mg/mL50mL¥5460.00BeaverBeads™ Magrose COOH70103-520%(v/v)5mL¥580.00BeaverBeads™ Magrose COOH70103-5020%(v/v)50mL¥2960.00产品名称Mag COOHMagrose COOH粒径30-150μm表面基团/含量~200μmol/g~50μmol/ml磁核Fe3O4Fe3O4壳层聚合物琼脂糖饱和磁化强度40~60 emu/g30~50 emu/g应用方向适用于诊断、检测适用于分离、纯化共同特点超顺磁性,可自动/手动操作*水化平均粒径,Malvern Nano测定Mag COOH产品特性1. 羧基含量丰富:>100μmol/g;2. 操作性能好:磁珠分散均匀,具有超顺磁性,磁响应时间3. 稳定性及批次间重复性好:粒径均一,多分散系数Magrose在倒置显微镜下400倍成像Magrose COOH偶联荧光多肽后在显微镜下成像Magrose COOH产品特性1.羧基含量丰富:~1000μmol/g;2. 操作性能好:磁珠分散均匀,具有超顺磁性,磁响应时间3.稳定性及批次间重复性好,批间羧基含量CV4.目标物质结合量高,非特异性吸附低:专用于分离、纯化领域。应用方向? 蛋白纯化? 免疫检测? 细胞分选? 特异性核酸分离? 生物传感器? 药物筛选和输送 引用文献:A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies;Song et al. Nanoscale Research Letters (2017) 12:179,DOI:10.1186/s11671-017-1941-z
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制